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Solving Large-Scale Hybrid
Circuit-Antenna Problems

Javad Lavaei, Student Member, IEEE, Aydin Babakhani, Ali Hajimiri, and John C. Doyle

Abstract—Motivated by different applications in circuits,
electromagnetics, and optics, this paper is concerned with the
synthesis of a particular type of linear circuit, where the circuit
is associated with a control unit. The objective is to design a con-
troller for this control unit such that certain specifications on the
parameters of the circuit are satisfied. It is shown that designing a
control unit in the form of a switching network is an NP-complete
problem that can be formulated as a rank-minimization problem.
It is then proven that the underlying design problem can be cast
as a semidefinite optimization if a passive network is designed
instead of a switching network. Since the implementation of a
passive network may need too many components, the design of a
decoupled (sparse) passive network is subsequently studied. This
paper introduces a tradeoff between design simplicity and imple-
mentation complexity for an important class of linear circuits.
The superiority of the developed techniques is demonstrated by
different simulations. In particular, for the first time in the liter-
ature, a wavelength-size passive antenna is designed, which has
an excellent beamforming capability and which can concurrently
make a null in at least eight directions.

Index Terms—Antenna radiation pattern, circuit network
analysis, circuit optimization, convex optimization, integrated
antennas, linear matrix inequalities, reconfigurable antenna.

I. INTRODUCTION

M ANY important problems in circuits, electromagnetics
(EMs), and optics can be reduced to the analysis and

synthesis of some linear systems in the frequency domain. These
systems, in the circuit theory, consist of passive elements in-
cluding resistors, inductors, capacitors, ideal transformers, and
ideal gyrators [1]. Since the seminal work [2], there has been a
remarkable progress in characterizing such passive (dissipative)
systems using the concept of positive real functions. This notion
plays a vital role not only in circuit design but also in various
control problems [1], [3], [4].

The application of control theory in circuit and communica-
tion areas evidently goes beyond the passivity concept. Indeed,
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the emerging optimization tools developed by control theorists,
such as linear matrix inequalities (LMIs) [5] and sum of squares
(SOS) [6], have been successfully applied to a number of fun-
damental problems in these fields. The study in [7] is one of the
earliest works connecting the convex optimization theory to cir-
cuit design, whose objective is to optimize the dominant time
constant of a linear resistor–capacitor circuit using semidefinite
programming. The recent paper [8] proposes an LMI optimiza-
tion to check whether a given multiport network can be real-
ized using a prespecified set of linear time-invariant components
(namely, an inductor and a small-signal model of a transistor).
Moreover, the study in [9] formulates the pattern synthesis of
large arrays with bound constraints on the sidelobe and main-
lobe levels as a semidefinite programming problem.

Different problems in circuits, EMs, and optics may be for-
mulated as an optimization over the parameters of a multiport
passive network that is obtained, for instance, via an EM simu-
lation. As an example, it is shown in [10] that a strikingly effi-
cient and practical way to deal with certain complex antenna
problems is to extract a circuit model and then to search for
the appropriate values of its parameters. The circuit model pro-
posed in [10] is indeed a simple and general model that could
be considered as the abstract model of different types of prob-
lems. A question arises as to whether there exists a systematic
method to study such circuit problems by means of efficient
algorithms. This paper basically aims to address this question
using the available techniques developed in the control theory,
especially the LMI and passivity concepts.

Motivated by the studies in [10] and [11] on the design of
on-chip antennas, a linear multiport network is considered in
this paper, where certain design specifications on its input ad-
mittance and output voltages must be satisfied at a desired fre-
quency. To achieve this, some of the output ports of the net-
work, referred to as controllable ports, are connected to a con-
trol unit. It is shown that designing a control unit in the form of a
switching network that makes the circuit meet the design spec-
ifications is an NP-complete problem. Instead, the design of a
passive network for the control unit can be cast as a semidef-
inite optimization. Since a passive network may require many
components (elements) for its implementation, the design of a
sparse (decoupled) passive controller is also studied. To this end,
a rank-minimization problem is obtained, which can be handled
using the convex-based heuristic method proposed in [12] (and
further studied in [13]). This heuristic method is able to cor-
rectly solve the rank-minimization problem in some cases. Note
that the main assumption required in this paper is the linearity
of the given network at the desired frequency, and hence, the
developed technique is not applicable to nonlinear circuits that
cannot be satisfactorily linearized at the frequency of interest.

The techniques developed here are applied to two antenna de-
sign problems to demonstrate how the optimal antenna config-
urations with a superior performance can be engineered. In par-



LAVAEI et al.: SOLVING LARGE-SCALE HYBRID CIRCUIT-ANTENNA PROBLEMS 375

Fig. 1. This is an implementation of an important antenna configuration whose
optimal synthesis can be cast as the problem studied in the present paper (see
[10] for more details on this chip micrograph).

ticular, an on-chip wavelength-size passive antenna is designed,
which can steer the beam to an arbitrary direction and can simul-
taneously make a null in at least eight directions. This is the first
antenna system reported in the literature with such properties,
which has a significant beamforming capability. Note that the
type of antenna designed here is practically implementable. In
particular, we have already implemented a nonoptimal antenna
with the same structure as in [10], leading to the chip micro-
graph shown in Fig. 1.

The rest of this paper is organized as follows. The problem is
formulated in Section II, and some practical motivations and re-
lated works are then outlined. The main results are developed
in Section III. The efficacy of this paper is demonstrated in
Section IV through different simulations. Some concluding re-
marks are drawn in Section V. A proof is finally provided in the
Appendix.

II. PROBLEM FORMULATION AND MOTIVATION

Given a natural number , consider a linear passive
-port (reciprocal) network, where ports play the

role of the outputs of the network and port is the input of
the network that is connected to a voltage source with a fixed
voltage . The output ports of this network are divided into
two groups, for a number , as follows.

1) Output ports : These ports are the output ports
of interest, i.e., the ones whose voltages must satisfy some
design specifications (linear constraints).

2) Output ports : These ports are the con-
trollable output ports, i.e., the ones that are connected to a
control unit and the ones that must be controlled in such a
way that the output voltages at ports as well as
the input admittance of the network at port satisfy
certain linear specifications.

Since the output ports will not be connected to any
device/controller and since they are used to only measure their
voltages, the current through each of these ports must be zero.

The circuit corresponding to the aforementioned configura-
tion is shown in Fig. 2, which will be referred to as Circuit 1
throughout this paper. As shown in the figure, let and de-
note the voltage and current of port , respectively, for every

Fig. 2. Circuit 1 studied in this paper.

Fig. 3. Distributed circuit with variable impedances.

. Moreover, let be the current at port ,
and let be the input admittance of the linear network. To be
more specific about the objective of the present work, consider
a desired frequency . The goal is to design a controller for the
control unit so that the parameters of Circuit 1 at frequency
satisfy the design specifications

(1a)

(1b)

(1c)

(1d)

(1e)

where the operators and return the real and imag-
inary parts of a complex number and

1) are the given desired voltages for output ports
, respectively;

2) is the desired input admittance;
3) , ( ), , and are arbitrary nonnegative

numbers.
The primary objective of this paper is to study the design of

different types of control units, such as switching, passive, and
decoupled passive controllers, for Circuit 1 and then to investi-
gate the tradeoff between design simplicity and implementation
complexity for each of these types.

Note that the circuit that is being studied here is assumed to be
passive and is connected to only one voltage source. However,
the results of this paper can be generalized to the case when
there are more than one voltage (current) source, and besides,
certain active elements exist in the circuit.

A. Simple Illustrative Example

Although the main motivation of the present work is the syn-
thesis of circuits derived from EM structures, it is helpful to il-
lustrate how some generic circuit problems may be modeled as
Circuit 1. To this end, consider the simple filter shown in Fig. 3.
Assume that the goal is to find the numerical values of the im-
pedances to in such a way that the input–output gain of
the filter is maximized at a prespecified frequency . To this
end, one can reorganize the elements of this filter to obtain the
equivalent model shown in Fig. 4, where the known elements are
clustered in the block “linear passive network” and the unknown
components are grouped in the block “control unit.” Under this
setting, the objective reduces to designing the control unit in
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Fig. 4. Filter shown in Fig. 3 is redrawn in the form of Circuit 1.

Fig. 4 so that the magnitude of the observed output of the cir-
cuit is maximized. The following three points can be made here.

1) The control unit in Fig. 4 is highly structured in the sense
that its seven terminal ports are connected to each other in
a particular way by the elements to . How to design
a control unit with a prescribed structure will be explained
later in Section III-F.

2) The linear passive network in Fig. 4 has some distributed
elements, namely, transmission lines. However, they can
be replaced by their lumped models at frequency .

3) As a generalization to the feasibility problem defined ear-
lier by (1), one can also maximize some quantity of interest
in addition to imposing the constraints given in (1). For ex-
ample, the magnitude of the observed output of the circuit
can be maximized (this is explained in Section III-F).

B. Motivation

Numerical methods and efficient optimization techniques,
enabled by increasing the computational power, have been
markedly instrumental in advancing the field of modern elec-
trodynamics. The progress in this field, which was limited
to the development of analytical models for antenna charac-
teristics such as pattern, efficiency, and impedance, has been
greatly influenced by novel numerical techniques in time or
frequency domains. Frequency-domain techniques such as the
finite element method [15] and the method of moments [16],
as well as the time-domain algorithms such as the finite differ-
ence technique [17], have been extensively used in designing
the EM structures. These numerical methods, combined with
optimization techniques such as genetic algorithm [18] and
particle swarm optimization (PSO) [19], provide a valuable,
but inefficient, tool in designing large-scale EM structures
where thousands of passive elements are involved. Indeed, the
available numerical techniques iteratively search for a subop-
timal solution. Since a new time-consuming EM simulation
needs to be run at each iteration, this approach could be really
prohibitive due to the exponential number of iterations.

In the recent paper [10], this crucial issue is partially resolved
by introducing a novel method, which requires performing the
EM simulation only once to extract the equivalent circuit model
of the system at a single frequency of interest. The EM problem
then reduces to solving a noniterative optimization problem over
the parameters of this circuit model. It is noteworthy that this cir-
cuit model is in the form of Circuit 1, in which ports
correspond to the receiving antennas at the far field and ports

Fig. 5. Circuit 2 obtained from Circuit 1 by using a switching control unit.

correspond to the controllable ports on the transmit-
ting antenna. Now, ports on the transmitting antenna
should be controlled in such a way that the desired voltages are
received in the far field of the receiving antennas .
Roughly speaking, many problems governed by Maxwell’s dif-
ferential equations seeking optimal values of the termination im-
pedances/voltages can be converted to the circuit problem intro-
duced earlier.

C. Related Work

The study in [7] studies a linear resistor–capacitor cir-
cuit described by the differential equation

(2)

where and are the symmetric pos-
itive-definite capacitance and conductance matrices to be de-
signed, is a vector of the node voltages, and

is a vector of the independent voltage sources. Let
be a vector of unknown design parameters,

and assume that matrices and that are being sought are re-
quired to depend affinely on , i.e.,

where and are some given matrices. It
is shown in [7] that the problem of finding the parameter vector

in such a way that the dominant time constant of the cir-
cuit (2) is optimized can be cast as a semidefinite programming
problem. The present work deals with another type of circuit
problem, which is more complicated than the one tackled in [7].
The reason is that the control unit that is to be designed for Cir-
cuit 1 may not be characterizable as an affine function of the
design parameters and . However, it will be
shown in this paper that the underlying problem can also be cast
as a semidefinite programming problem.

III. MAIN RESULTS

Different types of control units will be designed for Circuit 1
in the following sections.

A. Switching Control Unit

Motivated by the antenna application [10] discussed earlier,
the most desirable (and simplest) type of control unit is likely
a switching controller, which connects every port

to an ideal switch that is either on or off (the switch
connected to port is called switch ). This is shown in Fig. 5,
and the corresponding circuit is referred to as Circuit 2. The
problem that is being addressed here is formalized next.

Problem 1: Find whether it is possible to turn on a subset
of switches in Circuit 2 so that the design
specifications given in (1) are all satisfied.
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To analyze Circuit 2, introduce the shorthand notations

One can write a number of equations as

(3a)

(3b)

(3c)

where denotes the admittance transfer function of the linear
passive -port network (the middle block in the circuit) at a
given frequency or, equivalently, the -parameter matrix of
the network at frequency . Note that is a complex-valued
matrix whose real and imaginary parts are both symmetric.

Denote the set of complex numbers with . Define
and to be the sets of stan-

dard basis vectors of and , respectively. Throughout
this paper, the notation is used to show the matrix inequalities
in the positive definite sense. The symbol “ ” is also used to
denote the conjugate transpose of a matrix. The following
theorem recasts Problem 1 as an optimization problem.

Theorem 1: Minimize the rank of the matrix

(4)

for the variables and that are
subject to the constraints

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

(5g)

where denotes the th row of matrix . Problem 1 is feasible
if and only if the value of the minimum rank is equal to one, in
which case a feasible solution can be extracted as follows: for
every , turn on switch if and only if the th
entry of is zero.

Proof of Necessity: Assume that Problem 1 has a feasible
solution. Let denote the number of switches whose connection
makes the design specifications given in (1) be satisfied. Denote
the set of such switches with .
The goal is to construct a matrix and a
vector for which the rank of matrix (4) is one, and
in addition, the constraints in (5) are all satisfied. To this end,
consider Circuit 2, with switches turned on (and
the remaining switches turned off). One can write

This implies that

(6)

On the other hand, it follows from (3a) that

(7)

Equation (7) can be substituted into (6) to obtain

(8)

Define

(9)

The constraints given in (5) are all satisfied for this particular
choice of and because of the following observations.

1) In light of the relations

the constraints (5a)–(5d) in Theorem 1 correspond to the
design specifications (1a)–(1d), respectively, which are al-
ready assumed to hold when switches are
turned on.

2) The constraint (5e) corresponds to the design specification
(1e) [due to the equality (7)].

3) The constraint (5f) corresponds to the relation (8) on noting
that

4) The condition given in (5g) holds due to the
definition of matrix in (9) as

5) The rank of the matrix provided in (4) is equal to one in
light of the vector decomposition

Proof of Sufficiency: Assume that there exist a matrix
and a vector such that the rank of

matrix (4) is equal to one and such that the constraints in (5)
are all satisfied. Identify every index for
which the th entry of is zero, and denote the set of all such
indices as . The intent is to prove that Problem 1
is feasible, and indeed, the design specifications (1) are satisfied
for Circuit 2 when switches are turned on. To this
end, consider the matrix

(10)

whose rank is assumed to be one. Since satisfies constraint
(5g), this matrix is Hermitian. Since the aforementioned matrix
is both Hermitian and rank 1, one can apply the singular value
decomposition theorem to this matrix to infer that there exists
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a vector such that this matrix is equal to either
or . However, the last diagonal entry of matrix (10), being
equal to one, does not allow this matrix to be equal to the nega-
tive semidefinite matrix . Hence

This relation can be simplified to obtain

As a result, satisfies the equation

(11)

Define now

(12)

and denote the th entries of and with and , respec-
tively, for every . Equality (5e) yields

Likewise, (5f), (11), and (12) lead to

or

(because is assumed to be nonzero if
). So far, it is shown that there are

two vectors and such that
1) the relation holds;
2) is equal to zero for every ;
3) is equal to zero for every ;
4) is equal to zero for every

.
It can be concluded from these properties and the set of equa-
tions in (3) that

where , , and are the parameters of Circuit 2 when switches
are turned on. Now, notice that the design speci-

fications (1a)–(1e) are equivalent to (5a)–(5e) in Theorem 1, re-
spectively (see the proof of necessity for an explanation of this
equivalency). Hence, the design specifications are satisfied for
this particular switching in Circuit 2.

Theorem 1 states that Problem 1 is tantamount to an opti-
mization problem whose constraints are all linear. However, the
rank of a Hermitian matrix is to be minimized, which makes
the problem nonconvex. Since a rank-minimization problem is
NP-hard in general, there may not be an efficient algorithm to
exactly solve it. The possibility of using a heuristic method to
solve this problem will be discussed later in Section III-D.

A question arises as to whether it is possible to convert
Problem 1 to another optimization problem that can be ef-

Fig. 6. Circuit 3 obtained from Circuit 1 by using a linear and passive control
unit.

ficiently solved using deterministic algorithms (rather than
randomized or heuristic algorithms). This question is tackled
in the Appendix, where it is shown that Problem 1 is NP-com-
plete, which makes it one of the hardest problems from the
computational point of view. An intuitive argument for the
NP-completeness of Problem 1 is as follows: the constraint that
each controllable port must be connected to an ideal switch
can be interpreted as the input power of each port must be
exactly zero. Since the power is a nonconvex function of the
voltage and current parameters, deciding whether there are
appropriate voltage and current values to make several power
terms precisely equal to zero becomes a hard problem.

We wish to study how Problem 1 can be slightly modified so
that it becomes convex. This is the crux of the next section.

B. Passive Control Unit

The nonconvexity of Problem 1 originates from the fact that
the output ports are controlled by ideal
switches. In this part, let the control unit in Circuit 1 be a general
linear and strictly passive network, as opposed to a switching
network. This leads to Circuit 3, shown in Fig. 6. Henceforth,
assume that the network corresponding to the admittance is
strictly passive (rather than being only passive). The objective
of this section is formalized in the following.

Problem 2: Find whether it is possible to design a control
unit in the form of a linear and strictly passive (reciprocal) net-
work such that the design specifications given in (1) are met for
Circuit 3.

Let denote the admittance of the linear and strictly passive
network that is being designed at a given frequency . Note that
the reciprocity condition in the aforementioned problem can be
translated as the real and imaginary parts of are both sym-
metric. It is aimed to show that Problem 2 can be turned into a
convex optimization problem with a simple form. In what fol-
lows, a lemma is presented, which will be used later to prove
this important result.

Lemma 1: Given symmetric matrices , if
is nonsingular, then the following statements are equivalent.

1) is a positive definite matrix.
2) is a positive definite matrix.

Proof: First, assume that is a positive definite matrix.
Thus, is positive definite and so is . This im-
plies that is a positive definite matrix. So far, it
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is shown that 1) implies 2). To complete the proof, it remains
to show that the converse statement is also true. To this end, as-
sume that is a positive definite matrix. Define
the matrices

(13)

It is easy to verify that . Denote the number of
positive, negative, and zero eigenvalues of the symmetric matrix

with , , and , respectively. Analogously, denote the
same quantities of matrix with the triple . Since
matrix is nonsingular, applying the Sylvester’s Law of Inertia
to the relation yields

(14)

On the other hand, it can be concluded from the Hamiltonian
structure of matrix that

(15)

Furthermore, since every eigenvalue of is an
eigenvalue of and since all eigenvalues of
are positive, the quantity is at least equal to . In light of
the equalities (14) and (15), the relation is possible
only if . Thus, matrix has
negative eigenvalues. Nonetheless, the negative eigenvalues of
this matrix are the same as those of matrix ; hence,

has the maximum number of negative eigenvalues. This
simply proves that the eigenvalues of are all positive, which
completes the proof.

Decompose matrix in a block form as

where , , and .
For the given symmetric square matrices and of the same
dimension with , it can be verified that

(16)
where “i” stands for the imaginary unit. This identity will be
exploited in the next theorem.

Theorem 2: Problem 2 is feasible if and only if there exist
symmetric matrices and vectors

and such that

(17)

and such that

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

Moreover, if there exist such matrices and satisfying the
aforementioned constraints, then one candidate for the admit-
tance matrix is

(19)

Proof of Necessity: Assume that there exists a linear and pas-
sive controller (control unit) with an admittance at frequency

such that the design specifications listed in (1) are satisfied
for Circuit 3 under this controller. The objective is to prove that
there exist symmetric matrices and vec-
tors and for which the constraints
given in (17) and (18) are satisfied. For this purpose, consider
Circuit 3 under the passive network , and define the vectors

Two equations can be written for Circuit 3 as follows:

(20)

These equations can be combined to obtain

The aforementioned relations can be manipulated to arrive at

(21a)

(21b)

(21c)

where

(22)

Note that the invertibility of the term
follows from the strict passivity of and . It is desired to
show that constraints (17) and (18) in Theorem 2 hold if , ,

, and are defined as

To this end, first observe that and are symmetric matrices
due to the reciprocity of and . Moreover, it can be con-
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cluded from the aforementioned definitions and (21c) that the
constraints (18a)–(18d) correspond to the design specifications
(1a)–(1d), respectively, which are assumed to hold for Circuit 3.
The constraints (18e) and (18f), on the other hand, are satisfied
in light of the relations (21a) and (21b). The only challenging
part is to show that inequality (17) in Theorem 2 holds. For this
purpose, notice that the strict passivity of the network associ-
ated with implies the relation [1]. By applying
identity (16) to (22) and by using this fact, one can write

(23)

Since the term is the (1,1) block entry
of the inverse of the matrix

which is a principal submatrix of , it follows from the strict
passivity of the admittance matrix that

(24)

Inequalities (23) and (24) lead to

(25)
The following two properties can be deduced from this relation.

1) First, Lemma 1 yields

(26)

2) Second, inequality (25) can be rearranged to obtain

or equivalently

(27)
Schur’s complement formula can be used to conclude that in-
equalities (26) and (27) are equivalent to (17). This completes
the proof of necessity.

Proof of Sufficiency: Since the proof can be carried out in line
with the approach taken at the proof of necessity, only a sketch
of the proof will be provided here. Assume that the constraints
given in (17) and (18) are satisfied for some symmetric matrices

and vectors and
. The goal is to show that the design specifications

listed in (1) are met for Circuit 3 if the admittance of the
passive controller (at frequency ) is considered as

For this choice of matrix , it follows from (18f) and (21b)
that is equal to . Then, it can be concluded from (18e)
and (21a) that . Now, one can easily verify that the
design specifications (1a)–(1d) correspond to the inequalities

(18a)–(18d), respectively, which are assumed to hold. On the
other hand, the design specification (1e) is satisfied in light of
the relation (18e) and the equality

[see (20)]. Hence, it only remains to show that matrix intro-
duced earlier corresponds to a strictly passive network. This can
be shown using Lemma 1 and Schur’s complement formula in
line with the argument pursued in the proof of necessity. The
details are omitted for brevity.

Regarding the optimization problem proposed in Theorem 2,
it is easy to observe that the constraints are all linear. Therefore,
Theorem 2 states that Problem 2 is equivalent to an LMI feasi-
bility problem, which can be handled efficiently using a proper
software tool such as YALMIP or SOSTOOLS [22], [23]. This
signifies that replacing switches with a passive network facili-
tates the circuit design at the cost of complicating its implemen-
tation in practice. In the case when it is strictly required to de-
sign a collection of switches, Theorem 2 is still useful. Indeed,
since Circuit 2 is a special form of Circuit 3, the infeasibility
of Problem 2 implies the infeasibility of Problem 1. As a result,
one can regard the LMI problem proposed in Theorem 2 as a
sanity test for checking the feasibility of Problem 1.

Assume that Problem 2 is feasible, and therefore, an admit-
tance matrix (at frequency ) can be obtained by solving
the feasibility problem given in Theorem 2. The next step is to
design a reciprocal passive network whose corresponding ad-
mittance transfer function at frequency is equal to . To find
such a network, note that the real part of is a positive definite
matrix and that its imaginary part is symmetric. As a result, ma-
trix can be expressed as

where and are both symmetric, and
is positive definite. Define an admittance transfer function
as

It is evident that . On the other hand, can
be implemented by the parallel connection of two -port
networks: 1) a resistive network with the conductance matrix
and 2) a reactive network with the susceptance matrix .
Note that some ideal transformers might also be needed to re-
alize due to the multiport nature of the network. One can
refer to [1] and [2] for the detailed discussions on the realization
of a given admittance matrix by passive elements.

C. Decoupled Passive Control Unit

The main issue with the admittance matrix obtained in
Theorem 2 is that its corresponding passive network could po-
tentially have several components (electrical elements), which
may complicate its implementation. To circumvent this draw-
back, one can impose a sparsity constraint on to make it di-
agonal. Note that Circuit 3, under a passive control unit with a
diagonal admittance transfer function, is equivalent to Circuit 4,



LAVAEI et al.: SOLVING LARGE-SCALE HYBRID CIRCUIT-ANTENNA PROBLEMS 381

Fig. 7. Circuit 4 obtained from Circuit 1 by using a decoupled, linear, and pas-
sive control unit.

shown in Fig. 7. Alternatively, one can reason that Circuit 4 is
obtained from Circuit 2 (as opposed to Circuit 3) by replacing
the ideal switches with varactors. Define Problem 3 to be the
same as Problem 2 but under the additional constraint of the di-
agonality of . It will be shown in the sequel that Problem 3 is
nonconvex. However, there is a good heuristic method for this
problem, as tested on several practical examples.

Theorem 3: Minimize the rank of the matrix

(28)

for vectors and , symmetric ma-
trices , and diagonal matrices

that are subject to the constraints given in (18)
and

where and are provided in (13) and (29), respectively ((29)
is shown at the bottom of the page). Problem 3 is feasible if and
only if the value of the minimum rank is less than or equal to

, in which case the feasible solution for the diagonal
admittance matrix is as follows:

Proof: When there is no diagonality constraint on matrix
, a necessary and sufficient condition for the existence of a de-

sirable network is provided in Theorem 2. Hence, it suffices to
incorporate this extra constraint into the aforementioned condi-
tion. To this end, write as , where and are
required to be diagonal. It results from (19) that

(30)

Applying identity (16) to the aforementioned equation yields

These equations can be written in the matrix form (31) (see
equation at the bottom of the page) or equivalently .
On the other hand

(32)
In light of the equality and the nonsingularity of

, it follows from the aforementioned equation that the rank of
the matrix given in (28) is exactly equal to . So far, it
is shown that the diagonality of matrix implies the aforemen-
tioned rank constraint. To prove the converse statement, notice
that the condition makes the Hamiltonian matrix non-
singular (see the proof of Lemma 1). This, together with identity
(32), implies that, if the rank of the matrix in (28) is less than or
equal to , then the matrix must be zero. This
result leads to (30), which is indeed a diagonality constraint on
matrix . Moreover, one can easily replace the passivity con-
straint (17) given in Theorem 2 with the condition be-
cause the real part of matrix is equal to .

Remark 1: Unlike Problem 2 that had a convex formulation,
Problem 3 turned out to be a rank-minimization problem that is
not convex. A question arises as to what makes Problem 3 hard.
To answer this question, consider the special case when the cir-
cuit is resistive and when the controller to be designed needs to
be resistive as well. This particular case makes all complex vari-
ables real valued, which will reveal later the design difficulties.
Notice that, since each controllable port must be connected to a
resistor, the following power constraints should be satisfied:

(33)

Given , this means that one of the cases
, or , must occur, which implies that

there are two possibilities for the parameters . Hence, it
follows from (33) that there are possibilities for the param-
eters . As a result, the aforemen-
tioned power constraints correspond to a nonconvex feasibility
region that is composed of an exponential number of
convex parts attached to each other at the origin. This highly
nonconvex feasibility region is the source of difficulty in tack-
ling Problem 3.

(29)

(31)
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D. Heuristic Method for Rank Minimization

Since the optimization problems given in Theorems 1 and 3
are associated with the rank constraints, the objective of this part
is to study the rank-minimization problems. Consider a standard
rank optimization problem in the form of

minimize rank

subject to (34)

where

an matrix decision variable
( and are given numbers);

a known linear map;

a given vector in

It is known that the optimization problem (34) is NP-hard,
in general. However, several heuristic methods have been
proposed in the literature to relax the problem to a convex
one, whose solution may be identical or near to that of the
original problem [12], [21]. The heuristic method developed in
the studies in [12] and [13] has been widely used in the litera-
ture. This method suggests solving the following optimization
problem instead of (34):

minimize

subject to (35)

where denotes the nuclear norm of matrix (defined as
the sum of the singular values of ). The main advantage of
this heuristic method is that the optimization problem (35) is
convex, and thus, its global solution can be efficiently found.

An important question arises as to when will the solutions
of optimizations (34) and (35) coincide. To answer the raised
question probabilistically, represent the linear map in the
matrix form as , where is a ma-
trix and is a vector obtained from by stacking up the
columns of . It is shown in [14] that, as goes to infinity,
the probability that optimizations (34) and (35) have the same
solution is equal to one if the entries of matrix are indepen-
dently sampled from a zero-mean unit-variance Gaussian dis-
tribution. In other words, the aforementioned heuristic method
works almost always correctly for a standard rank-minimization
problem whose linear constraints are randomly generated using
a Gaussian probability distribution.

The rank-minimization problems given in Theorems 1 and
3 can be handled using the heuristic method discussed earlier.
As a result, the nuclear norm of matrices (4) and (28) should
be minimized in the related optimization problems, instead of
their ranks. In case this heuristic method leads to a rank greater
than one for the optimization problem in Theorem 1 or
for the optimization problem in Theorem 3, there are two pos-
sibilities: 1) Problem 1 (or Problem 3) is infeasible, and 2) the
heuristic method fails to find a solution with the minimum rank.
One can use the necessary and sufficient condition derived in
[14] to see if case 1) takes place, although this may be compli-
cated. Note that, since the optimization problems in Theorems 1
and 3 are highly structured (partially due to the presence of fixed
elements 1 and as well as the Hamiltonian matrix in the con-
straints), these optimizations may be far from being a Gaussian
random instance of a rank-minimization problem. Therefore,

they may not lie into the category of problems for which the
aforementioned heuristic method almost always works correctly
(note that the results developed in [14] are applicable to these
optimizations because they can be transformed into the standard
form (34) using the technique delineated therein).

An extensive simulation was done by the authors to test the
efficiency of the nuclear norm heuristic method on different an-
tenna problems. A number of important observations were made
as follows.

1) The heuristic method works correctly all the time for the
optimization problem in Theorem 3 if there are no con-
straints on , i.e., if all constraints are on .

2) Some of the design specifications may be violated a little
if the heuristic method is applied to the optimization
problem of Theorem 3, with some constraints on the
output voltages . For example, given an
index , the real part of the obtained
voltage that is required to belong to the interval

might lie a bit off this range.
3) The nuclear norm heuristic method often fails to obtain a

satisfactory result when applied to Theorem 1.
It is shown in the Appendix that Problem 1 is NP-complete, and
since an NP-complete problem is well understood to be very
hard to solve, it is commonly believed that a convex heuristic
method (such as the aforementioned one) often fails to find a sat-
isfactory solution. This might be the reason for observation 3).

E. Design Simplicity Versus Implementation Complexity

It is desired to compare Circuits 2, 3, and 4 in terms of their
design and implementation. To this end, the main properties of
these circuits can be summarized as follows.

1) The implementation of a control unit for Circuit 2 requires
only switches, but finding the on/off status of every
switch to satisfy the design specifications is an NP-com-
plete problem. As a result, the synthesis of such a circuit
can be extremely difficult when the number of switches,
i.e., , is greater than 30 (because the discrete space of
all switching combinations has elements, which is a
very large set if ).

2) The implementation of a control unit for Circuit 3 requires
about components (e.g., resistors, capacitors,
and inductors). This may make the implementation of such
a controller difficult for some applications. Nonetheless,
the synthesis of a passive control unit can be converted to
an LMI feasibility problem, which can be efficiently han-
dled even when is on the order of several thousands.

3) The implementation of a control unit for Circuit 4 requires
only components. Hence, the number of components
in the controller grows linearly with respect to the number
of controllable ports (i.e., ), which is a useful property
for large-scale systems. Even though the synthesis of such
a controller is tantamount to a rank-minimization problem,
it may be solved using a heuristic method (as mentioned
earlier), particularly when there are not so many constraints
on the output voltages.

The aforementioned discussion leads to the conclusion that,
since the synthesis of Circuit 2 is very difficult even for mod-
erate-sized systems, it is preferable to deploy either Circuit 3 or
4. In the case when it is desired to design a control unit online
(as demanded in antenna applications due to the periodic change
of the design specifications), Circuit 3 is a more suitable choice
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compared to Circuit 4. However, the implementation of Circuit
4 is much simpler than that of Circuit 3 for large-scale systems.

Remark 2: To reduce the implementation complexity of Cir-
cuit 3, it is preferable to use a small subset of the control-
lable ports, if possible. More specifically, it might be possible to
satisfy the design specifications only by controlling a few of the
controllable ports. Hence, one can take the following strategy:
check whether a passive control unit can be designed for port

to satisfy the design objectives (1); if not, verify the ex-
istence of a controller for ports and ; and continue
this procedure up to the point where enough number of control-
lable ports are found whose passive control makes us meet the
design specifications. This heuristic method can significantly re-
duce the implementation complexity.

F. Generalizations

Problems 1, 2, and 3 studied in this paper target a circuit
synthesis, with the design specifications given in (1). However,
the techniques developed here can be generalized to incorporate
other types of design specifications. For example, assume that
an output voltage , where , is required to be
sufficiently weak, as demanded by antenna applications. This
constraint can be formalized as , where denotes
the two norms and is a given positive number. To account for
this new design specification, the constraint

should be added to the optimization problem of Theorem 1.
Likewise, the constraint

should be included in the optimization problems of Theorems
2 and 3. As another example, if one needs to design a control
unit for Circuit 1 in the form of a decoupled lossless network,
it suffices to replace the constraint with in the
optimization problem of Theorem 3.

Unlike Theorems 1 and 3 that propose minimization prob-
lems, Theorem 2 offers a feasibility problem. In other words,
there is no specific quantity in the feasibility problem of The-
orem 2 that must be minimized (or maximized). This provides
a degree of freedom in the underlying circuit synthesis. To be
more precise, Theorem 2 can be employed to simultaneously
solve Problem 2 and to minimize (maximize) some quantity of
interest such as the consumed power at a specific port. This point
will be illustrated in the next section through some simulations.

As another generalization, assume that the goal is to design
a passive control unit with a prespecified structure. An example
of this case is the filter shown in Fig. 4 whose control unit is
structured in terms of the impedances to . To handle this
problem, it suffices to employ Theorem 3 after the following
slight modifications.

1) Replace the diagonality requirement of the matrix variables
and with a desired pattern condition on these ma-

trices, e.g., certain entries of these matrices must be zero
according to the desired structure of the control unit being
designed.

2) Replace the condition with the general passivity
constraint (17).

Fig. 8. Antenna problem studied in Example 1.

IV. SIMULATION RESULTS

To illustrate the efficacy of the present work in the context of
antenna design, note that most of the practical antenna problems
deal with the optimization of the input impedance and/or the
antenna gain via changing the geometry of the antenna. This is
achieved in reality by means of inefficient heuristic algorithms.
For instance, a PSO technique is deployed in [27] to optimize
the antenna input impedance by varying its length, width,
and feeding point. That algorithm was applied to a simple
impedance matching problem with only three variables, which
consumed more than 25 h to obtain the solution. This clearly
shows that such algorithms are dramatically time consuming
even for very small sized antenna problems. Two important
practical examples will be studied in the sequel to demonstrate
that more complicated antenna design problems with 12 and
90 variables can be solved on the order of seconds rather than
hours using the method developed here.

Example 1: Consider the antenna configuration shown in
Fig. 8, which consists of a transmitting dipole antenna (blue
bar), a 3 3 array of metal plates (antenna parasitic elements),
and a receiving dipole antenna located at the far field (green
bar). There are 14 ports in this figure, which are as follows.

1) Port 1 acts as a receiving antenna sampling the radiation
pattern of the transmitting antenna at a specific angle in
the far field.

2) Ports 2 to 13 are intended to change the boundary condition
of the transmitting antenna.

3) Port 14 corresponds to the transmitting antenna.
The objective is to find optimum impedance values for the para-
sitic elements such that the received power and the antenna input
impedance satisfy a specific set of constraints. For this purpose,
the circuit model of the antenna system is extracted at a desired
frequency of 3.5 GHz (using localized differential lumped ports)
by means of the EM software IE3D [24]. This model can be
any of the circuits shown in Figs. 5–7, depending on how the
impedances of the parasitic elements are designed. Note that
and are equal to 13 and 1, respectively, in this example, and

.
The three important goals in a typical antenna problem are the

following: 1) received power maximization; 2) received power
maximization under an input admittance constraint; and 3) input
impedance matching. Tackling these problems is central to this
example, which is carried out in the sequel.
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TABLE I
MAXIMIZING THE RECEIVED POWER (EXAMPLE 1)

TABLE II
MAXIMIZING THE RECEIVED POWER AFTER IMPOSING A CONSTRAINT ON THE INPUT IMPEDANCE OF THE ANTENNA (EXAMPLE 1)

Considering the complex number as a real vector in ,
one can notice that the power at the receiving antenna is propor-
tional to the two-norm of raised to the second power. Since
the maximization of the two-norm of a quantity is normally a
nonconvex problem, it is desired to maximize the one-norm of

, i.e., . This suggestion is motivated by
the close affinity between these two norms. Observe that the di-
rect maximization of is again a nonconvex
optimization problem. Nevertheless, one can alternatively per-
form four (convex) optimizations maximizing the quantities

, , ,
and and can then determine the maximum
of the obtained solutions. Problem 2 is adopted to solve these
optimization problems. The outcome of these convex optimiza-
tion problems is summarized in Table I, which demonstrates
that the optimal value of is equal to
0.2833, corresponding to an antenna directivity of 8.17 dBi
and a radiation efficiency of 89.15%. It is interesting to note
that this result is obtained by solving four convex optimization
problems, each of which is handled by the software CVX [25]
in a fraction of a second (the simulation was run on a computer
with a Pentium IV 3.0 GHz and 3.62 GB of memory).

Now, assume that the objective is to maximize the power at
the receiving antenna, which is subject to the constraint that the
antenna input impedance is equal to the standard value of 50

. As before, this power is proportional to the two-norm of the
output voltage raised to the second power. The nonconvexity
of the underlying problem suggests maximizing the closely re-
lated term . Similar to the previous case,
four convex optimization problems are solved, and the results
are summarized accordingly in Table II.

As the last scenario, the goal is to find a diagonal matrix
such that the antenna input impedance is matched with the

value of 50 . The heuristic method given in [13] was applied
to Problem 3 to find the proper values for the diagonal matrices

and (recall that ). An appropriate solution
was found as

which corresponds to the antenna directivity of 3.55 dBi.

Fig. 9. Antenna system studied in Example 2.

Example 2: A general consensus in the field of antenna
design is that a satisfactory beamforming making nulls at an
arbitrary number of directions is possible only when a sufficient
number of (antenna) active elements are exploited in such a way
that the size of the antenna array becomes several multiples of
the wavelength. Many works in the past decade, e.g., [28] and
[29], have concentrated on designing passive array antennas
that are capable of making a null only at one direction. For
instance, the study in [29] presents such a design based on a
genetic algorithm whose running time is reported to be more
than four weeks. Using the techniques developed in the present
paper, the goal of this example is to disprove the foregoing
belief. To be more precise, for the first time in the literature,
we wish to design an on-chip antenna system with only one
active element (antenna element) of the size equal to one
wavelength such that the radiation pattern makes nulls at many
undesired directions. This antenna design is accomplished in a
few seconds.

Consider the 2 mm 2 mm antenna system shown in Fig. 9
consisting of a patch array with 90 controllable ports (shown by
small squares), which is used for data transmission in the direc-
tions . To study the programming ca-
pability of this antenna, a receiving antenna is placed at each of
these directions in the far field (at the distance of 20 multiples of
the wavelength from this transmitting antenna) with a length of
140 m and a fixed terminal impedance of 50 . The equivalent
circuit model of this antenna configuration is extracted using the
EM software IE3D [24], which consists of 102 ports, which are
as follows.
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Fig. 10. (a) Radiation pattern obtained by maximizing the received power at the direction 90 . (b) Radiation pattern obtained by maximizing the received power
at the direction 45 . (c) Radiation pattern obtained by maximizing the received power at the direction 90 , which is subject to the constraints � � � � � �

� � � � � � � � � � � (Example 2).

1) Receiving or sensing ports (ports 1 to 11): These ports are
located in the far field to capture the radiated power at the
angles .

2) Variable ports (ports 12 to 101): Every two adjacent
patches in the -direction are connected with a port, re-
sulting in a total number of 90 ports, which are numbered
from 12 to 101.

3) Transmitting port (port 102): The transmitting port is lo-
cated at the center of the transmitting antenna and is driven
by a 300-GHz sinusoidal signal with a fixed amplitude of
1 V.

Three objectives will be pursued in this example as follows.
Assume that the first objective is to transmit data at the direction
90 with the maximum power using a passive control of the an-
tenna. This problem reduces to finding a passive controller for
the antenna configuration that generates the maximum power
for the output port 6. Using Theorem 2, this leads to the voltage

. The corresponding radiation pattern
of the antenna system is shown in Fig. 10(a). This figure shows
that the antenna has an excellent beamforming capability. In-
deed, while the goal was to maximize the power in one direc-
tion, the radiating power was greatly minimized in most of the
remaining directions.

As the second objective, the intent is to steer the beam to-
ward the direction 45 . Similar to the previous case, the point

is obtained with the radiation pat-
tern shown in Fig. 10(b). The last objective is more interesting.
We wish to transmit data to the direction 90 , with the max-
imum power subject to the constraint that a zero signal is sent
to all of the directions ( ,
and ). Theorem 2 can be exploited to show that this highly
constrained pattern shaping is possible. The optimal value

is attained, and the corresponding radi-
ation pattern is shown in Fig. 10(c). An implication of this pat-
tern is that the technique developed in this paper has made it pos-
sible to design a wavelength-size antenna system with only one
active element so that its proper control makes a null at many
undesired directions while maximizing the power at a desired
direction. The reader can contrast the patterns derived here with
similar ones in the literature (such as the ones reported in [28]
and [29]), which radiate a high power in almost all directions

and make a null in at most one direction. Note that, despite the
fact that the controllers designed in this example are not decou-
pled, one can verify that many elements of the obtained con-
trollers are negligible, which facilitate their implementations.

V. CONCLUSION

This paper has studied a class of linear systems that appear
in circuits, EMs, optics, etc. Given such a linear system, the
objective is to design a controller for the circuit (system) such
that some prescribed linear constraints on the input admittance
and output voltages of the circuit are satisfied. It is shown that
designing a switching controller for this circuit amounts to a
rank-minimization problem, and it is indeed an NP-complete
problem. Later on, the design of a passive controller is studied
using the convex optimization theory. Since the implementation
of a passive controller may be unacceptably complicated than a
switching controller, the design of a simpler type of controller,
named as decoupled passive controller, is also investigated. It
is shown that this problem amounts to a rank-minimization one,
which can be satisfactorily solved using a celebrated heuristic
method. The results of the current work are developed based on
available techniques in the control theory. As an important ap-
plication, this paper has been exploited to design novel antenna
systems with an outstanding performance.

APPENDIX

Consider an algorithm for a given decision problem that aims
to find out whether the answer to this problem is “yes” or “no.”
The notion of time complexity was introduced in the litera-
ture to evaluate the efficiency of such an algorithm. Informally
speaking, time complexity measures the number of machine in-
structions executed during the running time of the algorithm as a
function of the size of the input. An efficient algorithm must run
in polynomial time. For instance, if an algorithm needs an expo-
nential number of iterations, then as the size of the problem in-
creases, the running time of the algorithm astronomically grows.
The class of NP-complete problems categorizes those problems
that are believed to be extremely difficult to solve. Indeed, there
is no known polynomial-time algorithm that is used to solve an
NP-complete problem, and moreover, if an algorithm is discov-
ered to solve an NP-complete problem in polynomial time, then
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...
...

. . .
...

... (36)

the algorithm can be adapted to solve all NP problems in poly-
nomial time [26]. It is desired to prove that the circuit switching
problem posed in this paper (i.e., Problem 1) is an NP-complete
problem. This is accomplished in the sequel.

Theorem 4: Problem 1 is NP-complete.
Proof: Assume that can be written as for some

natural number , and assume that (the tech-
nique being developed in the following can be adopted for other
values of ). Recall that the present work considers output ports

as the ports of interest used in specifying the de-
sign objectives and ports as the controllable
ports connected to a control unit. To simplify the argument of
the proof, assume with no loss of generality that ports

are the controllable ports, and the rest
of the ports are the ports whose voltages are used in defining the
design specifications (a renumbering of the output ports con-
verts the problem to the conventional one considered here). Let
the matrix have a particular form given by (36), in which

are some arbitrary integers (see equation at the
top of the page). It is worth mentioning that this type of cor-
responds to a lossless network. Impose the constraints

(37)

on the output voltages. The goal is to show that Problem 1 is
NP-complete even for the special networks of the form (36)
under the aforementioned constraints. Given a natural number

, the conditions in (37) lead to the equations

Since port is not a controllable port, it follows from
the design specifications in (1) that its current must be zero.
In other words, , or equivalently, .
On the other hand, the aforementioned equations yield that the
switching condition is tantamount to the rela-
tion . Thus, it can be concluded that

(38)

Moreover, since ports and are not controllable
ports, their current must be zero, which gives rise to

Note that the equality also leads to the aforemen-
tioned constraint. By using (38) and by letting be equal to
one, the aforementioned equation can be interpreted as follows:
given the integers , is it possible to find a subset
of these numbers with a zero sum? This problem is referred to as
the subset sum problem and is known to be NP-complete [26].
This completes the proof.
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