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Abstract—This paper describes a new approach to low-phase-
noise LC VCO design based on transconductance linearization
of the active devices. A prototype 25 GHz VCO based on this lin-
earization approach is integrated in a dual-path PLL and achieves
superior performance compared to the state of the art. The design
is implemented in 32 nm SOI CMOS technology and achieves a
phase noise of 130 dBc/Hz at a 10 MHz offset from a 22 GHz
carrier. Additionally, the paper introduces a new layout approach
for switched capacitor arrays that enables a wide tuning range
of 23%. More than 1500 measurements of the PLL across PVT
variations were taken, further validating the proposed design.
Phase noise variation across 55 dies for four different frequencies
is 0.6 dB. Also, phase noise variation across supply voltages
of 0.7–1.5 V is 2 dB and across 60 temperature variation is 3 dB.
At the 25 GHz center frequency, the VCO is 188 dBc/Hz.
Additionally, a digitally assisted autonomic biasing technique
is implemented in the PLL to provide a phase noise and power
optimized VCO bias across frequency and process. Measurement
results indicate the efficacy of the autonomic biasing scheme.

Index Terms—Calibration, circuit noise, digitally controlled
oscillators, electromagnetic coupling, feedback, high-speed in-
tegrated circuits, integrated circuit noise, -band, linearity,
linearization, local oscillators, millimeter-wave circuits, mil-
limeter-wave communication, millimeter-wave integrated circuits,
mutual coupling, negative feedback, nonlinear circuits, oscillators,
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phase-locked loop (PLL), phase noise, signal-to-noise ratio (SNR),
60 GHz, transconductance, tunable circuits and devices, tuning
range, voltage-controlled oscillators (VCOs).

I. INTRODUCTION

P HASE noise in CMOS LC VCOs is fundamentally lim-
ited by the oscillation amplitude and the inherent device

noise. In this work, we introduce a new approach based on
transconductance linearization of the active devices that in-
creases the signal swing while reducing the active device noise
contribution in LC VCOs. Consequently, this provides a signif-
icant improvement in the VCO phase-noise performance. We
implement this approach using a capacitive transformer-based
signal feedback technique. Additionally, for the capacitor array
within the VCO, we utilize a new layout approach based on
interconnect inductance mitigation. Using these novel ap-
proaches, we are able to optimize the VCO for phase noise,
power, and tuning range. Consequently, the implemented PLL
incorporating the resulting linear transconductance VCO (LiT
VCO) achieves both an excellent measured phase noise of
130 dBc/Hz at 22 GHz (10-MHz offset), and, in contrast to

the 6.7% tuning range of the VCO-only result reported using
a somewhat similar technique in [1], a large frequency tuning
range (FTR) of 23% (21.8–27.5 GHz). This range covers oper-
ation over 22.8–26.4 GHz, with margin, meeting requirements
for a 60-GHz superheterodyne radio [2].
Some results from this implementation were presented in

[3]. This paper explains the linearization theory in detail and
presents additional results. In addition, it presents a novel
digitally assisted VCO biasing technique to autonomically
optimize the power and/or the phase noise depending on the
specific application requirements across frequency and process
variation. The optimal bias is accurately predicted from the
outputs of an on-chip peak detector, an on-chip frequency de-
tector, and the VCO bias current based on the indirect sensing
methodology outlined in [4]. Measurement results validate the
efficacy of the proposed autonomic biasing scheme.
Section II of this paper describes the transconductance

linearization technique for phase noise improvement. Imple-
mentation details of the VCO within a dual-path PLL are
described in Section III. Measurement results characterizing
the VCO are discussed in Section IV. The digitally controlled
autonomic biasing technique for power and phase-noise op-
timization is described in Section V. Finally, conclusions are
drawn in Section VI.
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Fig. 1. Cross-coupled VCO: (a) full circuit and (b) half circuit.

Fig. 2. Transconductance versus voltage swing showing a typical oscillator
curve and a preferred curve for improved phase noise.

II. TRANSCONDUCTANCE LINEARIZATION

This work explores the benefits of transconductance lin-
earization for improved phase noise in LC VCOs. To under-
stand the effect of transconductance linearization, we first
consider the widely used FET based cross-coupled VCO
topology shown in Fig. 1(a). For analysis, the circuit can be
represented by an equivalent half circuit, shown in Fig. 1(b).
The oscillation amplitude in this VCO is limited by the non-
linearity of the large-signal device transconductance .1

To provide some intuition regarding the key drivers of the
phase noise performance, we plot the effective large-signal
transconductance versus gate ac swing for the
cross-coupled VCO in Curve I in Fig. 2. From this curve, we
make two important observations.
1) Oscillation amplitude. As shown, the drops with in-
creasing oscillation amplitude . The equilibrium
amplitude is reached when . The main
source of nonlinearity is the transistor entering the triode
region.

2) Active device noise. Fig. 2 also shows the small-signal
transconductance corresponding to for an
infinitesimally small amplitude of oscillation, i.e.

. Note that this determines
the active device noise power at the oscillation zero

1Here, is defined as , where and are the ac drain
current and ac gate voltage at the frequency of oscillation .

Fig. 3. Feedback concept for linearlization using lower voltage swing on
the drain node: (a) cross-coupled; (b) with feedback.

Fig. 4. Transconductance linearization in LiT VCO.

Fig. 5. LiT VCO: (a) full circuit and (b) half circuit.

crossings (when the oscillator’s phase noise sensitivity is
at its highest). As a result, with other factors remaining
constant, the device is a significant determinant of the
VCO phase-noise performance.

From these two observations, we conclude that a more linear
curve could enable a larger amplitude of oscillation, as

well as contribute lower active noise, improving the signal-to-
noise ratio (SNR), and, consequently, the phase noise of the
VCO. Such a linearized curve, which is suitable for supe-
rior phase-noise performance,2 is shown in Curve II in Fig. 2.
The desired transconductance linearization may be achieved

using different feedback techniques. Transconductance lin-
earization has been used for improving the phase noise in
BJT-based oscillators by reducing the swing on the nonlinear
base node [5]. However, this technique is not suitable for

2Note that this linearization signifies a direct tradeoff between the start-up
margin, denoted by , and the achieved phase noise in
the oscillator.
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Fig. 6. Gate and drain waveforms for (a) a cross-coupled VCO and (b) a LiT VCO showing the reduction in triode operation.

MOSFET-based oscillators. In MOSFETs, since the drain
node is primarily responsible for the large-signal nonlinear
device transconductance, a conceptual feedback scheme shown
in Fig. 3 can achieve the desired linearization. As shown in
Fig. 3(b), only a fraction of the tank/gate amplitude is fed to the
drain, thereby reducing the swing on the drain . The
resulting reduction in triode operation linearizes the curve,
as shown in Curve II (as compared with the cross-coupled
VCO shown in Curve I) in Fig. 4,3 for a division factor of

.
This feedback scheme can be realized by using a capacitive

divider as shown in Fig. 5(a). The half circuit model for this LiT
VCO is shown in Fig. 5(b). The capacitive divider ensures that
the drain swing is a fraction of the swing across the LC
tank , where

(1)

Moreover, the capacitive dc isolation allows the FET gate
to be biased lower than its drain , further re-

ducing triode operation. This reduction in triode operation based
on the signal swings on the gate and drain nodes is shown di-
agrammatically in Fig. 6. Consequently, the FET nonlinearity
is reduced, resulting in the more linear device as shown in
Curve II in Fig. 4 .
Also note that,due to the capacitive division, only a part of

the FET ac current flows into the tank as shown in Fig. 4. From
Fig. 5(b), where is the FET drain current and is the fraction
of flowing into the tank, at the resonant frequency, we have

where

(2)

This reduces the effective seen by the tank (to )
as plotted in Curve III in Fig. 4 for and . Note
that this curve is very similar to the preferred curve plotted in
Fig. 2. The resulting oscillation amplitude, , using curve III
in Fig. 4 for the LiT VCO, is larger than for a comparable
cross-coupled VCO.
As shown in Fig. 7, the larger oscillation amplitude can be

viewed as a voltage limit extension in the LiT VCO. In this way,
the LiT VCO enables a power vs. phase noise trade-off beyond
the voltage limit imposed in a cross-coupled VCO.

3Note that this also increases the small-signal transconductance due to
increased dc current consumption caused by the device not entering the triode
region due to the smaller drain voltage swing.

Fig. 7. Voltage-limited regime extension in LiT VCO.

Additionally, as expected, VCO phase noise contribution
from the FETs is reduced through this technique: for the LiT
VCO, the effective transconductance across the tank
is lower than the device by a factor (i.e. ).
Therefore, at the zero crossings, the noise contribution of the
active devices is reduced by the same amount as shown in
Fig. 4. Additionally, by eliminating triode operation, the LiT
VCO reduces degradation of the loaded tank . Consequently,
the LiT VCO enables a larger tank amplitude and yet injects
less noise into the tank as compared to the cross-coupled VCO,
leading to significant improvements in phase noise.
The foregoing theory of LiT VCO operation enables design

optimization by utilizing additional power to enable a larger
tank amplitude, lower noise injection and improved loaded tank
as compared to traditional cross-coupled VCOs. Also, design

optimization of LiT VCOs can be performed in a similar way to
that of cross-coupled VCOs. For example, based on curves
as shown in Fig. 4, any cross-coupled VCO optimized using the
techniques described in [6] can be converted into a LiT VCO
design. The target amplitude of oscillation, , can be max-
imized to the tolerance limits imposed by the technology.
curves can then be constructed for the active device for different
combinations of and and a global optimum for power, phase
noise, tuning range and robustness can be determined.4

III. IMPLEMENTATION

The LiT VCO PLL has been implemented in IBM’s 32-nm
SOI CMOS process. The PLL was implemented for frequency
synthesis as part of a potential sliding IF radio architecture
as shown in Fig. 8. The required frequency bandwidth of

4For example, increasing linearizes the at the expense of power. Sim-
ilarly, increasing lowers the active device noise at the expense of power and
start-up margin. Also, and are related through (1) and (2).
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Fig. 8. Potential sliding IF 60-GHz receiver architecture using the LiT VCO
PLL.

57–66 GHz is covered by a tuning range of 22.8–26.4 GHz
using the 2.5 multiplier scheme as shown.
The PLL architecture, shown in Fig. 9, includes two separate

fully differential control paths: an integral path consisting of a
charge pump and capacitor and a proportional path consisting
of charge pump and resistor (as well as a ripple capacitor). The
divider consists of a static prescalar of division ratio of 8 or
16, followed by a fully synchronous divider which can divide
from 2 to 128. The PFD consists of a classic tri-state phase de-
tector. The charge pump currents, proportional path resistance,
and integral path capacitance value are all made programmable
in order to support a wide range of bandwidths and reference
frequencies. More details on the PLL can be found in [7]. The
LiT VCO design is optimized at and (Fig. 4).
, and are selected so as to obtain this and combi-

nation while adding minimum capacitive load to the tank.
Though this design was implemented in SOI technology, the

VCO linearization technique is generally applicable to CMOS
and is expected to provide improved performance even in bulk
CMOS processes (compared with other topologies).5

A. Capacitor Array Design

For the targeted 60-GHz application, a large frequency tuning
range (FTR) is a critical requirement [8]. Switched capacitors on
the drain and tank are utilized (Fig. 9) to manipulate the feed-
back ratio and extend linearization (and low phase-noise
performance) over a large tuning range. The VCO frequency is
less sensitive to capacitance variation on the drain node. As a
result, the fine tuning capacitors and varactors are placed across
the drain nodes for fine frequency control.

a) Parasitic interconnect inductance: At the high fre-
quencies targeted for this design, achieving a large tuning range
(in conjunction with a low ) demands implementing a
large switched capacitor array in the tank. For optimal phase
noise, a small inductor is utilized [6]. Consequently, the capac-
itor array and the inductor occupy comparable areas (Fig. 10)
and the interconnect inductance, especially that associated
with connecting the capacitor array, significantly impacts VCO
performance.
To mitigate this problem in the LiT VCO, the interconnect

parasitics are minimized using a reduced-inductance layout
technique. As shown in Fig. 10, the unit capacitors are arranged
in a square, reducing the perimeter to area ratio of the structure.

5Note that, due to its lower junction capacitance, an SOI implementation is
expected to provide a slightly better tuning range and a slightly lower para-
sitic capacitance modulation in comparison to bulk CMOS processes for all LC
VCOs.

The top plates of these MIM capacitors are connected using a
mesh to reduce parasitics by parallelization. The bottom-plate
interconnects are interleaved into the top plate mesh and carry
an opposing current so that the resulting mutual inductance
subtracts from the self-inductance of the interconnections as
shown in the inset of Fig. 10. Consequently, compared with
the 100-pH tank inductor, the interconnects of the 70 80 m
capacitor array contribute only 12 pH of inductance. By lim-
iting the inductive parasitics, parasitic oscillation modes are
eliminated, and a large tuning range of 23% is obtained.
Discrete frequency tuning is achieved using a 3-bit coarse and

a 4-bit fine switched capacitor array (Fig. 9). Varactors are used
for continuous tuning and provide approximately 100 MHz of
analog tuning range, achieving the desired low .

b) High voltage-swing switch: As discussed above, the
LiT VCO topology exploits a large oscillation amplitude in
order to obtain better phase-noise performance. Since the total
voltage swing can be larger than , there is a possibility
for the switches in the switched capacitor array to turn on
even when disabled. As a result, it is necessary to design the
FET based switches in the switched capacitor array such that
their turn-on, turn-off characteristics do not limit the realizable
voltage swing.
To address this issue, an inverter is utilized for biasing,

as shown in Fig. 11. This scheme forces the drain–source dc
voltage to be low when the switch is on and high when the
switch is off for effective operation. Resistors are used to isolate
the nodes in the ac sense. The resistors are sized so that their
contribution to the total phase noise is less than 2% and the
area overhead of the capacitor array due to the resistors is also
less than 2%.
Moreover, a series combination of two switches (2 wider

than if one was used) is utilized as conceptually shown in Fig. 11
using nMOS switches.6 The switches are physically placed be-
tween two symmetrical capacitor arrays as shown in Fig. 10.
This approach allows the switch gate nodes (node B) to be opens
in the small-signal sense and swing partially as shown. Con-
sequently, the gate source voltage swing is reduced, al-
lowing the switches to remain off when so desired through the
entire oscillation cycle as shown in Fig. 11. Notice that, even
with the inverter bias, if a single switch approach was utilized,
node B would have been at 0 V throughout the oscillation cycle,
thereby potentially turning on the switch during the part of the
cycle highlighted in the figure.
Also, by allowing node B to be a small signal open, the effec-

tive parasitic capacitance resulting from the series combination
of the two capacitances of the two 2 switches is approxi-
mately equivalent to that of one 1 switch:

. Therefore, there is minimal additional
loading on the tank due to this technique.

c) Biasing: In the LiT VCO topology, the gate and drain
nodes in the FET devices are decoupled from each other. As a
result, it is possible to use a voltage-based bias for the LiT VCO,
as shown in Fig. 9. Also, as shown in Fig. 9, an inductor is used
to resonate (at ) the parasitic capacitance at the tail node. The
resulting source degeneration at reduces the cell noise
contribution when one transistor is in cut-off. The tail inductor

6nMOS switches are shown in Fig. 11 instead of the implemented pMOS
switches for ease of understanding.
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Fig. 9. Block diagram of the PLL showing the detailed VCO schematic including frequency tuning schemes.

Fig. 10. Die photograph of the LiT VCO showing the capacitor array design details for minimizing interconnect inductance, and other implementation details.

is implemented using a transmission line to retain the symmetry
in the overall the LiT VCO layout (see Fig. 10). A DAC digitally
controls the VCO gate bias for performance optimization. This
bias control also eliminates the tail current source which can
normally be a significant source of noise. Also, only a fraction
of the noise from the biasing choke (6 nH) (Fig. 9) flows into
the tank, reducing the total noise from the biasing circuitry in
the LiT VCO as compared to the cross-coupled topology.

IV. MEASUREMENT RESULTS

The LiT VCO is implemented in the IBM 32-nm SOI CMOS
process. Outputs from an open-drain CML buffer were mea-
sured using a 50- system. The measurement setup is shown
in Fig. 12.
Measurement results from the PLL are plotted in Figs. 13–20.

Fig. 13 shows the phase noise versus frequency offset from a
22.6-GHz carrier with 4.4-dBm output power (single-ended).
The differential output power is greater than 0 dBm over the
entire frequency tuning range.

Fig. 11. Proposed switch scheme for the high-amplitude LiT VCO tank
switched capacitors.

Fig. 14 shows the measured phase noise at 10 MHz offset
over the tuning range for 3 dies at different radii on the wafer.
The phase noise of the LiT VCO-based PLL varies from
130 dBc/Hz at 22 GHz to 126 dBc/Hz at 27 GHz. This

performance is notably superior to other PLL’s for 60 GHz
applications (Table I).
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Fig. 12. Measurement setup for testing the LiT VCO PLL.

Fig. 13. Phase noise versus frequency offset from a 22-GHz carrier.

The measured tuning range of 21.8–27.5 GHz covers the re-
quired range (22.8–26.4 GHz) and is shown in Fig. 15 over
all 3-bit coarse tuning combinations. The resulting 23% tuning
range makes this a robust solution that is manufacturable in
volume.
Die to die phase noise variation for 55 dies on a wafer is

shown in Fig. 16. Measurements using 4 (out of 128 possible
combinations) equally spaced switched capacitor settings on
each die are denoted by 4 different markers. All other settings
are kept identical. The measured phase noise variation ( at
10-MHz offset) is across all dies. The PLL’s
performance robustness across temperature at three capacitor
settings is shown in Fig. 17. The measured phase noise at
10-MHz offset degrades by about 3 dB going from 25 C to
85 C across the frequency bands. The center-band frequency
drops by about 30 MHz.
The effect of varying and on the phase noise is

shown in Fig. 18. For low , the VCO is in the current lim-
ited regime. Phase noise (at 10-MHz offset) initially improves
with increasing until the FET becomes nonlinear as it en-
ters its triode region of operation (particularly for lower ),
after which the phase noise degrades. This demonstrates the ef-
fect of triode operation on LiT VCO phase noise. Finally, the
PLL’s measured phase noise varies by only 2 dB across 800 mV
of supply variation (from 0.7 to 1.5 V).

Table I and Fig. 19 compare the LiT VCO PLL performance
with that of other PLLs designed for 60 GHz applications. Com-
pared with other designs, the LiT VCO PLL demonstrates the
lowest phase noise of 127.3 dBc/Hz at a 10-MHz offset from
its center frequency, 24.7 GHz, a large tuning range of 23%, the
lowest power consumption of 36 mW and the best of
188.6 dBc/Hz. Finally, measured results show the design is ro-
bust, consistently maintaining excellent performance.

V. DIGITALLY ASSISTED AUTONOMIC BIASING

As seen earlier in Fig. 18 of Section IV, the LiT VCO
phase noise is sensitive to bias variations. As a result,
optimized biasing of this VCO is critical to ensure its supe-
rior performance. Fig. 20 shows the phase noise at 10-MHz
offset versus varying gate bias for 55 different dies
at different frequencies: 22.3, 23.5, 24.8, and 26.4 GHz. From
Fig. 20, the following observations can be made.
• The phase noise performance varies across process at each
of the frequencies of operation (also observed in Fig. 16).

• There is significant variation in the optimal bias point
across frequencies. For example, if the LiT VCO is biased
at 0.9 V in order to minimize the phase noise at the higher
frequencies (e.g., at 26.4 GHz), the phase noise for this
bias at the lower frequencies is far from optimal ( 4 dB
worse at 22.3 GHz).

• There is also some die to die variation in optimal bias at
each operating frequency ( 1 dB).

These observations suggest that the bias voltage can be
optimized at each frequency and for each die to improve
performance.
To mitigate the variations in VCO phase noise, automatic

amplitude control techniques have been previously presented
[9]–[11]. The goal of these control loops is to keep the oscil-
lation amplitude constant across process, temperature, and fre-
quency using an on-chip peak detector. However, as seen from
the measured data in Fig. 21, the optimal phase noise is ob-
tained across a wide range of amplitudes. These data are in line
with the Leeson’s model for phase noise in LC oscillators by es-
tablishing that the phase noise depends not only on the voltage
swing, but also on other factors such as VCO current and oscilla-
tion frequency [12]. A few integrated phase noise/jitter sensors
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Fig. 14. Phase noise over the tuning range for different die locations on a wafer.

Fig. 15. Coarse frequency tuning showing frequency overlap.

Fig. 16. Robustness of the LiT VCO design to process variations (die to die).

for on-chip testing and calibration have been presented in the
literature [13], [14]. However, these sensors cannot be used for
applications where the noise specification is close to or below
the noise floor of the integrated sensor.7

Instead of directly measuring the phase noise, it has been pro-
posed in [4] that phase noise can be predicted from other easily
measurable parameters using linear regression. Similar methods
based on alternate tests have been proposed in the past for other
RF circuits [15], [16]. In this work, we implement a digitally

7For example, the phase-noise sensor in [13] achieves 75-dBc sensitivity at
100-kHz offset from a 2-GHz carrier, corresponding to a sensitivity of 95 dBc
at 10-MHz offset from a 20-GHz carrier, which is unusable for the present VCO.
Similarly, the jitter sensor in [14] is limited by 1-ps resolution corresponding to
100 dBc/Hz for a 20-GHz VCO assuming a Lorentzian noise profile.

Fig. 17. Robustness of the LiT VCO design to temperature variations.

Fig. 18. Robustness of the LiT VCO design to supply variations at 22-GHz
center frequency.

assisted autonomic biasing mechanism based on this indirect
phase-noise sensing technique which was previously demon-
strated using simulation data [4]. In accordance with Leeson’s
model, we considered oscillation frequency , VCO current
, and carrier amplitude , all of which are easier to mea-

sure using fully integrated subcircuits, as indirect sensor inputs.
We also considered the bias tuning knob and the frequency
tuning knob . Using these parameters, the indirect sensor
model can be expressed as follows:

(3)
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TABLE I
TABLE FOR COMPARISON WITH OTHER PLLS

Calculated assuming 20-dB/decade degradation with offset frequency

Calculated assuming 20-dB/decade degradation with oscillation frequency

Includes the consumption of the micro-controller and sensors for digital calibration and optimization; the VCO consumes 24 mW

1 mw , where is the VCO power dissipation

where is a polynomial function. This indirect sensor
model is obtained by following the methodology in [4] and
is evaluated using an on-chip processing unit that includes a
fixed-point arithmetic unit, registers to store sensor outputs,
and a programmable memory to store model coefficients and
instructions. In the following section, we describe the integrated
sensor circuitry and the on-chip digital logic used to evaluate
the indirect phase noise sensor. In Section V-B, we present
how this technique can be applied to autonomic biasing to meet
different objectives.

A. Circuitry for Autonomic Biasing

The entire system for autonomic biasing, except the VCO cur-
rent sensor, is implemented on-chip with the 32-nm SOI CMOS
LiTVCOPLL as shown in Fig. 22.We plan to integrate the VCO
current sensor in our future work. The building blocks of this
system are described below.
1) Peak detector: A peak detector was implemented as
shown in Fig. 23 using a differential to single-ended low
pass filtered source follower configuration to measure
the VCO output amplitude. A dummy peak detector was
implemented for offset correction.

2) ADC: The outputs of the peak detector (and the dummy
replica) are digitized using a 6-bit SAR ADC. The imple-
mented ADC comprises a rail-to-rail comparator, a pro-
grammable resistor ladder, and digital circuitry to control
the successive approximation algorithm.

3) Frequency sensor: A counter-based frequency sensor was
implemented as shown in Fig. 24 to count the VCO output
cycles using a reference clock. In order to sense the fre-
quency, the ALU resets and starts both counters shown in
Fig. 24. The reference counter uses a reference clock
and counts up to a certain value loaded into it by the
ALU. As soon as this value is reached, the second counter
(counting the divide-by-16 output cycles) is stopped, and
its output is read by the ALU. The VCO frequency
is then calculated as . The

Fig. 19. Phase noise and tuning range comparison with other PLLs for 60-GHz
applications.

sensor achieves 16-MHz resolution using a 100-MHz
clock reference.

4) DAC: A 5-bit resistor-based DAC was implemented for
VCO bias control. The high and low voltage rails are pro-
grammable in order to change the bias actuation range and
increase the resolution over a given bias range. The nom-
inal bias voltage resolution used was 40mV. TheDACwas
optimized for low power while contributing negligibly to
the VCO phase noise.

5) Arithmetic and logic unit: The ALU comprises a 16-bit
arithmetic and logic unit capable of addition, multiplica-
tion, push, pop, shift left, shift right, and compare oper-
ations. It features a 32-word data memory to store coef-
ficients and computation by-products and a 256-word in-
struction memory. This ALU unit allows the calibration of
sensor model by scanning in the list of instructions and co-
efficients after manufacturing.

A die photograph of the full PLL design, including the au-
tonomic controller, is shown in Fig. 25. The entire system oc-
cupies a total area (excluding the probe pads) of 0.39 mm ,
where the area overhead due to integrated sensors and other
digital circuits required for autonomic biasing is 12.7%. If this
design were to be implemented as part of larger system, such
as a transceiver, block-level placement, reuse and optimization
would further reduce overhead.
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Fig. 20. Variation of optimal bias point with process and frequency.

Fig. 21. Measured data showing the wide range of sensed amplitudes at which
optimum phase noise is obtained.

B. Autonomic Biasing Evaluation

Measurements of a subset of the PLLs were used to train the
indirect phase noise sensor. The trained sensor was then able to
predict the phase noise for the remaining PLLs with an rms error
of 0.77 dB, where the coefficient of correlation is 0.92. Using
the phase-noise predictor, two different autonomic biasing (AB)
algorithms were considered.
1) AB for minimum noise selects the bias voltage that provides
the lowest phase noise at each frequency for each die. This
is achieved by sweeping the bias voltage and evaluating
the indirect sensor model on-chip.

2) AB for minimum power selects the minimum bias voltage
where the phase noise still meets the specification at each
frequency for each die. This is an attractive scheme in a
practical system implementation (e.g., for the PLL used

Fig. 22. Integrated system implemented in 32-nm SOI CMOS.

within a 60-GHz receiver) where the phase noise specifi-
cation at a given offset does not vary across the different
frequency channels in a band.

The parametric yield and power dissipation of these auto-
nomic biasing algorithms were compared against ideal biasing
(IB) which employs a hypothetical, ideal phase-noise sensor
and, therefore, can determine the true best achievable phase
noise and the minimum bias voltage to achieve target phase
noise. By parametric yield, we refer to the extent to which
the algorithm can achieve a given phase-noise target over all
frequency bands. By power dissipation, we mean the average
power dissipated across frequency bands.
Fig. 26 presents the measured parametric yield achieved

by IB and autonomic biasing for two different objectives for
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Fig. 23. Peak detector circuit used for sensing the output amplitude.

Fig. 24. Counter-based frequency sensor circuit used for sensing the VCO
output frequency.

Fig. 25. Annotated die photograph showing the 32-nm SOI implementation of
the LiT VCO PLL with the autonomic biasing circuitry.

varying phase noise targets. As ideal biasing utilizes an ideal
phase noise sensor, it achieves the maximum possible yield
for either objective. This figure shows that the parametric
yield achieved by the realized autonomic biasing infrastruc-
ture is very close to the maximum achievable yield (IB). As
the phase-noise specification becomes more aggressive, the
parametric yield declines sharply for both algorithms, as the
phase-noise specification can no longer be achieved for all
frequency bands. Fig. 27 presents the normalized average

Fig. 26. Comparison of parametric yield achieved by ideal biasing for min-
imum power, autonomic biasing for minimum noise, and autonomic biasing for
minimum power dissipation for varying phase noise target.

Fig. 27. Comparison of power dissipation achieved by ideal biasing for min-
imum power and autonomic biasing for minimum power dissipation for varying
phase noise target.

power dissipation of ideal and autonomic biasing to minimize
power dissipation for varying phase-noise targets. These results
are normalized to the power dissipation of IB for minimum
noise. IB for minimum power (square markers) demonstrates
a potential of up to 23% reduction in power dissipation. Auto-
nomic biasing for minimum power can exploit this potential by
reducing power up to 17%. Overall, autonomic biasing based
on indirect phase-noise sensing achieves performance that
closely approaches the best achievable performance.
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VI. CONCLUSION

In this paper, a low-phase-noise VCO integrated in a dual-
path PLL for 60-GHz applications was presented. A novel
linearization technique was used to achieve a larger oscillation
amplitude that, along with lower active device noise, resulted
in significantly improved phase-noise performance. Addition-
ally, a new capacitor array layout approach was used to reduce
interconnect inductance, enabling a large 23% tuning range. A
capacitor switch configuration capable of operating under high
swing conditions was also described.
A technique for autonomic VCO biasing for performance op-

timization was demonstrated. The biasing technique is based on
indirect performance sensing and uses the predicted behavior to
optimize the VCO bias for desired performance.
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