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a b s t r a c t

Videos play an ever increasing role in our everyday lives with applications ranging from news, entertain-
ment, scientific research, security and surveillance. Coupled with the fact that cameras and storage media
are becoming less expensive, it has resulted in people producing more video content than ever before.
This necessitates the development of efficient indexing and retrieval algorithms for video data. Most
state-of-the-art techniques index videos according to the global content in the scene such as color, tex-
ture, brightness, etc. In this paper, we discuss the problem of activity-based indexing of videos. To
address the problem, first we describe activities as a cascade of dynamical systems which significantly
enhances the expressive power of the model while retaining many of the computational advantages of
using dynamical models. Second, we also derive methods to incorporate view and rate-invariance into
these models so that similar actions are clustered together irrespective of the viewpoint or the rate of
execution of the activity. We also derive algorithms to learn the model parameters from a video stream
and demonstrate how a single video sequence may be clustered into different clusters where each cluster
represents an activity. Experimental results for five different databases show that the clusters found by
the algorithm correspond to semantically meaningful activities.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Recent years have seen a tremendous explosion of multimedia
content fueled by inexpensive video cameras and the growth of
the internet. The amount of video data being recorded and ac-
cessed by the general populace has been increasing with the rising
popularity of several video sharing websites. Several technical
challenges need to solved to enable efficient search and retrieval
in such large and often unstructured datasets. In the context of vid-
eos, most video-sharing websites feature user-supplied tags. It is
assumed that the tags describe what is going on in a video. This
has several drawbacks, since tags are subjective and the same
meaning may be conveyed by a multitude of tags. Further, it is
not uncommon to encounter tags whose meaning is not known
to a user and are sometimes irrelevant to the video. The idea of
user generated tags would also not scale with the increasing size
of the dataset. Instead of providing such textual descriptions, we
propose to analyze the patterns of motion in a video and automat-
ically extract ‘clusters’ which when visually presented to a user can
convey maximum information about the contents of the video. For
example, given a tennis video, short segments depicting elements
such as fore-hand, back-hand, smash, etc., when visually presented

to a user would convey more information than a set of textual
descriptions.

Unsupervised activity-based indexing goes far beyond the tradi-
tional problems of activity analysis and recognition, where one
knows what one is looking for. Unsupervised indexing requires
that activity patterns be discovered without deciding a priori what
to look for. As a motivating example, consider the problem of
understanding a foreign language. If one hears only a continuous
stream of words, how does one know where a word begins and
where it ends. If one knew the words, the boundaries between
them can be easily perceived. And if one knew the boundaries, then
the words can be learnt as well. Similarly, given a continuous video
stream, if we knew what activities occur in it, we can discover the
boundaries between them—and if we were given the boundaries,
the individual activities could be learnt as well. In the context of
activities each action primitive is composed of a coherent set of
features, and an activity is defined by the way the primitives are
put together. Activity-based indexing can benefit by gaining in-
sight into how humans perceive and recognize activities. First,
we discuss a general framework of activity perception. Then, we
discuss how the cascade of linear dynamical systems model (CLDS)
can be derived from the proposed framework.

Applications for automatic discovery of activity patterns are
numerous. For example, security and surveillance videos typically
have repetitive activities. If the typical activities can be clustered,
then several problems such as unusual activity detection, efficient
indexing and retrieval can be addressed. Forensic analysis of sur-
veillance videos is another fast growing and important application
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area. Current approaches to video forensics involve linear searches
over the entire video feed by a human analyst and hence are not
scalable when there are a large number of cameras deployed at
various locations. Instead of expecting an analyst to sift through
the voluminous data, we ask—can ‘clusters’ of activities be pre-
sented that embody the essential characteristics of the videos?
The need for such activity-based indexing stands to increase in
the near future as more security installations are deployed in a
wider variety of locations.

Traditionally, the problem of recognizing human activities from
video has received more attention than automatic discovery. One
of the earliest experiments demonstrating the richness of spatio-
temporal features was done by Johansson [2] who showed that it
was possible to recognize humans based on their motion. Since
then there has been an explosion of research in computer vision
into automatic analysis and recognition of human activities from
video. Parallel to the development of accurate and efficient recog-
nition techniques, there has also been a lot of interest in automatic
discovery of patterns from raw data. Pattern recognition vs pattern
discovery is a fundamental choice that is faced in almost all areas
of machine learning. Specific to the activity analysis area, existing
literature focuses on the recognition problem to a large extent. In a
largely unrelated setting, there has been significant research into
indexing of multimedia data such as news clips, sports videos,
etc., according to their content such as in [3]. The pattern discovery
approach has also been pursued for this problem domain such as in
[4]. In practical applications it is often a combination of supervised
and unsupervised approaches that yields the best results [4]. In
such cases, an ‘unsupervised’ approach would involve a very small
amount of supervision. The approach we present is largely unsu-
pervised where we assume very little about the data and the super-
vision is maintained at very low-levels, for example, in the choice
of features, temporal segmentation criterion, etc.

1.1. Organization of the paper

The rest of the paper is organized as follows: first, we present a
general framework of activity perception in Section 2 and draw
connections to computational and mathematical models in Section
3. Then, we propose the CLDS model for the specific purpose of
activity-based mining in Section 4. The problem of learning the
model parameters is addressed in Section 5. Further, in Section 6
we show how invariances to view, affine transforms and execution
rate can be built into the mining algorithm. Finally, in Section 7 we
describe several experiments to demonstrate the effectiveness of
our algorithms.

2. Perception of activities

In this section, we propose a general framework for activity per-
ception and recognition, from which specific algorithms can be de-
rived. The perception of activities can be seen as proceeding from a
sequence of 2D images to a semantic description of the activity.
Activity perception can be naturally decomposed into the follow-
ing three stages:

(1) Dynamic sketch
(2) Action sketch, and
(3) Semantic sketch.

2.1. Dynamic sketches

The purpose of early stages of vision is to construct primitive
descriptions of the action contents in the frame. These primitive
descriptions must be rich enough to allow for inference and recog-

nition of activities [5]. Most of the sensory information that is
available in videos is actually uninteresting for the purpose of
activity-based video indexing and only serves to confound the lat-
ter stages of the algorithms. One very important characteristic of
this stage is to weed out all the unnecessary sensory information
and retain just those elements that are relevant for activity-based
video indexing. Visual encoding mechanisms present in the human
brain mimic this phenomenon and this is called predictive coding.
Barlow [6] and Srinivasan et.al. [7] contend that predictive coding
is not just a mechanism for compression but actually goes much
further and enables animals to process information in a timely
manner. We refer the interested reader to early works of Barlow
[6] on the importance of this stage of visual processing in order
to enable vision systems to react and process information in a
timely manner.

2.2. Action sketch

Studies into human behavior show that human actions can be
temporally segmented into elementary units, where each unit con-
sists of functionally related movement [8]. For example, a car park-
ing activity may be considered to be formed of the following
primitives—‘Car enters a parking lot’, ‘Car stops in the parking slot’,
‘Person walks away from the car’. Such a description requires the
ability to segment an activity into its constituents and then devel-
op a description for each of the constituent actions. Each constitu-
ent action is like a word describing a short, consistent motion
fragment. Hence, this stage can be interpreted as providing a
‘vocabulary’ with which to create sentences (activities). In the
remainder of the paper, by ‘action’ we refer to a short segment of con-
sistent motion, whereas, by ‘activity’ we refer to a composition of such
actions that leads to an activity.

Representing activities using such linguistic models has been in
existence in various other fields and disciplines. Several dance
notation schemes are used in practice to interpret complex dance
moves. Though not extremely detailed, they are easy to interpret
and reproduce in actual steps. It has also been found that the most
commonly observed human activities in surveillance settings such
as reaching, striking, etc., are characterized by distinctive velocity
profiles of the limbs that can be conveniently modeled as a specific
sequence of individual segments—constant acceleration followed
by constant velocity followed by constant deceleration [9]. This
lends credence to the fact that human actions can be modeled as
a sequence of primitive actions, where each action is governed
by a simple model.

2.3. Semantic descriptions

Semantic descriptions perform the same function as grammati-
cal rules for a language. They detail how several constituent action
primitives may be combined together in order to construct or re-
cover complex activities. The most common rules for creating com-
plex activities from constituent actions are sequencing, co-
occurrence and synchronization. For example, a single-threaded
activity can be said to consist of a linear sequence of a few primi-
tives. An example of a single-threaded activity is ‘Person ap-
proaches a door’ ! ‘Person swipes the access card’ ! ‘Person
enters a building’. Similarly, a complex multi-threaded activity
can be seen as a collection of several single-threaded activities
with some constraints such as concurrence and synchronization
among them. Thus, this stage can be seen as providing the rules
for combining the primitives—similar to a set of grammatical rules
needed to construct meaningful sentences from individual words.

In the next section, we draw connections with computational
approaches and show how several well-known mathematical tools
can be used at each of these stages.
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3. Computational models

There exists a huge wealth of literature on building computa-
tional models for each of the stages outlined above. In this section,
we review some of the important and well-known techniques that
can be used at each of the stages.

3.1. Dynamic sketches

The search for suitable low-level features that can compactly
represent the specific information that we seek from images has
been at the heart of computer vision research for many years
[10]. Low-level features that can compactly represent the informa-
tion we seek from very short segments of videos (typically 1 or 2
frames) form the dynamic sketch or the frame sketch. The appro-
priateness of a specific feature is dependent on the specific appli-
cation and the nature of the video sequences being analyzed. In
this paper, we are interested in clustering video sequences accord-
ing to the type of activity present in the video sequences. There-
fore, these low-level features must be able to compactly capture
the instantaneous motion of the various scene and actor elements
in a manner that enables the next levels (action sketch and the
semantic sketch) to efficiently represent the activity occurring in
these videos. We summarize in Table 1 some widely used low-level
features and their respective characteristics.

3.2. Action-sketches

A significant body of work in activity recognition builds upon
extracting action-primitives and modeling the interactions be-
tween them. Computationally, automatic primitive extraction
may be achieved by mapping the low-level sketches to specific
model spaces. There are several choices for the model space such
as is reviewed below. Most of the popular approaches can be di-
vided into two broad classes—Spatio-temporal models and Dynam-
ical models.

3.2.1. Spatiotemporal models
These approaches typically encode configurations of spatio-

temporal patterns as a model for a video segment, for example,
as representative human poses or bags of spatio-temporal features,
etc. [22] represent human actions using a series of codewords
called ‘movelets’ where each movelet encodes a particular config-
uration of the human body—head, torso, upper and lower limbs. A
similar approach was used in [23] to learn human actions per-
formed in the profile view from a long sequence. Temporal tem-
plates called motion-history and motion energy which encode

both the shape and temporal motion characteristics of the action
were proposed as features in [24]. Describing an activity by a col-
lection of space–time interest points which represent points of
high gradient in the three-dimensional space–time was proposed
in [25]. In a similar approach, [26] represent video segments as his-
tograms of spatio-temporal gradients at multiple temporal scales.
Each segment of video was modeled as a document with words
drawn from a corpus of quantized spatial motion histograms in
[27].

3.2.2. Dynamical models
Dynamical approaches explicitly encode the temporal evolution

of features for each action. A method to segment human actions
into elementary building blocks called movemes—each moveme
assumed to belong to a known alphabet of dynamical systems
was presented in [28]. Modeling of complex activities using a
switching linear dynamic system, where each system corresponds
to an action-primitive was proposed in [29] and [30]. Similarly, hu-
man gait patterns have been modeled as linear dynamical systems
in [11,31] and by HMMs in [32].

We summarize in Table 2 some of the well-known tools and
their respective characteristics.

3.3. Semantic sketches

In the activity recognition context, semantic sketches for activ-
ities essentially model the spatio-temporal constraints between
the primitives. The major approaches to model such constraints fall
into two classes–statistical and rule-based.

3.3.1. Statistical approaches
HMMs provide an elegant mathematical tool to model the tem-

poral relationships between action primitives [22,33]. Dynamic be-
lief networks allow complex conditional dependencies between
several primitives to be expressed using directed acyclic graphs
and have been used for traffic scene analysis in [19]. Complex
activities can be modeled as being generated by a switching linear
dynamic system as in [29], [30,34] where each system corresponds
to a particular primitive. Textural video sequences have been mod-
eled as a finite collection of visual processes, each of which is a dy-
namic texture in [35].

3.3.2. Rule-based approaches
Syntactic approaches such as stochastic context-free grammars

allow expressing the relationships as a set of production rules and
have been used for action recognition in [36,37]. Temporal logic
networks which encode logical relationships between primitives

Table 1
Various Features for the low-level representation (dynamic sketch) and their properties and applicability in various scenarios

Feature Type of video Type of activity Illumination
invariance

View robustness Examples

Background
subtracted
silhouette

Near field and
medium field

Single agent or small number of agents Moderate Not robust Gait recognition [11,12]

Shape Near field Single agent Moderate Can be incorporated
by affine invariance
on shapes

Gait recognition [11,13] and far-
field activity recognition [14]

Optical flow or
texture
flow

Near field, medium
field, and restricted
far-field

Single agent (near field), small number of
agents (medium field) and large number of
agents (crowds in far field)

Moderate Affine invariance can
be incorporated

Traffic monitoring [15,16] and
crowd monitoring [17]

Point
trajectories

Far field or
constrained medium
field

Single agent (Constrained) or small number
of agents (far-field)

Strongly
illumination
insensitive

Easy to incorporate View invariant action recognition
[18], traffic monitoring [19], far-
field surveillance [20]

Circular
fourier
features

Medium and near
field

Single agent Moderate View invariant Action recognition [21]
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were used for recognizing events involving multiple objects in [38].
A bag of primitives approach is used in [39] to represent activities.
Petri-nets provide rich descriptive capabilities to express complex
interactions such as synchronization, co-occurrence and concur-
rence, and have been used in [40].

3.4. Discovery of action patterns

The approaches discussed so far are mainly concerned with
modeling and recognition of activities and not discovery of action
classes. The problem of discovering action patterns has received
less attention compared to the problem of recognition of actions
and activities. However, the modeling methods are often similar
in both settings. Some of the relevant methods and approaches
for discovering human action patterns from video are as follows.

Stauffer and Grimson [41] presented a system to learn patterns
of motion in a far-field surveillance setting. They rely on tracking
information such as position, size and velocity to describe individ-
ual entities. A sequence of observations is considered to be a set of
independent features. They use simple co-occurrence statistics of
feature prototypes to characterize the motion patterns of vehicles
and humans in a far field setting. This works well in such a setting
since the motion patterns are simple trajectories which are highly
constrained in nature.

Zelnik-Manor and Irani [26] presented a method to cluster vid-
eos into event consistent sub-sequences when the events of inter-
est are not known. They model videos as temporal objects and
define a distance metric between videos based on histograms of lo-
cal space-time gradients. Thus, this approach can be viewed as
approximating a stochastic process using a first-order model i.e.
the histogram of features. From this point of view, our approach
which is based on dynamic models, is a second-order model of
the underlying stochastic process where temporal correlations in
the stochastic process are also explicitly encoded. Further, the
CLDS model is more descriptive and can be viewed as a generative
model.

Another related approach is that of Zhong et al. [27] who repre-
sent each segment of video as a document with words drawn from
a corpus of quantized spatial motion histograms. They model a
long video as a collection of documents and perform co-clustering
of documents and prototypes. Their approach is essentially a bag-
of-words approach which ignores the dynamics of complex ac-
tions. A similar approach was presented by Niebles et al. [25],
where the authors model a video as a collection of words. The
words are assumed to be derived from a latent topic, where the la-
tent topic corresponds to a motion-class. They present a graphical
model to describe the conditional dependence between a video,
the latent topic and the observable features and present a method
to learn the latent topics/motion-class using unlabeled data. How-
ever, temporally extended complex actions are characterized by
complex dynamics. This dynamics information is not explicitly

modeled in such a bag-of-words approach. They also note that
due to the local nature of the space–time interest point detectors,
sufficiently strong responses are not induced for purely transla-
tional motion and for regions that do not have sufficient temporal
changes.

Unsupervised learning of human action classes from still images
has also been proposed by several researchers (cf. [42]). These ap-
proaches rely on information extracted from static images such as
the pose of the human to infer the action being performed. Since
there is no temporal information, these approaches are best suited
when sufficiently informative key-poses are available for each ac-
tion. We refer the interested reader to [42] and references therein,
as they are beyond the scope of the current discussion.

In our approach, we explicitly model the underlying dynamics
of actions using linear dynamic models. A further higher-level of
sophistication is achieved by the cascade structure of dynamic sys-
tems. This makes the model suitable for representing complex ac-
tions which are temporally extended. Further, none of the above
approaches deal with view-invariance and execution rate invari-
ance in the clustering/discovery scheme. We deal with the prob-
lems of view and rate invariance in a systematic manner which
is consistent with the linear dynamical system framework.

4. Cascade of dynamical systems

Most activities involving a single human in surveillance settings
consist of the human executing a series of action elements in order
to achieve a certain goal. For example, a man driving a car into a
parking lot, parking the car, alighting from it, walking out of the
parking lot (series of action elements) contributes to a typical
activity. Moreover, several multi-human activities may also be
adequately represented by a sequence of actions. Thus, the CLDS
model is an appropriate model for representing a wide variety of
common activities.

The model for an activity must be able to represent each of the
action elements separately while simultaneously being able to de-
tect the boundaries between them. As we mentioned earlier, we
use the consistency of features within each action-element as a
cue to discover the boundaries between them. The specific way
the action-elements interact with each other is used to discover
the activities themselves. The overall system overview is shown
in Fig. 1. Each of the components will be described in detail in
the ensuing discussion.

4.1. Modeling action elements

Following the discussion presented in Section 2 on ‘Action-
Sketches’ and the intuition provided above, we assume that a com-
plex activity can be broken down into its constituent action ele-
ments. During each action element, the motion of the actor
remains consistent. In fact, it is this consistency of motion that seg-

Table 2
Various approaches for activity based mining from video and their characteristics

Property CLDS SLDS [29,30] Grammars [36] DBNs [19] Sliding window
approaches [27,26]

View invariance Yes No Yes Yes No
Rate invariance Yes No Maybe Maybe No
Activity-based clustering Yes No No No Yes
Action recognition Yes Yes Yes Yes Yes
Frame sketch Any appropriate low-level feature Any appropriate feature Any appropriate Any appropriate Any appropriate
Action sketch Linear dynamical system (ARMA) Linear dynamic system Vocabulary of primitives Vocabulary of primitives Action prototypes
Semantic sketch Cascade structure Switching Grammatical rules Directed acyclic graph Bag of features
Sports video Yes Yes Yes Yes Yes
Surveillance video Yes Yes Yes Yes Yes
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ments an activity into action elements. Therefore, each action ele-
ment is modeled using a time-invariant dynamical system and the
activity is modeled as a cascade of dynamical systems.

4.1.1. Linear dynamical system for action elements
As already discussed, the dynamics of each action element can

be modeled using a time-invariant dynamical system. In several
scenarios (such as far-field surveillance, objects moving on a plane,
etc.), it is reasonable to model constant motion in the real world
using a linear dynamic system (LDS) on the image plane. Given
the boundaries between action elements, we model each of these
segments using a linear time-invariant (LTI) model. Let us assume
that the P þ 1 consecutive frames sk; . . . ; skþP belong to the kth seg-
ment and let f ðiÞ denote the observations (flow/silhouette, etc.)
from that frame. Then, the dynamics during this segment can be
represented as

f ðtÞ ¼ CzðtÞ þwðtÞ wðtÞ � Nð0;RÞ ð1Þ
zðt þ 1Þ ¼ AzðtÞ þ vðtÞ vðtÞ � Nð0;QÞ ð2Þ

where, z is the hidden state vector, A the transition matrix and C the
measurement matrix. w and v are noise components modeled as
normal with 0 mean and covariance matrices R and Q, respectively.
When flow is used as the feature, we can write similar equations for
the x and y components independently. We assume independence
of flow components for simplicity and to reduce the dimensionality
of the estimation problem. Similar models have been successfully
applied in several tasks such as dynamic texture synthesis and anal-
ysis [43], comparing silhouette sequences [11,31], etc. But we differ
from these as we do not assume that we know the temporal span of
the segments. We explicitly deal with the temporal segmentation
problem in Section 5.1. In summary, the parametric model for each
segment consists of the measurement matrix C and the transition
matrix A.

4.2. Sequence of dynamical systems

An activity is composed of a series of action elements. We have
modeled each action element using an LTI system. The activity
model is now composed of a cascade or a sequence of such dynam-
ical systems. In reality, most activities have a very specific tempo-
ral order for the execution of action elements. For example, if our
goal is to get to the office, then the sequence of actions executed
might be—drive into parking lot, park car, alight from car, walk
away from the parking lot. Therefore, we model an activity as a
cascade of action elements with each action element modeled as
an LTI system. Fig. 2 illustrates the complete model for such an
activity.

4.3. Relation with switching linear dynamical systems

Learning the switching instants between LTI models is also
encountered in the area of Switching Linear Dynamical Systems
(SLDS). The proposed CLDS framework is a conceptually simpler
version of the more general SLDS. As will be discussed in this sec-

Fig. 1. System overview: (a) input video, (b) feature extraction (dynamic sketch), (c) temporal segmentation, (d) build and learn dynamical models, (e and f) cluster in model
space taking into account invariances on the data, and (g) identify repetitive activities.

Fig. 2. Illustration of a cascade of three linear dynamical systems. The temporal
order of the execution of these dynamical models and their switching times are
shown with arrows.
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tion there are several differences that make learning and inference
easier and more efficient than the SLDS framework. But, first we
discuss why the CLDS framework is well suited for modeling hu-
man actions.

A large class of everyday human actions such as sitting, bend-
ing, reaching, etc., is naturally decomposed into a sequence of pre-
determined segments of simpler sub-actions. This observation
leads to modeling of complex actions as a sequence of simpler ac-
tion-elements, with the transitions or switching between action
elements specifying the structure of the action. Moreover, more
complex activities such as ballet dancing or cooking can usually
be decomposed into a simpler sequence of steps. In computational
terms this means that the transitions between action elements can
be well approximated as a nearly-deterministic sequence. Thus, in
this context CLDS is a special case of the more general SLDS frame-
work, corresponding to cases where the transition matrix between
switch states is strongly diagonal in nature. For example, consider
the transition matrices T for two actions—‘Cross Arms’ and ‘Sit
Down’—which were estimated by training a 3-state HMM on the
IXMAS dataset [21]. The transition matrices are

Tcross ¼
0:9910 0 0:0090

0 0:8796 0:1231
0:0469 0:0306 0:9225

264
375 ð3Þ

Tsit ¼
0:9271 0:0488 0:0241
0:0094 0:9529 0:0377

0 0:0639 0:9361

264
375 ð4Þ

We see that the transition matrix has a strong diagonal struc-
ture. Moreover, the transition probabilities from one state to the
remaining two are usually biased more toward one specific state.

The second major difference between the proposed CLDS frame-
work and the SLDS framework is in the notion of ‘dwell times’. In
the SLDS framework, the switching between models is governed
by a Markov chain. This assumption induces an exponential den-
sity on the dwell-times in each state whose mode is at 0. But,
the amount of time spent executing an action requires a finite
non-zero amount of time. In the CLDS framework, we do not im-
pose this restrictive and counter-intuitive exponential density
form. Instead, we will discuss how more general and meaningful
parametric models can be learnt in this framework which is similar
in principle to the methods presented in [44,34].

The third major difference is in the notion of switch states. In
SLDS, usually an extra hidden state is used to model switches.
Any change in this hidden state corresponds to a switch between
the LTI models such as in [29] and [30]. Usually, the number of
states to switch amongst is assumed to be known (equal to the
number of distinct actions). These methods are well suited for
modeling moderate length sequences since in such cases it is rea-
sonable to assume a small finite set of switch states. Since we are
interested in indexing very long videos, it is difficult to estimate
the number of switch states a priori. Thus, the CLDS framework
does not rely on estimating the number of switch states. Instead,
it simply detects switching instants in a recursive manner and fits
linear models to each segment. From this point of view, CLDS may
be viewed as a recursive approximation to SLDS for long videos.

The fourth difference is in the computational efficiency ob-
tained by restricting the model to a cascade structure as opposed
to a general switching structure. Estimating the number of switch
states, the model parameters in each state and the switching in-
stants simultaneously is computationally expensive. Recently, an
approach was presented in [45] for a special class of systems to
estimate the number of states, the switching instants as well as
the model parameters for each state. The presented method dealt
with single-input single-output auto-regressive (SISO-ARX) pro-

cesses and its multi-dimensional extension is computationally
very expensive. In comparison, since the CLDS framework recur-
sively splits a complex video sequence into smaller segments
according to a predefined segmentation criterion, learning is com-
putationally less expensive than the general SLDS model. The
structure of the activity is then discovered in the post-clustering
stage where we look for repetitive and quasi-repetitive action-
labels.

5. Learning model parameters

We have modeled an activity as a cascade of dynamical sys-
tems. But given a video sequence, we first need to segment the vi-
deo into action elements and discover the relationship among
them. The challenge is to accomplish all of this in a completely
unsupervised manner while being invariant to variabilities in an
activity like execution rate, resolution of video, rotation and trans-
lation, etc. We will now describe an algorithm to automatically
segment the video and learn the model parameters in an unsuper-
vised manner.

5.1. Discovering action boundaries

As mentioned earlier, we use ‘consistency’ of features within
each action-element as a cue to discover boundaries between
them. Naturally, the exact measure of ‘consistency’ is tied to the
specific feature at hand. For example, space–time curvature [18]
is a widely-used metric to discover boundaries for point trajecto-
ries. Measures for shape deformation such as [46] are suited for
discovering segment boundaries in shape sequences. In this sec-
tion, we describe a simple method for discovering action bound-
aries that works well for background subtracted silhouettes and
optical-flow.

For each time-instant t, we predict the current observation f̂ t

using a set of K past observations fft�1; . . . ft�Kg. If the observation
ft deviates significantly from the predicted value by a threshold
i.e. if kft � f̂ tk > thresh, then a boundary is detected at the time in-
stant t. In our case, the prediction f̂ t is derived from the past obser-
vations as follows. For the first few (about 5) set of frames after the
beginning of a new segment, we cumulatively learn a single set of
affine parameters for the change in the feature. For every incoming
new frame, we predict the new feature using the estimated set of
affine parameters. Learning the affine parameters for each segment
can be achieved in closed-form using the properties of the fourier-
transform [47].

This segmentation scheme is suboptimal due to the assumption
of affine motion. To overcome this we iterate back and forth be-
tween learning the LTI model for each segment and tweaking the
segment boundaries till convergence is reached. Taking the output
of this initial segmentation as an starting point, we learn the LTI
model for each segment. Without loss of generality, let
S1 ¼ ðA1;C1Þ and S2 ¼ ðA2;C2Þ be two adjacent segments and their
corresponding LTI models. Suppose the temporal span of S1 is
½t1; tbÞ and that of S2 is ½tb; t2�. Here tb denotes the boundary be-
tween the segments. As will be described in Section 5.2, columns
of Ck correspond to the top d principal components (PCs) of the
observations in segment k. To evaluate the boundary according to
the learnt models, we compute the reconstruction error of all the
observations according to the PCs in the corresponding segments.
We move the boundary by an amount s in forward and backward
directions and choose the one that minimizes this error. Thus, we
search for the minima of the following cost function:

DðsÞ ¼
Xtbþs

t¼t1

C1 CT
1ft

� �
� ft

��� ���2
þ
Xt2

t¼tbþs
C2 CT

2ft

� �
� ft

��� ���2
ð5Þ
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ft is the observation at time t and s 2 ½�T; T�. In our experiments, we
typically chose T to be 10. The new boundary is found as
tnew

b ¼ told
b þ arg minsDðsÞ. With the new boundary the models are

learnt again, and the process is repeated till convergence, i.e. the
boundary does not change anymore arg minsDðsÞ ¼ 0. For cases
when the linear models do not provide a good fit to the observa-
tions in each segment due to possible non-linear dynamics, conver-
gence can be an issue. However, in practice we observed that
convergence is typically achieved. This further confirms the hypoth-
esis that most human activities can be segmented into simpler ac-
tions where each action can be modeled by a simple linear model.
We show some segmentation results on a near-field video sequence
of a human performing five different activities. Each activity is re-
peated several times at random. Note that the segmentation algo-
rithm is independent of the rate of execution of the activity. The
video sequence was consistently segmented at the same pose in
several instances of the same activity. Some segmentation results
obtained on actual video sequences of a person performing five dif-
ferent activities are shown in Fig. 3 from two different views.

We see that the videos are segmented at the same pose consis-
tently in both views. This indicates that our algorithm indeed finds
semantically meaningful segment boundaries consistently and in a
view-invariant manner.

5.1.1. Effect of boundary improvement
In most cases, temporal segmentation based on affine parame-

ters gave consistent results for segmenting a sequence into its con-
stituent action elements. Nevertheless, there were some sequences
where the segmentation was inadequate and we found that refine-
ment of these boundaries using feedback improved the results. We
show one such example in Fig. 4. We notice that the last segment
boundary is incorrect, and it is corrected by refinement using feed-
back. Note that the boundary improvement algorithm itself is inde-
pendent of what feature is used.

5.2. Learning the LTI models for each segment

As described earlier, each segment is modeled as an LTI system.
We use tools from system identification to estimate the model
parameters for each segment. The most popular model estimation
algorithms are N4SID [48], PCA-ID [43] and EM [49]. N4SID is a
subspace identification algorithm and is an asymptotically optimal
solution. However, for large dimensions the computational
requirements make this method prohibitive. PCA-ID [43] is a
sub-optimal solution to the learning problem. It makes the
assumption that filtering in space and time are separable, which
makes it possible to estimate the parameters of the model very
efficiently via principal component analysis (PCA). The learning
problem can also be posed as a maximum likelihood estimation
of the model parameters that maximize the likelihood of the obser-
vations which can be solved by expectation-maximization (EM)
[49]. For computational simplicity we have chosen the PCA based

solution of [43] in this paper. Further, as will be discussed in Sec-
tion 6, the PCA based method allows us to derive view-invariant
metrics by exploiting the fact that the columns of the observation
matrix are principal components of the features of the correspond-
ing segment.

We briefly describe the PCA based method to learn the model
parameters here. Let observations f ð1Þ; f ð2Þ; . . . f ðsÞ, represent the
features for the frames 1;2; . . . s. The goal is to learn the parameters
of the model given in Eq. (2). The parameters of interest are the
transition matrix A and the observation matrix C. Let
½f ð1Þ; f ð2Þ; . . . f ðsÞ� ¼ URVT be the singular value decomposition of
the data. Then, the estimates of the model parameters ðA;CÞ are gi-
ven by bC ¼ U, bA ¼ RVTD1VðVTD2VÞ�1R�1, where D1 = [0 0;Is�1 0]
and D2 = [Is�1 0;0 0]. These estimates of C and A constitute the
model parameters for each action segment. For the case of flow,
the same estimation procedure is repeated for the x and y compo-
nents of the flow separately. Thus, each segment now is repre-
sented by the matrix pair ðA;CÞ as shown in Fig. 1(d) in order to
estimate the corresponding system and transition matrices. The
data matrix is a tall thin matrix (size MN � s ). Computing the sin-
gular vectors of the data matrix can be reduced to finding the sin-
gular vectors for a s� s matrix and taking appropriate linear
combinations of those singular vectors. The details of these matrix
operations are fairly standard and one may refer to [50] for details
of the approach. This makes the algorithm to learn the system and
transition matrices, efficient, robust, simple and closed-form.

5.3. Switching between dynamical systems

In order to completely specify the model we also need to specify
the switching times between these dynamical systems or equiva-
lently, the amount of time (or frames) spent executing an action
element i.e. the dwell time. We considered modeling the activity
as a Markov model, in which case the probability distribution of
the dwell time turns out to be an exponential distribution whose
mode is at 0. But, physically the amount of time spent doing one
particular action takes a finite amount of time. Thus, to model
the dwell time, we need a continuous distribution over time that
satisfies the following requirements: (a) support set which is the
entire non-negative real line and (b) non-zero mode. The Gamma

Fig. 3. Sample segment boundaries for five activities. Note that the temporal segmentation algorithm finds a boundary whenever there is a change in the direction of motion.
Notice that the segmentation results are consistent across view changes.

Fig. 4. Bending boundaries: (a) before refinement and (b) after refinement.
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distribution satisfies both the above requirements. Simpler choices
such as Gaussian, exponential, double exponential violate one or
the other requirement. Thus, we model the dwell time for each ac-
tion element as a Gamma distribution with parameters ak and bk

with ak > 1 (this constraint ensures a non-zero mode). The Poisson
distribution also shares the above properties except that it is a dis-
crete distribution.

The parametric Gamma distribution is given by

gðx;a;bÞ ¼ xa�1 ba e�bx

CðaÞ for x > 0 ð6Þ

where CðaÞ is the gamma function. The mean l and variance r2 of
the gamma distribution are given by

l ¼ a
b
; r2 ¼ a

b2 ð7Þ

Given samples drawn from the above distribution, we can estimate
the parameters a and b as follows: denoting the sample mean by l̂
and the sample variance by r̂2, we obtain

â ¼ l̂2

r̂2 ; b̂ ¼ l̂
r̂2 ð8Þ

5.4. Generative power of learnt model

A useful test for a representational model is how well it synthe-
sizes patterns, and see if the synthesized samples resemble real-
world phenomenon. In this section, we show a few synthesis re-
sults obtained using the learnt models. In the first experiment,
we used one walk sequence from the USF gait gallery data [51]
to learn one walk pattern. We use background subtracted images
as the features. We modeled the entire walk sequence using just
one LTI model. Then, we used the learnt model to generate the se-
quence. A few frames from the generated sequence are shown in
Fig. 5.

In the next experiment, we generated a bending sequence. Dur-
ing the learning stage, the sequence was segmented automatically
into three segments by the proposed segmentation technique. A
model was learnt for each segment. To synthesize the activity,
we generated sequences from each of the models, and switched
from one model to the other according to the discovered cascade.
The dwell time in each segment was sampled from the learnt dis-
tributions. The generated sequence is shown in Fig. 6.

5.5. Clustering action element prototypes

We have now segmented a long video sequence into several dis-
tinct segments and learnt the model parameters ðbA; bCÞ for each of
these segments. Even though a long video might consist of several
segments, not all of them will be distinct. We need to cluster these

segments (Fig. 1(e) and (f)) to discover the distinct action elements
(words). In order to perform this clustering, we need a distance
measure on the space of LTI models. Several distance metrics exist
to measure the distance between linear dynamic models. The sim-
plest method to measure distance is the L � 2 norm between mod-
el parameters. Martin [52] proposed a more principled method to
measure the distance between ARMA models based on cepstral
coefficients. A unifying framework based on subspace angles of
observability matrices was presented in [53] to measure the dis-
tance between ARMA models. Specific metrics such as the Frobe-
nius norm and the Martin metric [52] can be derived as special
cases based on the subspace angles. Recently, [54] presented a
framework to extend the Cauchy–Binet kernels to the space of
dynamical systems and incorporated the dependence on initial
conditions of the dynamical systems as well. However, for ease
of computation we use the subspace angles based kernel in our
experiments. Subspace angles ðhi; i ¼ 1;2; . . . nÞ between two ARMA
models are defined in [53] as the principal angles (hi; i ¼ 1;2; . . . n)
between the column spaces generated by the observability spaces
of the two models extended with the observability matrices of the
inverse models [53]. The subspace angles (h1; h2; . . .) between the
range spaces of two matrices A and B is recursively defined as fol-
lows [53],

cos h1 ¼ max
x;y

xTATBy
��� ���
Axk k2 Byk k2

¼
xT

1ATBy1

��� ���
Ax1k k2 By1k k2

ð9Þ

coshk ¼max
x;y

xTATBy
��� ���
Axk k2 Byk k2

¼
xT

kATByk

��� ���
Axkk k2 Bykk k2

for k ¼ 2;3; . . . ð10Þ

subject to the constraints xT
i ATAxk ¼ 0 and yT

i BTByk ¼ 0 for
i ¼ 1;2 . . . ; k� 1. The subspace angles between two ARMA models
[A1;C1;K1] and [A2; C2;K2] can be computed by the method de-
scribed in [53]. Using these subspace angles hi; i ¼ 1;2; . . . n, three
distances, Martin distance (dM), gap distance (dg) and Frobenius dis-
tance (dF) between the ARMA models are defined as follows:

d2
M ¼ ln

Yn

i¼1

1
cos2ðhiÞ

; dg ¼ sin hmax; d2
F ¼ 2

Xn

i¼1

sin2 hi ð11Þ

We use the Frobenius distance in all the results shown in this paper.
Suppose we have N segments in the video sequence, then we create
an N � N matrix W whose ði; jÞth element contains the distance be-
tween the models of segment i and segment j.

5.5.1. Clustering the segments
In the current setting, we only have a notion of a ‘distance’ be-

tween two points (segments), but we do not have a Euclidean rep-
resentation of the points. Thus, this precludes the use of clustering
techniques that rely on Euclidean representation. The other popu-
lar alternative for clustering rely on graph-theoretic methods such

Fig. 5. A model for the silhouette dynamics for gait was learnt using one segment. Shown above is the generated gait sequence from the learnt model.

Fig. 6. A model for silhouette dynamics during ‘bending’ was learnt using three segments. Shown above is the generated bending sequence from the learnt cascade of LTI
models.
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as Normalized cuts ([55]) which does not rely on Euclidean repre-
sentations. The only requirement is that a distance metric be de-
fined between any two points. Hence, graph clustering
algorithms are a natural choice in the current setting. But, a prac-
tical problem in using these algorithms is choosing the number of
clusters. Results in spectral graph theory provide principled means
for estimating the number of clusters. A well-known result regard-
ing the Laplacian of a graph is briefly summarized as follows.

5.5.2. Result
If G is a graph and L its Laplacian, then the multiplicity of 0 as an

eigenvalue of L is equal to the number of connected components of
G [56].

This result is true for the normalized graph-Laplacian as well.
While this result holds for unweighted graphs, in our case the pair-
wise distance/similarity matrix represents a weighted graph with
the similarities as the edge weights. Connected components in
our case represent the clusters that we are looking for. Thus for
the weighted case, the smallest eigenvalues will be close to 0 but
not exactly 0. We have used this result to estimate the number
of clusters given the similarity matrix by analyzing the eigenvalues
of the Laplacian and searching for an ‘elbow’ that represents a sud-
den change in the eigenvalues. The index at which the elbow is lo-
cated is the estimated number of clusters. Practically, it is easier to
use the normalized Laplacian to search for the elbow, since its non-
zero eigenvalues are all 1 by a result similar to the one above.

Once we have estimated the number of clusters, we can com-
pute the clustering using any standard graph clustering algorithm.
We have used normalized cuts in our experiments [55]. Let the K
cluster labels thus obtained be given by L1; L2; L3; . . . LK . The seg-
mented video is then given by a sequence of these labels.

5.6. Discovering the cascade structure

After clustering the action elements each segment is assigned a
label. Suppose we have the following sequence of labels
ðL1; L3; L2; L6; L7; L8; L1; L3; L5; L2; L6; L1; L7; L8Þ. Persistent activities in
the video would appear as a repetitive sequence of these labels.
From this sequence, we need to find the approximately repeating
patterns. We say approximate because oversegmentation may
cause the patterns to be not exactly repetitive. We can say that
ðL1; L3; L2Þ and ðL6; L7; L8Þ are the repeating patterns, up to one inser-
tion error. To discover the repeating patterns, we build the n-gram

statistics of the segment labels as shown in Fig. 1(g). We start by
building a bi-gram, tri-gram and four-gram models. In our experi-
ence, oversegmentation of the video is more common than under-
segmentation. Thus, we allow for up to one insertion error while
building the n-gram statistics. We prune the bi-grams which ap-
pear as a subsequence of a tri-gram. We prune the tri-grams in a
similar fashion. Finally, we declare the n-grams with a count above
a threshold (depending on the length of the video) as the repeating
patterns in the video. The cascade structure of individual activities
is the exact sequence of the prototypes in the n-grams. Once we
have the cascade structure, we can go one step further and build
a generative model by learning the statistics of the duration of each
action prototype. We model the duration of each action prototype
as a Gamma distribution with parameters ak > 1 and bk. The
parameters of the distribution can be learnt from training data as
described in Section 4.2.

6. Building invariances into CLDS model

The distance metrics defined in the previous section in Eq. (11)
will break down when there is a change in viewpoint or there is an
affine transformation of the low-level features. Some features such
as shape are invariant to affine transformations by definition. Fea-
tures such as point trajectories can be easily made invariant to
view and affine transforms. But, in general, it is not guaranteed that
a given feature is invariant under these transformations (optical
flow, background subtracted masks, motion-history ([24]) and
other ‘image-like’ features). Reliance on the feature to provide
invariance to these factors will tie the rest of the processing to that
particular feature, which is not desirable as different features are
appropriate for different domains and video characteristics. Thus,
instead of relying on the feature, we propose a technique to build

Fig. 7. (a) Variation of mean distance as viewing angle changes. Sample views shown and, (b) Histogram of difference between Frobenius and dcompensated as seen from
different views.

Table 3
Composition of the discovered clusters in the UMD database

Activity type Motif 1 Motif 2 Motif 3 Motif 4 Motif 5

Bending 10 1 0 2 1
Squatting 2 8 2 0 0
Throwing 0 0 7 0 1
Pick Phone 3 0 0 9 0
Batting 0 0 0 1 9
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these invariances into the distance metrics defined above. This al-
lows the algorithm flexibility in the choice of features.

6.1. Affine and view invariance

In our model, under feature level affine transforms or view-
point changes, the only change occurs in the measurement equa-
tion and not the state equation. As described in Section 5.2 the col-
umns of the measurement matrix (C) are the principal components
(PCs) of the observations of that segment. Thus, we need to dis-
cover the transformation between the corresponding C matrices
under an affine/view change. We start by proving a theorem that
relates low level feature transforms to transformation of the prin-
cipal components.

Theorem 6.1. Let fXð�pÞg be a zero-mean random field where

�p 2 D1 # R2. Let kX
n

n o
and /X

n

n o
be the eigenvalues and corresponding

eigenfunctions in the K–L expansion of the covariance function of X.

Let T : D2 ! D1, where D2 # R2 be a continuous, differentiable one-to-
one mapping. Let fGð�qÞg, �q 2 D2 be a random field derived from X as
Gð�qÞ ¼ XðTð�qÞÞ. If the Jacobian of T, denoted by JTð�rÞ, is such that
detðJTð�rÞÞ is independent of �r, then the eigenvalues and eigenfunctions

of G are given by kG
n ¼

kX
n

jJT j
1=2 and /G

n ð�qÞ ¼
/X

n ðTð�qÞÞ
jJT j

1=2 .

Proof. Let KXð�p;�sÞ be the covariance function of X. Then by the def-
inition of the K-L expansion the following equations hold.Z

D1

KXð�p;�sÞ/X
nð�sÞd�s ¼ kX

n/X
nð�pÞ;

Z
D1

/X
mð�sÞ/

X
n ð�sÞ ¼ dðm;nÞ ð12Þ

where both �p;�s 2 D1 and dðm; nÞ ¼ f1 if m ¼ n; 0 otherwiseg. Now,
fGð�qÞg is related to X as Gð�qÞ ¼ XðTð�qÞÞ. For �q;�r 2 D2, the covariance
function of G is given by KGð�q;�rÞ ¼ E½Gð�qÞGð�rÞ� ¼ E½XðTð�qÞÞXðTð�rÞÞ� ¼
KXðTð�qÞ; Tð�rÞÞ. Now consider the following equation.

Z
D2

KGð�q;�rÞ/X
n ðTð�rÞÞd�r ¼

Z
D2

KXðTð�qÞ; Tð�rÞÞ/X
n ðTð�rÞÞd�r ð13Þ

¼
Z

D1

KXð�p;�sÞ/X
n ð�sÞ

1
JTð�rÞj j d

�s ð14Þ

where (14) is obtained by a change of variables given by
�p ¼ Tð�qÞ;�s ¼ Tð�rÞ, and jJTð�rÞj is the determinant of the Jacobian of
T with respect to �r evaluated at �r ¼ T�1ð�sÞ. Now, if
jJTð�rÞj ¼ jJT j ¼ constant, then it comes out of the integral in (14),
and using (12) we obtainZ

D2

KGð�q;�rÞ/X
nðTð�rÞÞd�r ¼ kX

n

JTj j
/X

n ðTð�qÞÞ ð15Þ

Fig. 8. Color coded activity labeling for a 4000-frame video sequence of the UMD database. (a) Manual labeling and (b) unsupervised clustering result. Image best viewed in
color.

Fig. 9. (a) Visualization of the clusters in Laplacian space dimensions 1–3 and (b) visualization of clusters in Laplacian space dimensions 4–6. Best viewed in color.

Table 4
Recognition experiment simulated view change data on the UMD database

Activity Baseline CMH Compensated distance
Exemplars Exemplars Exemplars

1 10 1 10 1 10

Pick up object 40 0 40 40 40 50
Jog in place 0 0 0 10 70 80
Push 0 0 20 40 10 20
Squat 40 30 10 20 30 60
Wave 30 30 40 20 40 40
Kick 10 0 40 50 30 50
Bend to the side 0 10 0 30 30 70
Throw 0 10 30 40 0 40
Turn around 0 40 20 20 30 70
Talk on cellphone 0 0 10 20 40 40

Average 12 12 21 29 32 52

Table shows a comparison of recognition performance using (a) Baseline tech-
nique–direct application of system distance, (b) center of mass heuristic and (c)
Proposed compensated distance metric.
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It can further be shown that the set of functions /X
n ðTð�qÞÞ
jJT j1=2

n o
form an

orthonormal set. Thus, we have shown that the eigenvalues and

eigenfunctions of G are given by kX
n

jJT j1=2

n o
and /X

n ðTð�qÞÞ
jJT j1=2

n o
, respectively.

The utility of this theorem is that if the low-level features like flow/
silhouettes undergo a spatial transformation which satisfies the
conditions stated in the theorem, then the corresponding PCs also
undergo the same transformation. h

Note: It is important to note that we are not considering trans-
formations of the pixel intensities, but we are interested in trans-
formations of the ‘image-grid’.

6.2. Application to invariances

Two images that are related by a general spatial transform (af-
fine, homography, etc.), can be mathematically expressed as
I2ðx; yÞ ¼ I1ðTðx; yÞÞ.

6.2.1. Affine transforms
Let �p ¼ ½x; y�0 denote a point on the image lattice. Consider the

set of 2D affine-transforms given by Tð�pÞ ¼ A�pþ �t. Expressing this
in inhomogeneous coordinates

Tð�pÞ ¼
a11xþ a12yþ t1

a21xþ a22yþ t2

� �
ð16Þ

The Jacobian for the transformation is given by JT ¼
a11 a12

a21 a22

� �
whose determinant is a constant. Thus, by the above theorem, if a
set of observations are affine transformed then their principal com-
ponents also get transformed by the same affine parameters.

6.2.2. Homography
Consider now a 2D plane homography given by H ¼ ½hij�. In the

inhomogeneous coordinates the transformation is given by

Tð�pÞ ¼
h11xþ h12yþ h13ð Þ= h31xþ h32yþ h33ð Þ
h21xþ h22yþ h23ð Þ= h31xþ h32yþ h33ð Þ

� �
ð17Þ

As is apparent, the theorem does not hold for a general homogra-
phy. We discuss approximations under which the theorem may
be applied to homographies.

Let, the transformation between the coordinate frame of the
first camera and that of the second camera be given by a rotation
and translation. Then, the homography induced by a plane p, be-
tween the two views is given by [57]

H ¼ M0 Rþ TnT

dp

 !
M�1 ð18Þ

where R and T are the rotation matrix and translation vector,
respectively, n is the normal to the plane p and dp is the distance
of the plane p from the origin, M and M0 are the transformation
from the image plane to the camera coordinate system for the
two cameras. In the simplest case, we can take

M ¼ M0 ¼
f 0 x0

0 f y0
0 0 1

24 35,where f denotes the focal length of the cam-

era, and x0; y0 is the origin of the image plane. When the two views
are close to each other, we can approximate T ¼ ½�x; �y; �z�0 and R
using small rotations as [58]

Fig. 10. Model order selection experiment on the USF gait database. Bar plot shows
recognition performance as a function of the hidden state dimension (d) on the
seven different challenge experiments (probes A–G) in the USF gait database.

Table 5
Comparison of view invariant recognition of activities in the INRIA dataset using our approach (system distance) with the approaches proposed in [21]

Activity PCA [21] Mahalanobis [21] LDA [21] System distance

1 Check watch 53.33 73.33 76.67 93.33
2 Cross arms 23.33 86.67 100 100
3 Scratch head 46.67 86.67 80 76.67
4 Sit down 66.67 93.33 96.67 93.33
5 Get up 83.33 93.33 93.33 86.67
6 Turn around 80 96.67 96.67 100
7 Walk 90 100 100 100
8 Wave hand 50 70 73.33 93.33
9 Punch 70 86.67 83.33 93.33
10 Kick 50 86.67 90 100
11 Pick up 60 90 86.67 96.67

Average 61.21 87.57 88.78 93.93

Note: These numbers were obtained by using 16�16�16 fourier-features.

Table 6
Confusion matrix showing view-invariant clustering using the proposed algorithm on
the INRIA dataset

Motifs 1 2 3 4 5 6 7 8 9 10 11

Sit down 28 3 0 0 0 1 0 0 0 0 0
Get up 0 31 0 0 0 0 0 0 0 0 0
Turn around 0 0 28 0 0 0 1 0 0 0 0
Check watch 0 0 0 17 5 2 0 6 4 0 0
Cross arms 0 0 0 0 16 3 0 10 1 0 1
Scratch head 1 0 0 3 9 3 0 7 4 0 1
Walk 0 0 0 0 0 0 30 0 0 0 0
Wave hand 0 0 0 6 0 4 0 10 1 0 0
Punch 0 0 0 0 0 4 0 7 9 5 0
Kick 0 0 0 1 0 1 0 0 2 26 0
Pick up 2 2 0 1 0 1 0 0 4 0 23
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R �
1 �n3h n2h

n3h 1 �n1h

�n2h n1h 1

264
375 ð19Þ

where, h is the rotation angle, n1;n2;n3 are the directional cosines of
the axis of rotation, hence, related by n2

1 þ n2
2 þ n2

3 ¼ 1. On substitut-
ing these quantities and the plane normal n ¼ ½nx; ny;nz�, in (18) and
simplifying, we obtain the following relations between the required
elements of H—h31;h32;h33,

h31

h33
¼ a=f
�ax0=f � by0=f þ c

ð20Þ

h32

h33
¼ b=f
�ax0=f � by0=f þ c

ð21Þ

where a ¼ �n2hþ �znx
dp
; b ¼ n1hþ �zny

dp
; c ¼ 1þ �znz

dp
. In the limit, when

h! 0 and �x; �y; �z ! 0, we obtain a! 0; b! 0; c! 1.

lim
h;�x ;�y ;�z!0

h31

h33
¼ 0 ð22Þ

lim
h;�x ;�y ;�z!0

h32

h33
¼ 0 ð23Þ

Thus, for small view changes h31;h32 << h33. Under these condi-
tions, the Jacobian of the above transformation can be approxi-

mated by JT ¼ 1
h33

h11 h12

h21 h22

� �
whose determinant is also a

constant. Thus, the above theorem can be used even in the case
where observations are transformed by a homography under the
above approximation.

Note: The invariance theorem was proved for continuous ran-
dom fields. In real images, spatial transforms are not one-to-one
maps due to the discrete nature of the underlying lattice. But,
our experiments suggest that this theorem can be used to get very
good approximations even in the discrete case.

6.2.3. Modified distance metric
Proceeding from the above, to match two ARMA models of the

same activity related by a spatial transformation, all we need to
do is to transform the C matrices (the observation equation). Given
two systems S1 ¼ ðA1;C1Þ and S2 ¼ ðA2; C2Þ we modify the distance
metric as

dcompensatedðS1; S2Þ ¼minT d TðS1Þ; S2ð Þ ð24Þ

where dð:; :Þ is any of the distance metrics in Eq. (11), T is the trans-
formation. TðS1Þ ¼ ðA1; TðC1ÞÞ. Columns of TðC1Þ are the transformed
columns of C1. The optimal transformation parameters are those
that achieve the minimization in (24). Depending on the complexity
of the transformation model, one can use featureless image regis-
tration techniques such as [47,59] to arrive at a good initial estimate
of T. Computing the gradient of the proposed distance metric is ex-
tremely difficult due to the recursive way the subspace angles are
defined (Section 5.5). We could not arrive at closed form expres-
sions for the gradients. Instead, we use Nelder-Mead’s (NM) simplex
method to perform the optimization. The NM method is a direct
search algorithm that is used when gradients cannot be easily com-
puted or accessed. Even though only limited convergence results for
the NM method are known, it is known to work well in practice
[60].

To illustrate the effectiveness of our proposed technique, we
conducted the following experiment. We took a set of 10 dynamic
textures from http://www.cwi.nl/projects/dyntex/index.html [61].
The textures were modeled to be lying on a plane in front of the
camera perpendicular to the optical axis, and a change in viewing
angle from 0� to 20� in increments of 5� was simulated by means of
a homography (0� corresponds to the frontal view). The images
were taken as observations. Fig. 7(a) shows how the Frobenius dis-
tance breaks-down as the viewing angle is changed. The plot also
shows dcompensated. It can be seen that the proposed technique in-
deed works better. In Fig. 7(b), we plot normalized histograms of
ðdF � dcompensatedÞ for same textures as seen from different views
and different textures as seen from different views. When compar-
ing different textures, dcompensated is not significantly lower than dF,
hence the peak at 0. But, for the same texture as seen from differ-
ent views, we see that dcompensated is significantly lower than dF.

6.3. Invariance to execution rate of activity

While building models for activities, one also needs to consider
the effect of different execution rates of the activity [62]. In the
general case, one needs to consider warping functions of the form
gðtÞ ¼ f ðwðtÞÞ such as in [63] where Dynamic Time Warping (DTW)
is used to estimate wðtÞ. We consider linear warping functions of

Fig. 11. Color coded activity labeling for three sequences by actor ‘Florian’. First row in each is the ground truth, second row is the discovered labeling. Image best viewed in
color.
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the form wðtÞ ¼ qt for each action segment. Linear functions for
each segment give rise to a piecewise linear warping function for
the entire activity, which accounts for variabilities in the execution
rate well. It can be shown that, under linear warps the stationary
distribution of the Markov process in (2) does not change. Hence,
a linear warp will affect only the state equation and not the mea-
surement equation i.e. the A matrices and not the C matrices. Con-
sider the state equation of a segment: X1ðkÞ ¼ A1X1ðk� 1Þ þ vðkÞ.
Ignoring the noise term for now, we can write X1ðkÞ ¼ Ak

1Xð0Þ.
Now, consider another sequence that is related to X1 by
X2ðkÞ ¼ X1ðwðkÞÞ ¼ X1ðqkÞ: In the discrete case, for non-integer q
this is to be interpreted as a fractional sampling rate conversion
as encountered in several areas of DSP. Then,
X2ðkÞ ¼ X1ðqkÞ ¼ Aqk

1 Xð0Þ, i.e. the transition matrix for the second
system is related to the first by A2 ¼ Aq

1.

6.3.1. Estimating q
Given two transition matrices of the same activity but with dif-

ferent execution rates, we need a technique to estimate the warp
factor q. Consider the eigendecomposition of A1 ¼ V1D1V�1

1 , and
A2 ¼ V2D2V�1

2 . Then, for rational q, A2 ¼ Aq
1 ¼ V1Dq

1V�1
1 . Thus,

D2 ¼ Dq
1, i.e. if k is an eigenvalue of A1, then kq is an eigenvalue of

A2 and so forth. Thus, we can get an estimate of q from the eigen-
values of A1 and A2 as

q̂ ¼
P

i log kðiÞ2

��� ���P
i log kðiÞ1

��� ��� ð25Þ

where kðiÞ2 and kðiÞ1 are the complex eigenvalues of A2 and A1, respec-
tively. Thus, we compensate for different execution rates by com-
puting q̂. In the presence of noise, the above estimate of q may
not be accurate, and can be taken as an initial guess in an optimiza-
tion framework similar to the one proposed in Section 6.1. Note that
compensation for execution rate is done only for segments which
have very similar bC matrices.

7. Discussion and experiments

In order the validate and show the efficacy of the CLDS model
for activity based unsupervised clustering of videos, we perform
experiments on five databases.

(1) UMD dataset: This dataset contains 10 activities and 10
sequences per activity performed by one actor and captured
in two views.

(2) USF database: This is a publicly available human gait data-
base of 124 individuals and 10 different sequences per
individual.

(3) UMD far-field data: This dataset consists of unconstrained
far-field activities occurring in front of a building entrance
such as, pedestrians walking, vehicles parking, exiting, etc.

(4) INRIA database: This database consists of 10 actors per-
forming 11 activities in a near-field setting and contains
three executions per actor. Actors freely change their
orientation.

Fig. 12. Color coded activity labeling for three sequences by actor ‘Alba’. First row in each is the ground truth, second row is the discovered labeling. Image best viewed in
color.

Fig. 13. Sample images from the skating video from [42].
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(5) Simon Fraser University (SFU) figure skating data [42]: We
have used figure skating videos from [42]. This is completely
unconstrained data and involves real world conditions—pan,
tilt and zoom of camera and rapid motion of the actor.

Note: Since most of the results are best viewed as videos,
we refer the reader to http://www.umiacs.umd.edu/~pturaga/
VideoClustering.html for video results.

7.1. Experiments on UMD Dataset [63]

In the experiment described in Section 5.1, five different com-
plex activities—throw, bend, squat, bat and pick phone were dis-
covered automatically. We were also able to learn the cascade of
dynamical systems model in a completely unsupervised manner.
We manually validated the segment boundaries and the corre-
sponding discovered activities. We call each discovered repetitive
pattern a motif. To counter over segmentation effects, we merge
very similar motifs. Since, a motif is a string of labels, we used
the Levenshtein distance [64] as the metric to merge them. The
classification of the activities into motifs is tabulated in Table 3.
We see that the table has a strong diagonal structure indicating
that each of the discovered motifs corresponds to one of the activ-
ities in the dataset. Motifs 1–5 correspond to ‘bending’, ‘squatting’,
‘throwing’, ‘pick up phone’ and ‘batting’, respectively. This demon-
strates that the algorithm does indeed discover semantically
meaningful boundaries and also is able to distinguish between var-
ious activities by learning the right cascade structure of the action
prototypes.

Fig. 8 shows activity labels for the entire video sequence ex-
tracted manually and automatically. Matching of the colors in
the figure indicates that the algorithm is able to discover and
identify activities in an unsupervised manner. We found that
the errors in labeling are typically near the transition between
two activities, where the actual labeling of those frames is itself
subject to confusion. To visualize the clusters and to see the tra-
jectories of each activity, we embedded each segment into a six-
dimensional Laplacian eigenspace. Dimensions 1–3 are shown in
Fig. 9(a) and dimensions 4–6 in Fig. 9(b). We see that the trajec-
tories of the same activity are closely clustered together in the
Laplacian space.

7.1.1. View invariance-simulated data
We show a few more recognition experiments based on our

modified distance metric given in Eq. (24). In the next experiment,
the setup is the same as described above. But, this time we have 10
activities—Bend, Jog, Push, Squat, Wave, Kick, Batting, Throw, Turn
Sideways, and Pick Phone. Each activity is executed at varying rates.
For each activity, a model is learnt and stored as an exemplar. The
features (flow-fields) are then translated and scaled to simulate a
camera shift and zoom. Models were built on the new features,
and tested using the stored exemplars. For the recognition experi-
ment, we learnt only a single-LTI model for the entire duration of
the activity instead of a sequence. We also implemented a heuristic
procedure in which affine transforms are compensated for by
locating the center of mass of the features and building models
around its neighborhood. We call it Center of Mass Heuristic
(CMH). Recognition percentages are shown in Table 4. The baseline

Fig. 14. Shown above are a few sequences from Cluster 1. Each row shows contiguous frames of a sequence. We see that this cluster dominantly corresponds to ‘Sitting Spins’.
Image best viewed in color. Please see http://www.umiacs.umd.edu/~pturaga/VideoClustering.html for video results.
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column corresponds to direct application of the Frobenius distance.
We see that our method performs better in almost all cases.

7.1.2. Far-field surveillance data
We also conducted a recognition experiment on a 10-min video

sequence obtained from a far-field surveillance camera. There were
four different walking patterns (in the location and direction of
walk). A model for each of these activities was built and a recogni-
tion experiment was run over the entire video sequence and re-
sults were manually verified. There were three segments that
were misclassified from a total of 24 meaningful segments. All of
these three errors resulted because of a confusion between activi-
ties that are co-located but vary only in the local direction of mo-
tion. Note that the feature used in this experiment was smoothed
flow and therefore did not involve tracking of individual targets.

7.2. Model order selection on USF gait database [51]

A practical issue in learning the LTI model parameters is to
choose an appropriate value for the hidden-state dimension, d.
The answer to this is tied to the domain, and there is no general
selection rule. The number d represents the number of basis vec-
tors to project the data on to (the number of principal compo-
nents). Usually, the higher the dimension d, the more accurate
the representation will be. But, the higher the d, the more the data
required for robust estimation of the parameters and the higher
the computational cost. Higher-order models also tend to over fit
the training data with poor generalization to test instances. One
needs to make a trade-off between these issues. To see the effect
of varying d, we conducted recognition experiments on the USF
dataset using d ¼ 5;10;15 on Probes A–G. Results are shown in
Fig. 10. We see that the recognition accuracies show an increasing

trend as d increases from 5 to 10, but the increase from d ¼ 10 to
d ¼ 15 is only marginal and in some cases even negative. This
can be attributed to over fitting of the training data which does
not generalize well to test instances. In general, criteria such as
Akaike Information Criteria (AIC) [65], Bayesian Information Crite-
ria (BIC) [66], etc may also be used to estimate the optimal number
of free parameters (in our case d). In our experiments, we empiri-
cally found that using d ¼ 10 gives good results across various do-
mains and activity classes.

7.3. INRIA—free-viewpoint database [21]

The INRIA multiple-camera multiple video database of the
PERCEPTION group consists of 11 daily-live motions performed
each three times by 10 actors. The actors freely change position
and orientation. Every execution of the activity is done at a differ-
ent rate. For this dataset, we extract 16� 16� 16 circular FFT fea-
tures as described in [21]. Instead of modeling each segment of
activity as a single motion history volume as in [21], we build a
time series of motion history volumes using small sliding win-
dows. This allows us to build a dynamic model for each segment.
We use the segmentation method proposed in [67]. Using these
features, we first performed a recognition experiment on the pro-
vided data. For the recognition experiment, we used only one seg-
ment for each activity which best represented that activity as in
[67]. The recognition results are summarized in Table 5. The
numbers in the columns corresponding to PCA, LDA and Mahalan-
obis were obtained using the algorithm reported in [21]. Note
that the feature used here [21] itself provides the required invari-
ance to view.

Next, we performed a clustering experiment on all 30 sequences
(10 actors � 3 sequences per actor). Segmentation was performed

Fig. 15. Shown above are a few sequences from Cluster 2. Each row shows contiguous frames of a sequence. Notice that this cluster dominantly corresponds to ‘Standing
Spins’. Image best viewed in color. Please see http://www.umiacs.umd.edu/~pturaga/VideoClustering.html for video results.
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using the method described in [67]. The clustering results are
shown in Table 6. The strong diagonal structure of the table indi-
cates that meaningful clusters are found. We also see that some
activities such as ‘Check Watch’ and ‘Cross Arms’ are confused.
Similarly, ‘Scratch Head’ is most often confused with ‘Wave Hand’

and ‘Cross Arms’. Such a confusion may be attributed to the similar
and also sparse motion patterns that are generated by those
activities.

We also show the actual summarization results obtained on
two of the actors—‘Florian’ and ‘Alba’ in Figs. 11 and 12.

Fig. 16. Shown above are a few sequences from Cluster 3. Each row shows contiguous frames of a sequence. Notice that this cluster dominantly corresponds to ‘Spirals’. Image
best viewed in color. Please see http://www.umiacs.umd.edu/~pturaga/VideoClustering.html for video results.

Fig. 17. Shown above are a few sequences from Cluster 4. Each row shows contiguous frames of a sequence. This cluster dominantly corresponds to ‘Camel Spins’. Image best
viewed in color. Please see http://www.umiacs.umd.edu/~pturaga/VideoClustering.html for video results.
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7.4. Figure skating data [42]

We performed a clustering and retrieval experiment on the fig-
ure skating dataset reported in [42]. This data is very challenging
since it is unconstrained and involves rapid motion of both the ska-
ter and real-world motion of the camera including pan, tilt and
zoom. Some representative frames from the raw video are shown
in Fig. 13. It should be noted that the authors of [42] consider dis-
covering action classes from static images. Since, they do not use

temporal information, the results of our method based on dynamic
models cannot be directly compared to [42].

7.4.1. Low-level processing
We built color models of the foreground and background using

normalized color histograms. The color histograms are used to seg-
ment the background and foreground pixels. Median filtering fol-
lowed by connected component analysis is performed to reject
small isolated blobs. From the segmented results, we fit a bounding

Fig. 18. Shown above are a few sequences from Cluster 5. Each row shows contiguous frames of a sequence. This cluster did not dominantly correspond to any ‘interesting’
skating pose but seemed to capture the ‘usual’ postures. Image best viewed in color. Please see http://www.umiacs.umd.edu/~pturaga/VideoClustering.html for video results.

Fig. 19. Shown above is the input query corresponding to a standing spin and the top five matches obtained. Image best viewed in color.
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box to the foreground pixels by estimating the 2D mean and sec-
ond-order moments along x and y directions. We perform temporal
smoothing of the bounding box parameters to remove jitter effects.
The final feature is a rescaled binary image of the pixels inside the
bounding box.

7.4.2. Clustering experiment
Most figure skating videos consist of a few established elements

or moves such as jumps, spins, lifts and turns. A typical perfor-
mance by skater or pair of skaters includes several of these ele-
ments each performed several times. Due to the complex body
postures involved it is a challenge even for humans to identify clear
boundaries between atomic actions. It was difficult even for us to
semantically define temporal boundaries of an activity, let alone
define a metric for temporal segmentation. Thus, this makes it very
difficult to break the video into temporally consistent segments.
Instead of performing explicit segmentation, we build models for
fixed length subsequences using sliding windows. The results of
a temporal segmentation algorithm that can split such a complex
video into meaningful segments, can be easily plugged in. We
use 20-frame-long overlapping windows for building models of
the video. Also, most of the ‘interesting’ activities such as sitting
spins, standing spins, leaps etc are usually few and far between.
Further, due to the subsequence approach, there will necessarily
be several segments that do not contain any meaningful action.
As a simple example, a subsequence that contains the transition
from a spin to a jump will not fit into either of these action-clus-
ters. To discover the ‘interesting’ activities, we first need to remove
these outlier segments. First, we cluster all the available subse-
quences into a fixed number of clusters (say 10). Then, from each
cluster we remove the outliers using a simple criterion of average
distance to the cluster. Then, we recluster the remaining segments.
We show some sample sequences in the obtained clusters in Figs.
14–18. We observe that Clusters 1–4 correspond dominantly to
‘Sitting Spins’, ‘Standing Spins’, ‘Camel Spins’ and ‘Spirals’ respec-
tively (in a spiral the skater glides on one foot while raising the free
leg above hip level). Cluster 5 on the other hand seems to capture
the rest of the ‘uninteresting’ actions.

7.4.3. Retrieval experiment
We performed a retrieval experiment in which a query segment

was selected by the user and provided as input to the matching

algorithm. The top five matches for two different queries corre-
sponding to Standing spin and Sprial are shown in Figs. 19 and 20.

8. Conclusions

In this paper, we have proposed a framework to explain percep-
tion of activities. We then proposed a CLDS model for representing
activities and presented an algorithm for unsupervised learning of
the cascade model from long video sequences. We demonstrated
the effectiveness of the approach using both far-field surveillance
and near-field videos. We also presented a technique for incorpo-
rating affine and view-invariance into the clustering algorithm.
The results are promising and show that our technique can be used
for unsupervised activity indexing as an initial filter for further
processing.
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