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ABSTRACT

Despite recent advances in hyperspectral image processing, auto-
mated material identification from hyperspectral image data is still
an unsolved problem. In this work, we develop a technique for label-
ing hyperspectral imagery, which leverages segmented image data
and a library of spectral signatures of materials. We define a new
spectral similarity measure that considers continuum removed spec-
tra in addition to continuum intact reflectance spectra. We show that
using both of these characteristics in similarity analysis yields im-
proved results over recently proposed similarity measures. Analysis
on an AVIRIS image of an urban scene is presented.

Index Terms— spectral matching, spectral libraries, automatic
labeling, AVIRIS, hyperspectral imagery

1. ADDRESSING THE SEMANTIC GAP IN REMOTE
SENSING IMAGE INTERPRETATION

Recent advances in imaging spectroscopy have generated substantial
interest in material identification techniques using hyperspectral im-
agery. Sophisticated clustering algorithms have been developed to
segment hyperspectral image data based on quantitative measures
of spectral similarity, but external knowledge must be applied to
derive the material interpretations for the resulting clusters. The
“semantic gap” between such image clusters and their interpreta-
tions is typically addressed via manual inspection of the clusters by
an expert, which can be time-consuming, tedious, and error prone.
This process, unfortunately, does not allow for rapid data exploita-
tion. Therefore, with increasingly widespread use of hyperspectral
imaging in terrestrial and planetary missions, techniques to automat-
ically assign semantically meaningful labels to image clusters could
greatly improve science return from such data.

We assume here that a sufficiently detailed and accurate segmen-
tation is available for the image to be labeled. That is, we assume that
spectrally different cover types in a scene are faithfully captured by
the segmentation on the level of detail that is of interest to the appli-
cation, and which allows discovery of unknown objects. Such seg-
mentation itself is challenging for hyperspectral images, however,
that challenge, addressed in former work, will not be repeated here.
For our urban scene, described below, we produced a segmentation
of 35 clusters in [1] with a self-organizing map, where all discovered
clusters can be recognized as distinct cover types.

We present preliminary work on an automatic spectral match-
ing technique for hyperspectral imagery. It leverages two sources of
prior knowledge, a segmented image and a library of known material
spectra, to automatically determine material labels for image seg-

ments. We propose a new spectral similarity measure that yields im-
proved performance in comparison to previously published results.

2. AUTOMATED SPECTRAL MATCHING

2.1. Methodology

Given a segmented image, we compute the mean signature of each
segment (we will use “mean signature” and “cluster signature” in-
terchangeably). There are several benefits in using cluster signatures
in spectral matching. One is that computation costs can be reduced
since we only perform per-cluster (rather than per-pixel) compar-
isons to library spectra. Also, mean signatures are generally less
noisy than single spectra. The flow diagram of spectral matching
is shown in Fig. 1. After we convolve the spectral library to the
appropriate instrument wavelengths, we select bands corresponding
to those in the cluster signatures. In order to mitigate the effect of
varied illumination conditions across image and library spectra, we
scale all signatures by their Euclidean norm. This normalization
brings vectors to unit length while preserving the spectral angles.
Recognizing that geometric albedo is lost in this transformation, one
may need to select from multiple same-spectrum matches based on
albedo matches, in a post-processing step. This situation is, fortu-
nately, rare. Finally, we rank the similarities of each cluster to the
library signatures using a given similarity measure.
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Figure 1: Spectral matching procedure

2.2. Measuring Spectral Similarity

The design of an accurate measure of similarity between spectral
signatures is the heart of any spectral matching technique. For re-
motely sensed reflectance data, characterizing both the overall shape
and the positions/widths of absorption bands is crucial for accurate
matching. Some of the recently proposed spectral similarity mea-
sures include: the Euclidean distance (ED), Spectral Angle Mapper
(SAM) [2], Spectral Correlation Measure (SCM) [3] and Spectral
Information Divergence (SID) [4]. To emphasize absorption band
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characteristics, continuum removal is often performed on the spec-
tral signatures, and then one of the above measures is used to de-
termine the similarity between the continuum removed (hereafter re-
ferred to as CR) spectra. Several techniques focus specifically on CR
spectra, such as Spectral Feature Fitting [5] and Cross-Correlation
Spectral Matching for Continuum Removed signatures (CCSM-CR)
[6], but these methods are similarly applicable to continuum intact
(hereafter referred to as CI) spectra. The Spectral Information Di-
vergence (SID) was recently shown to outperform several traditional
spectral similarity measures for CI spectra of certain materials [7]
(hereafter referred to as CISID). However, we found that for other
spectral species CISID yields poor matches since absorption band
properties are not adequately captured (see Fig. 2).

One important common property of these measures is that they
all singularly focus on measuring either CI reflectance signatures,
or CR absorption band characteristics - but not both. If we solely
utilize CI signatures, differences in absorption band characteristics
are often poorly captured since they are only implicitly measured by
pairwise differences of reflectance values. Alternatively, using CR
spectra alone emphasizes differences in absorption bands (relative
to the estimated continuum), but discards information related to the
shape of the continuum.

We introduce a spectral similarity measure, CICRd, with terms
that account for differences in both CI signatures and their CR coun-
terparts. We define CICRd as follows:

CICRd(si, sj) =
d(si, sj)

vCI
+ α

d(CR(si), CR(sj))

vCR
(1)

where si and sj are two spectral signatures, d(·, ·) is a spectral sim-
ilarity measure, α is a weighting factor that determines the contri-
bution of the CR term, vCI and vCR are scaling factors (described
below), and CR(·) is a function that performs continuum removal
for the given spectral signature. The output of CR(·) is a vector
with components in the range [0, 1], where values of zero lie on
the estimated continuum and nonzero values indicate the depth of
the absorptions (relative to the estimated continuum) at given wave-
lengths. Continuum removal was initially performed using the soft-
ware package ENVI [8], which approximates the continuum using
a convex hull for the closed polygon defined by the given spectrum.
In our experiments, we have found that for certain spectral types
a convex hull is too coarse an approximation for the shape of the
continuum. Thus, we have implemented an algorithm that approxi-
mates the continuum by first detecting a set of local maxima in the
spectrum of interest, and then iteratively updating that set until local
maxima on concave regions have been removed. Scaling factors vCI

and vCR are the variances of all pairwise distances between library
and cluster CI and CR spectra, respectively. We scale each term by
its respective variance since the d(·, ·) and d(CR(·), CR(·)) are not
(in general) in the same range. In this work, we use α = 1.0, for as
straightforward comparison to earlier works as possible.

3. SPECTRAL MATCHING FOR CLUSTER SIGNATURES
IN AN URBAN AVIRIS IMAGE

3.1. Data

The hyperspectral image in this study was acquired by a low-altitude
AVIRIS flight on Nov 5, 1998, over Ocean City, MD [9], with spatial
resolution of 4m/pixel. Data preprocessing, segmentation, the result-
ing image clusters and their signatures are presented in [1]. The high
spatial and spectral resolution and the sensitive segmentation tech-
nique allowed to discriminate 35 clusters with varied characteristics

including (very) small, and spectrally similar ones (a labeled subset
of which appears in Table 1). As verified from field data these clus-
ters represent distinct material types, and most of them are clearly
(albeit non-uniquely) associated with objects such as a water tower,
a tennis court, buildings, roads, boardwalks, parking lots, a coast
guard lookout tower, and landscape units. However, for some clus-
ters which can be recognized on the functional level (i.e., buildings,
mini golf course), we do not have material identification (e.g., metal
with blue paint).

We use a library of about 1000 field spectra collected in the
vicinity of Santa Barbara, CA [10]. The spectra were acquired in
1075 wavelengths in the 0.35 to 2.4 µm range and are mostly of
man-made materials. Since our cluster map contains several vegeta-
tion clusters which are not represented in the above library, we added
vegetation spectra from the USGS spectral library [11], and several
AVIRIS [12] spectra from training regions described in [13].

3.2. Spectral Matching of Ocean City Cluster Signatures

We evaluate the quality of spectral matches for the Euclidean dis-
tance and the Spectral Information Divergence with CI, CR, and
combined CICR terms. Prior to evaluating these similarity measures,
both cluster and library signatures are divided by the sum of their
components. This is necessary for probabilistic measures like the
SID, and has no effect on the relative distances computed by the ED.
For each cluster signature c, we calculate the mean Spectral Dis-
criminatory Power (proposed in [4]) for the corresponding m best
library matches Lc = {lc1, . . . , lcm}. In this work, we use m = 3.
The mean Spectral Discriminatory Power is defined as:

PWd(c) =
1

m2

mX
i,j=1

max

(
d(lci , c)

d(lcj , c)
,
d(lcj , c)

d(lci , c)

)
(2)

where d(·, ·) is the spectral similarity measure we wish to evalu-
ate. This estimates the power, for a given similarity measure, of
distinguishing the library signatures lci ∈ Lc from one another, with
respect to a particular cluster signature, c. The Spectral Discrimina-
tory Power takes values in the range [1,∞), where a value of one
indicates that lci = lcj . Intuitively, PWd values near one indicate
that the m library signatures are “indistinguishable” for cluster sig-
nature c, so if similarity measure d0 outperforms d1 (such that each
lc ∈ Lc is less distinguishable in d0 than in d1 for cluster c), then
the value of PWd0(c) is less than PWd1(c).

However, in our experiments, we have found that PWd is sen-
sitive to spectrum representation (CI or CR), and occasionally does
not capture visually strong matches (particularly in the case of CR
spectra). To address this issue, we visually inspect the top m li-
brary matches for each cluster signature c for each similarity mea-
sure. We then assign a “visual score” (VS) to each lc ∈ Lc in the
range of [0, 3], based on overall spectral shape and absorption band
positions/widths, where 0 = poor quality for all m matches, 1 = fair
quality, 2 = good quality, and 3 = strong correspondence between
all matches to the cluster signature. Our analysis is summarized in
Table 1. Ideally, these scores would be evaluated by multiple inde-
pendent human observers, but for the proof of concept presented in
this work, matches were evaluated separately by the authors.

We see improved performance in spectral matching by includ-
ing the CR term in the similarity measure (illustrated in Fig. 2). In-
terestingly, CICRED and CICRSID achieve equivalent average per-
formance despite the fact that SID generally outperforms the ED
on CI signatures alone, and has nearly equivalent performance on
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Visual Scores of Selected Clusters Average Performance

Measure A C D E G J K M V W Y Z c d g h l VS (sel) VS (all) PWd(sel) PWd(all)
CIED 2 1 1 0 1 1 2 1 1 2 2 2 0 0 0 1 1 1.05714 1.05555 1.00683 1.00922
CRED 0 2 2 0 0 0 2 2 2 1 1 1 0 1 1 0 1 1.00000 0.94444 1.00367 1.00334
CICRED 2 2 2 0 1 1 1 2 1 2 2 1 1 1 1 0 2 1.17142 1.27777 1.00226 1.00333
CISID 2 1 2 0 2 1 2 1 1 2 2 2 0 0 0 1 1 1.11428 1.16666 1.02427 1.03200
CRSID 0 2 1 0 0 0 2 2 2 1 1 1 0 1 1 0 1 0.97142 0.88888 1.01436 1.01253
CICRSID 1 2 2 1 1 1 2 2 2 1 1 1 1 1 1 0 2 1.17142 1.27777 1.01019 1.01230

Table 1: Performance assessment of spectral similarity measures by mean Spectral Discriminatory Power (PWd ∈ [1,∞), 1 = best) and
visual scores (VS ∈ [0, 3], 3 = best). Results are presented for clusters whose visual scores varied between the six similarity measures (sel),
in addition to scores for all 35 clusters (all). The best average results are indicated in bold face. Notably, the CICRED and CICRSID are
tied in terms of visual scores. For selected clusters, the following surface covers are represented: rooftops (D,E), roads/parking (J,W,Z,h),
walkways (G), vegetation (K,M), wet sand (Y), a green tennis court (C), boardwalks (g), and a mini golf course (V). Clusters A, c, d and l
require further inspection to determine what cover types they represent.

the CR signatures, see Fig. 3. However, in terms of PWd, the ED
outperforms the SID, especially with respect to improvements be-
tween the CId vs. CICRd measures. Furthermore, we observe that in
cases where one of the CId or CRd measurements yields a better vi-
sual score than the other, the combined measure generally achieves
the best of the CId and CRd scores. This occurs using CICRED

with clusters A,C,D,G,J,M,W,Y,d,g, and using CICRSID with clus-
ters D,J,M,V,d and g.

4. DISCUSSION AND FUTURE DIRECTIONS

In this work, we have shown that considering both continuum intact
(CI) and continuum removed (CR) spectra (CICR spectra) in evalu-
ating spectral similarity of hyperspectral signatures yields improved
performance with both the Euclidean distance and Spectral Infor-
mation Divergence. Furthermore, we have demonstrated that while
the Spectral Information Divergence outperforms the Euclidean dis-
tance on CI spectra alone, we achieve approximately the same per-
formance with both measures using CICR signatures.

Allowing the CI and CR terms to carry equal weight using the
CICRd measure may be suboptimal. For instance, if we examine the
visual scores of clusters Z and h in Table 1, we see that CICRd yields
a worse score than CId because we combine a good match (CId)
with a poor match (CRd). In this work, we set α to 1.0 for straight-
forward comparison to earlier works, but we expect to achieve im-
proved spectral matching performance by allowing other α values.
Determining the most effective α value is non-trivial since α is data
dependent, and may need to be framed as an optimization problem.

Even with perfect spectral matches, material labels may remain
ambiguous (e.g., two library matches are very similar to a target
spectrum but have different material labels, like in Fig. 2, bottom, or
Fig. 3, top left). We also point out that, in this work, we address the
problem of determining material labels for image spectra. Semantic
labeling of objects can still remain ambiguous, which, in turn, will
require additional context (e.g. spatial or temporal relationships).

In this work, we validate match “quality” (in terms of spectrum
shape and absorption band properties) by visual inspection of the
most similar library spectra. This manual step is necessary since
determining match quality is intrinsically related to spectral similar-
ity - a “high quality” match is one that is very similar to the cluster
signature, and vice-versa. One possible way to resolve this issue
is to use multiple similarity measures to “cross-validate” the library
matches. However we currently do not have the capability to employ
this method in a robust, automated manner.

Figure 2: Comparison of the top three spectral matches using CId vs.
CICRd measures. Top: CIED . Middle: CISID . Bottom: CICRED

and CICRSID (both yield the same set of library matches). Clus-
ter signature C (a green tennis court) is indicated with a thick, solid
line, and corresponding library matches are indicated with dashed
lines. While average shape characteristics are captured from CI spec-
tra alone, adding CR signatures yields a stronger set of matches.
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Figure 3: Top: Example where the the CICRED (left) yields a better overall set of matches than the CICRSID (right). Bottom: Example
where CICRSID (right) outperforms CICRED (left) with a set of matches better aligned in absorption band positions. Cluster signatures are
indicated with thick solid lines, and library signatures with dashed lines. Despite being less similar in shape, library match “Light Gray Comp.
Shingle” for cluster K using measure CICRSID (bottom right), better aligns with the absorption band positions of the cluster signature.
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