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An Adaptive Similarity Measure for Classification
of Hyperspectral Signatures
Brian D. Bue and Erzsébet Merényi, Senior Member, IEEE

Abstract—Capturing both the shape of the spectral contin-
uum and the positions/widths of absorption bands is essential
to accurately measure similarity between hyperspectral signa-
tures. Furthermore, the relative importance of these features is
data dependent. In this letter, we present an adaptive version of
our recently proposed continuum-intact (CI)/continuum-removed
(CR) similarity measure which automatically determines a convex
weighting between similarity measurements of CI and CR signa-
tures according to input data. We describe an efficient technique
to calculate an optimal weight for a linear combination of CI and
CR similarity measurements. We evaluate the technique on the
Airborne Visible/Infrared Imaging Spectrometer spectra sampled
from a well-studied urban scene and show that our technique
yields improved classification accuracy in comparison to CI or
CR similarity measurements alone and performs comparably to
calculating the weight via brute-force search, at a much reduced
computational cost. A source code implementation of our algo-
rithm is provided online.

Index Terms—Adaptive, continuum removal, hyperspectral,
linear discriminant analysis (LDA), metric learning, similarity
measure.

I. SPECTRAL SIMILARITY MEASURES

THE widespread deployment of hyperspectral imaging sys-
tems on both terrestrial and planetary orbiters allows

for highly detailed analysis of large-scale regional surveys.
Improvements in both spectral and spatial resolutions of these
systems drive the innovation of advanced image classification
techniques. Such image classification techniques have proven
to be an invaluable tool for analysts, as the sheer volume of
the collected data renders exhaustive manual image interpre-
tation impossible. Increasing data volumes demand algorithms
which not only are sophisticated enough to yield high clas-
sification accuracies in various scenarios but which are also
efficient, capable of processing large hyperspectral data sets
quickly, for example, in ground-based archives or in resource-
constrained/real-time onboard applications.

A problem central to image classification is assessing the
similarity between spectral signatures (pixels), which is chal-
lenging due to numerous factors such as data dimensionality,
noise, and environmental effects. Employing adaptive simi-
larity measures that exploit knowledge of known classes can
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help mitigate these effects and improve classification accuracy,
potentially with fewer training samples than a task-agnostic
measure may require to achieve the same accuracy. Robust
spectral similarity measures must capture both the shape of
the spectra and the positions/widths of absorption bands. Most
widely used measures assume that all spectral bands are of
equal importance, without specific emphasis on absorption
features. These measures take continuum-intact (CI) reflectance
signatures as input, which often poorly capture differences
in absorption features. To compensate for this, one can em-
ploy measures which characterize absorption features using
continuum-removed (CR) signatures. The CR representation
measures spectral absorption features by “dividing out” a
spectral continuum curve. The CR representation often better
captures the composition and concentration of the material that
a spectral signature represents than its CI counterpart. How-
ever, since signatures with considerably different continua can
have equivalent CR representations (as observed in [1]–[3]),
the CR representation alone can be an unreliable descriptor in
classification settings.

In this letter, we present an adaptive similarity measure
designed specifically for hyperspectral signatures. Our measure
dCICR finds a compromise between the use of the continuum
shape and absorption features by calculating a scalar weight α
in a convex combination of CI and CR distance measurements
that best separates a set of training classes. When spectral
signatures contain significant absorption features, our measure
better discriminates material classes in comparison to measures
considering CI or CR signatures alone. We evaluate classifica-
tion accuracy on real Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) imagery from a well-studied urban area, in
scenarios consisting of prominent or subtle absorption features.

II. CICR MEASURE

Given a pair of hyperspectral signatures xi and xj ,1 each in
R

D, we define the dCICR similarity measure as follows:

dCICR(xi,xj , α)=(1−α)dCI(xi,xj) + αdCR(xi,xj) (1)

with

dCI(xi,xj) =

∥∥∥∥ xi

‖xi‖
− xj

‖xvj‖

∥∥∥∥ (2)

dCR(xi,xj) =

∥∥∥∥ CR(xi)

‖CR(xi)‖
− CR(xvj)

‖CR(xj)‖

∥∥∥∥ . (3)

1In this and subsequent sections, we denote scalar variables in italics, vectors
in bold, and matrices in bold caps.

1545-598X/$31.00 © 2012 IEEE



382 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013

Here, ‖ · ‖ is the L2 norm, α ∈ [0, 1] is a weighting parameter,
and CR(·) performs continuum removal. We estimate the
continuum of a given spectrum by fitting a piecewise linear
function to the local maxima using the procedure described in
[4]. Observations on the continuum are assigned values of zero,
and absorption features (observations between local maxima)
are assigned values in the [0, 1] range, proportional to their
relative distances from the estimated continuum. Because the
continuum removal procedure is sensitive to spurious local
maxima, we smooth each signature using a moving average
filter before performing continuum removal. While smoothing
may mask small absorption features, such features are often
close to the noise floor of the sensor, and we accept this loss
in specificity in favor of noise reduction. In our experiments
using AVIRIS data, smoothing windows ranging from three to
five bands (0.03–0.05 μm) have performed well.

Dividing the CI and CR signatures by the L2 norm is im-
portant for several reasons. First, scaling each signature by its
norm maps both CI and CR distances to a common range. This
allows us to better tune the weight α to combine the CI and
CR similarity measurements according to input data. Second,
for CI signatures, this scaling mitigates linear effects caused
by differing illumination conditions (while preserving spectral
angles). Lastly, scaling CR signatures by their respective norms
can accentuate discriminative absorption features and can im-
prove performance when classifying CR signatures.

The measure described in this work differs from our original
formulation in [4]. First, the convex combination of CI and
CR terms yields more consistent performance than applying
α to the CR term only. Second, due to the nature of con-
tinuum estimation, CR signatures contain many values near
zero, which provides little discriminating information between
signatures when combined with the CI distance measure. Scal-
ing the CR signatures uniformly by the variance of all CR
distances (as we originally described) does not resolve this
issue, whereas scaling each signature by its norm allows the
most prominent absorption features to play greater roles in
discrimination.

III. COMBINING CI AND CR DISTANCE MEASUREMENTS

Fig. 1 shows an overview of the methodology that we use to
calculate the weight parameter α in (1), which we describe in
detail as follows.

Given a set of N vectors {xi}Ni=1, xi ∈ R
D belonging to K

classes, with labels yi ∈ [1,K], we calculate α using a method
inspired by multiclass linear discriminant analysis (LDA) ([5]
and [6]). Multiclass LDA computes the vector w that max-
imizes the Rayleigh quotient (using the formulation given
in [7])

S = (wTMBw)(wTMWw)−1 (4)

where MB and MW are (symmetric, positive-definite)
between-class separation and within-class scatter matrices. We
form the MB and MW matrices according to the capability of
each of the {dCI, dCR} measures to separate the given classes.

Fig. 1. Processing steps for calculating dCICR weight parameter α.

Specifically, we define the between-class separation sb and
within-class scatter sw between measures d1 and d2 as

sb(d1, d2) =

K∑
j=1

Njd1(μj ,μ)d2(μj ,μ) (5)

sw(d1, d2) =

K∑
j=1

∑
i:yi=j

d1(xi,μj)d2(xi,μj) (6)

where {μj}Kj=1 denotes the mean vectors of each of the K
classes, μ is the mean of μj , and Nj is the number of samples
in class j. We then form the MB and MW matrices as follows:

MB =
1

N

[
sb(dCI, dCI) sb(dCI, dCR)
sb(dCI, dCR) sb(dCR, dCR)

]
(7)

MW =
1

N

[
sw(dCI, dCI) sw(dCI, dCR)
sw(dCI, dCR) sw(dCR, dCR)

]
. (8)

The first (largest) eigenvector of M−1
W MB , w, maximizes

(4), with separation S equal to the corresponding eigenvalue
[7]. The components of w = [wCI , wCR] provide a weighting
of the CI and CR distances with good class separation on
training data, which is not necessarily convex [as we require
in (1)], and may not generalize well to test data. Because
Rayleigh quotients are invariant with respect to scaling of
w [i.e., for any c > 0, cw also maximizes (4)] [8], we can
scale the components of w to a convex range by divid-
ing each component by ‖w‖1. This yields the convex pair
{wCI/‖w‖1, wCR/‖w‖1} = {(1− α), α}, as desired.

As (4) may become ill posed, we regularize the within-class
scatter matrix via a shrinkage operator

M′
W = (1− λ)MW + λI (9)
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where λ ∈ (0, 1) is a regularization parameter and I is the
(2 × 2) identity matrix. In practice, we select λ via cross-
validation, using the methodology described in the next section.
We provide implementations of our LDA-based algorithm and
the continuum removal algorithm that we used at the following
url: http://www.ece.rice.edu/~bdb1/#code.

IV. CASE STUDY: AVIRIS SPECTRAL SIGNATURES

The starting point of the work described here is a set of
reflectance spectra sampled across distinct material species
from a low-altitude AVIRIS image of Ocean City, MD. This
image (acquired on November 5, 1998, with 4-m/pixel spatial
resolution, in 220 spectral bands from 0.4–2.5 μm) was ana-
lyzed in previous work to capture spectral clusters, verify them
against field knowledge, and identify the materials that they
represent, as reported in detail in [9]. The 35 clusters resulting
from [9] guided the extraction of a trustworthy representative
subset of spectra for this study, by stratified random sampling
across 14 of those 35 clusters for which material identification
was unambiguous, and which served the methodology design
for this work. The design is explained as follows. The work
in [9] performed all the necessary preprocessing of this image,
including atmospheric correction, conversion of radiances to
reflectances, and normalization to cancel illumination effects.
These preprocessing steps are duly described in [9]. For this
work, the reflectance spectra were extracted from the already
preprocessed Ocean City image. The number of samples per
class is constrained by the size of the smallest cluster (≈145
samples), and we fix the number of samples per class to 100
for most of our analysis and characterize classification accuracy
versus training set size later in this section (Fig. 4).

This work is a deeper analysis of previous work ([3], [4])
that examines three different spectral scenarios specifically con-
structed to contrast the performance of the proposed method. In
the first, all samples contain only minor absorptions, where we
define a “minor” absorption as one with no CR band depths
greater than threshold τ ; we use τ = 0.1 (10% absorption
with respect to the continuum) in this work. In this case, we
expect similar classification accuracies from the dCICR and dCI

measures, since the CR signatures lack prominent absorption
features (and therefore are flat and uninformative). The classes
in this scenario consist of asphalt rooftop materials (class A),
roads/parking lots (classes I, J, T, W, and h), and dry beach sand
(class e). Fig. 2 (top) shows the CI and CR mean signatures for
these classes. In the second scenario, all signatures contain one
or more major absorptions, where we define major absorptions
as those with CR values greater than τ . Here, we expect a
more significant boost in accuracy in comparison to the minor
absorption scenario, as the CR signatures are more informative
in this case. The subset of data in this scenario consists of
vegetation (classes L and M), a tennis court (class C), wet sand
(classes O and Q), and composite rooftop materials (classes D
and U). Fig. 2 (bottom) shows the CI and CR mean signatures
for these classes. The seven spectral species in each of the
major and minor absorption categories are relatively “pure”
representatives of their respective species. The last scenario,
i.e., combined, consists of all classes from both major and minor

Fig. 2. (Top) Mean CI and CR signatures for minor absorption classes. (Top
inset) Detail view of minor absorption signatures, wavelengths 1.5–2.5 μm.
(Bottom) Mean CI and CR signatures for major absorption classes. The large
disconnected regions near 1.3–1.5 and 1.7–2.0 μm consist of bands removed
due to water saturation. CI signatures are scaled by their L2 norms to compen-
sate for varying illumination conditions.

absorption scenarios. We expect to see notable performance
gains with the dCICR measure in this case, as both the CI
and CR signatures provide information to distinguish between
classes.

We present results using a minimum-distance-to-class-means
(MinDist) classifier with fivefold random stratified sampling,
using 50% for training and the remaining 50% for testing. We
calculate α by maximizing S(α) as described in Section III.
We compare this α value to the αLS value obtained by
line search (LS) on a uniformly spaced range of 100 points
αLS ∈ (0, 1), which yields the highest classification accuracy.
We calculate classification accuracy according to accuracy =
(# of True Positives)/(# of Samples), and we report
accuracy on test data only. Accuracies produced via LS are an
approximate upper bound on achievable accuracy. We choose
the regularization parameter λ for each scenario on a hold-out
set comprising 50 samples per class, which is not included in
the training/testing samples. For our data, we select the λ with
the best classification accuracy on the hold-out set from ten
uniformly spaced values in [0.001, 0.1]. We chose this range
because smaller λ values tended to yield ill-posed solutions and
larger values did not improve classification accuracy in any of
the three scenarios—regardless of α. We calculate λ once for
each of the minor, major, and combined scenarios and use the
same value for each cross-validation fold. We also reject any λ
values which produce solutions to M−1

W MB with no positive
eigenvalues, as such λ values yield rank-deficient M′

w (9).
Fig. 3 shows the overall and per-class classification accura-

cies for α ∈ [0, 1]. The vertical magenta dashed line marks the
α value determined by maximizing (4), and the black vertical
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Fig. 3. α versus per-class dCICR classification accuracy for (top) minor,
(middle) major, and (bottom) combined absorption classes. The colored lines
indicate the per-class accuracies, and the black solid line gives the overall
classification accuracy. The black vertical bar gives the αLS, and the magenta
vertical bar gives the α. The horizontal lines give the (red) CI (α = 0) and
(blue) CR (α = 1) classification accuracies. Because the CI representation is
generally more informative than the CR one, α values tend toward zero, but
larger values occur in cases when the CR representation provides additional
discrimination information (as in the major and combined absorption class
scenarios).

TABLE I
AVERAGE CLASSIFICATION ACCURACY OBTAINED WITH EACH OF THE

dCI, dCR, AND dCICR MEASURES SHOWN IN FIG. 3. MEAN AND

STANDARD DEVIATION (σ) OF α VALUES FOR dCICR MEASURES

ARE GIVEN IN PARENTHESES. THE MOST ACCURATE

MEASURE IS GIVEN IN BOLD TEXT

line gives αLS. Table I provides the average accuracies for
each measure. In all three scenarios, small alpha values (< 0.3)
yield the highest classification accuracies (although we do not
constrain the search to this range). This indicates that, for this
data set, CI signatures are more robust descriptors than CR
signatures for classification. This is particularly obvious in the
minor absorption scenario (Fig. 3, top), where the CR signa-
tures lack discriminative features. Here, classification accuracy
using dCI is close to dCICR, and both our method and the LS
produce α values near zero.

For major absorption classes (Fig. 3, middle), note that the
rate of decrease in classification accuracy is less dramatic
as α approaches one, by comparison to the minor (top) and
combined (bottom) absorption scenarios. This indicates that the
CR signatures provide additional discriminating information,
which increases the α values, yielding higher classification
accuracy. Correspondingly, the maximum separation also shifts
toward larger α values. While α and αLS differ the most in this
scenario, their corresponding classification accuracies are not
far apart (97.4% versus 98.4%). Both are improvements over

Fig. 4. Classification accuracy versus the number of samples per class for
(top) minor absorption, (middle) major absorption, and (bottom) combined
scenarios. In each scenario, (magenta line) the LDA-based dCICR measure
outperforms (blue line) the baseline dCI-based classifier and, with a suf-
ficient number of training samples (∼20–30, scenario dependent), achieves
classification accuracy comparable to (red line) LS. dCR-based classification
accuracy not shown above due to significantly lower accuracies (∼65%–77%)
in comparison to the dCI- and dCICR-based classifiers.

the baseline dCI accuracy (1.5% and 2.5% relative improve-
ments for our LDA-based α and αLS, respectively).

In the combined scenario (Fig. 3, bottom), due to potentially
increased class confusion between signatures (compared to
the other two scenarios), locating a compromise between the
CI and CR terms is challenging. As we see in Fig. 3, the
mean classification accuracy for this scenario generally falls
between the mean accuracies of the minor and major absorption
scenarios. However, we see the most significant improvement,
over the baseline dCI method, in classification accuracy in this
scenario (4.5%, by comparison of the thick black line to the
horizontal red dashed line in Fig. 3, bottom), versus the other
two scenarios, since both the CI and CR representations provide
complementary information to discriminate the classes. This is
noteworthy given that the CI and CR classification accuracies in
the combined scenario are close to those of the minor absorp-
tion scenario (88.5% versus 88.2% and 66.1% versus 66.4%,
in the combined versus minor scenarios, respectively), yet the
relative improvement in the minor scenario is, not surprisingly,
lower by 1.7%.

Fig. 4 characterizes the relationship between the number
of labeled samples available for training and classification
accuracy. As before, classification accuracy is measured over
five stratified 50/50 splits into training/test data. In every
case, the dCICR-based classifiers match or outperform the dCI-
based classifier. Additionally, our LDA-based technique for
calculating α performs comparably to brute-force search when
a sufficient quantity (about 50/class) of training samples is
available. We observe the most significant performance gains of
the three scenarios in the combined scenario, where the dCICR

measure can exploit absorption features to separate the classes
belonging to the major and minor absorption scenarios and also
can capitalize on the absorption characteristics of individual
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classes. dCR performs the worst in all three cases and is not
shown in Fig. 4 to emphasize the performance of the better
performing measures.

Determining α using our LDA-based method is significantly
less computationally expensive than via brute-force search (i.e.,
αLS). Quantitatively, assuming N samples of dimensionality D
belonging to K classes, we first compute the CR representa-
tion of each spectrum using our piecewise linear continuum
estimation procedure—an O(D) operation per spectrum. Then,
given the set of (precomputed) class means, a MinDist classifier
must compare each signature to each class mean, an O(DNK)
operation. Let A be the number of values that αLS can take in
(0, 1) (in this work, we choose A = 100). Using brute-force
search, we apply the O(DNK) MinDist classifier A times.
With the LDA-based method, calculating the (symmetric) MB

involves three O(DK) operations, calculating MW involves
three O(DN) operations, and calculating the eigendecompo-
sition of the (2 × 2) M−1

W MB matrix can be performed in
constant time. This amounts to roughly an A-fold improvement
in performance by the LDA-based method over LS. Because A
must be large enough to adequately cover the weight parameter
space, our method is an order of magnitude faster than the
dbrute-force search.

V. DISCUSSION AND FUTURE WORK

As hyperspectral sensors improve in sensitivity and spectral
resolution, the choice of spectral similarity measure will play a
significant role in resolving subtle differences between classes.
We have shown in this letter that, with a small amount of
preprocessing, we can improve classification performance over
traditional task-agnostic similarity measures using our adaptive
hyperspectral domain-specific similarity measure. We have also
provided an efficient method to calculate the weight parame-
ter used in our similarity measure which yields classification
accuracies within 1% of brute-force search over the range of
possible weight values.

Leveraging techniques employed by spectroscopists (i.e.,
continuum removal) is a natural approach to characterize spec-
tral similarity. However, determining the best manner in which
to exploit this information is challenging. First, numerous
methods for continuum estimation and removal exist, ranging
from fitting piecewise linear functions [1] to more involved
techniques that exploit high-order derivatives of spectral signa-
tures [10]. Determining which method performs best in terms
of classification accuracy has not been widely explored in the
literature (to the best of our knowledge) and is a subject of
future work.

We experimented with other methods for learning the α
weighting in the CI/CR (CICR) measure, but our initial exper-
iments in those directions produced mixed results. We believe
that an issue with such methods (e.g., [11]) is that the learning
problem is transformed from a multiclass classification problem
to a binary classification problem where spectra from “similar”
versus “dissimilar” classes are grouped into two metaclasses,
thereby discarding discrimination information with respect to
individual classes. We observed a similar issue with other
multiclass metric learning techniques in previous work [12].

When continuum removal detects spurious absorption fea-
tures, L2 normalization may exacerbate noise. In such cases,
it may be advantageous to adopt alternative normalization
schemes to map the CI and CR signatures to a common range,
such as scaling signatures by their respective (CI or CR)
standard deviations. Using such a “global” scaling factor, we
would not accentuate noise on individual signatures. However,
this would not provide the same degree of contrast between
classes as L2 normalization provides. The tradeoffs involved
with these normalization schemes are a subject of future
investigation.

As mentioned in Section III, normalization of spectral sig-
natures plays a significant role in the performance of this tech-
nique. In particular, scaling CR signatures by their L2 norms
often improved the classification accuracy by giving additional
weight to discriminative absorption features. However, in some
cases, this normalization may not be desirable, for example, if
the CR signatures fail to capture the most relevant absorptions,
perhaps due to noise and/or poorly estimated continua. Other
normalization techniques such as scaling by the within-class
variances may be beneficial in such cases.
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