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Abstract—We present a technique for automatically labeling
segmented hyperspectral imagery with semantically meaningful
material labels. The technique compares the mean signatures of
each image segment to a spectral library of known materials,
and material labels are assigned to image segments according to
the most similar library entry. The similarity between spectral
signatures is evaluated using our recently proposed CICRd sim-
ilarity measure designed specifically for hyperspectral imagery.
This measure considers both the continuum-intact reflectance
spectrum and its continuum-removed representation. We provide
a thorough assessment of this measure by comparison to sev-
eral commonly used similarity measures on a well-studied low-
altitude Airborne Visible/Infrared Imaging Spectrometer image
of an urban area. We evaluate our results using both informa-
tion-theoretic techniques and visual validation of the resulting
spectral matches.

Index Terms—Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), automatic labeling, hyperspectral imagery, material
labeling, spectral matching, urban.

I. INTRODUCTION

IDENTIFYING surface materials is a fundamental goal of
employing airborne hyperspectral sensors. The high spec-

tral and spatial resolution of these sensors, along with many
recent advances in image processing techniques, has brought
fully automated material mapping close to reality. A significant
remaining step toward automated material mapping is address-
ing the semantic gap between hyperspectral image pixels and
their material interpretations. Because hyperspectral pixels are
effectively unique material descriptors, it is often possible to
determine which materials that hyperspectral pixels represent
by locating similar spectra in libraries of field- or laboratory-
measured spectra: a methodology that has been practiced by
experts in spectroscopy for many years.

Spectral libraries such as those available from the U.S. Geo-
logical Survey (USGS) [2] and National Aeronautics and Space
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Administration (e.g., RELAB [3], ASTER [4], and CRISM [5])
have been used extensively by spectroscopists to interpret
terrestrial and planetary spectral data. Their use in automated
analysis, however, has been somewhat limited, because current
spectral libraries often do not capture the diverse variations and
types of spectral signatures that can be extracted from hyper-
spectral imagery. Another limiting factor is the computational
expense of comparing thousands/millions of hyperspectral im-
age pixels to each entry in a spectral library (which may, itself,
consist of thousands of signatures).

A promising method to reduce computational costs is to
summarize segments (clusters) of similar image pixels (spectra)
that capture the most relevant spectral variations in the image.
Once an image is segmented according to spectral properties
of the pixels, we can compute mean signatures (or other sum-
mary statistics) for each segment, which can be subsequently
compared to spectral library signatures.

In this paper, we describe a methodology for assigning se-
mantically meaningful labels to segmented hyperspectral image
data through automated comparisons of cluster signatures to
field- and laboratory-measured spectra. In a previous work,
we proposed a novel similarity measure for hyperspectral im-
age signatures that considers both the continuum-intact (here-
inafter referred to as CI) reflectance spectrum in addition to its
continuum-removed (CR) representation [1]. In this paper, we
provide a more thorough assessment of this new measure by
comparison to several commonly used similarity measures on
a well-studied low-altitude Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) image. We evaluate the measures using
techniques proposed by Chang [6] and through visual inspec-
tion of the resulting spectral matches.

This paper is organized as follows. In the next section,
a review of several topics related to automatic labeling and
spectral matching is presented. Next, we describe our automatic
labeling methodology, methods for preprocessing spectra and
evaluating spectral similarity, and techniques for evaluating
spectral similarity measure performance. Section IV describes
the imagery and spectral library we analyze, along with our
automatic labeling results. Analysis of these results is provided
in Section V and further discussed in Section VI. Finally, we
discuss conclusions and future work in Section VII.

II. RELATED RESEARCH

Hyperspectral Image Segmentation

The goal of an image segmentation algorithm is to partition
an input image into subsets of similar pixels. One input to
this work is segmented hyperspectral imagery; therefore, the
quality of the segmentation is very important. Due to the
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dimensionality and complexity of hyperspectral data, segmen-
tation is a challenging task and a subject of ongoing research in
the remote sensing community. Of the numerous approaches for
segmenting hyperspectral data, self-organizing maps (SOMs)
have performed demonstrably well [7]–[9]. Moreover, recent
approaches which have yielded promising results are hierarchi-
cal methods (e.g., [10]–[12]) and combining spectral and spatial
properties in clustering (e.g., [13]–[15]).

Spectral Similarity Measures

Characterizing spectra in terms of their shape and the po-
sitions/widths of their absorption bands is crucial in measur-
ing spectral similarity. Many hyperspectral analysis techniques
assess similarity using a function such as the Euclidean dis-
tance (ED), cross-correlation spectral matching (CCSM) [16],
symmetrized Kullback–Leibler divergence [spectral informa-
tion divergence (SID)] [6], or cosine similarity [Spectral Angle
Mapper (SAM)] [17]. Several techniques measure similarity
between CR spectra (e.g., spectral feature fitting [18] and
CCSM for CR signatures [19]), but these are similarly applica-
ble to CI spectra.

Despite the considerable utility of these measures (which
have been compared in several previous works, such as
[20]–[22]), they all consider either CI reflectance signatures or
CR absorption band characteristics—but not both. If CI signa-
tures are used, differences in absorption band characteristics
are often poorly captured because the continuum shape tends
to dominate similarity comparisons. Alternatively, using CR
spectra alone emphasizes differences in absorption bands but
discards essential continuum information.

Automated Hyperspectral Image Analysis With
Spectral Libraries

Utilizing established laboratory- or field-measured spectral
libraries in automated analyses has only been explored in a
few instances in the hyperspectral imaging domain. One of
the seminal works in this area is the Tetracorder algorithm,
developed by Clark et al. [18]. The Tetracorder compares CR
image signatures to library signatures by calculating a modified
least squares fit between the signatures, constrained by the
reflectance levels, continuum slopes, and presence/absence of
ancillary features of interest in the spectra. Spectral matches
are filtered by a rule-based system that searches for “diagnostic
features” defined by spectroscopists.

Wagstaff et al. leverage spectral libraries in semisupervised
clustering of hyperspectral imagery [23]. Here, library signa-
tures are used to define initial cluster centroids in K-means
clustering. By explicitly “seeding” clusters with signatures
from known species, the converged clusters often carry more
definite interpretations, while also achieving faster convergence
in clustering (up to a 40% decrease in convergence time, when
compared to randomly initialized cluster centroids).

Keshava [24] utilizes spectral libraries in the context of
hyperspectral band selection for material identification. Here,
band selection is framed as an optimization problem where
a set of categorized reference spectra are used to select the
bands which maximize the angular separation (using the SAM
similarity function) between categories. Classification accura-

cies produced using only the selected bands are within 5% of
accuracies employing all spectral bands.

While spectral libraries have not been employed exten-
sively to automatically match hyperspectral image signatures,
their use in automated matching techniques has been more
widely explored in mass spectrometry. This methodology dates
back to as early as 1971 when Hertz et al. [25] developed
methods to autonomously evaluate similarities between a set
of known mass spectral signatures to spectra collected by a
gas chromatograph. Analogous techniques are still used today
(e.g., in [26] and [27]), and while the measures for evaluating
similarity between mass spectra differ greatly from those for
hyperspectral signatures, the spectral matching methodology is
essentially the same (a review of spectral matching topics for
mass spectroscopy is given in [28]).

III. METHODOLOGY OF AUTOMATIC MATERIAL LABELING

After a hyperspectral image has been segmented, each seg-
ment consists of the set of pixels “most similar” to one another,
according to the selected similarity measure. Because the pixels
(the spectra) in each segment are similar, we can summarize
each segment by its mean spectral signature (we will use “mean
signature” and “cluster signature” interchangeably). To assign a
material label to a segment, we calculate the similarity between
its mean signature and signatures in a library of (laboratory
or field measured) signatures with known material labels. We
assume that each spectral signature in the library is a unique
descriptor for the material it represents. Therefore, if the simi-
larity measure yields a high similarity score for a given cluster
signature and a particular library signature, we can assign the
material label from the library signature to the members (pixels)
of the given cluster.

Because we assign material labels based on similarity scores
between cluster signatures (spectral properties of unknown
materials) and library signatures (spectral properties of known
materials), the validity of the label assignments depends on two
assumptions: 1) Cluster/library signatures adequately charac-
terize their constituent materials and 2) the chosen similarity
measure can accurately quantify relationships between signa-
tures. If either of these assumptions breaks down, the resulting
label assignments will be unreliable.

In addition, due to the automated nature of the technique, the
quality of the labeling is constrained by the material metadata
available in the spectral library. This can be problematic
because some library entries have object labels rather than
material labels. By “object,” we mean some collection of one or
more materials collectively described as a high-level semantic
concept (for instance, a tennis court). We must distinguish
between material versus object identifications because we often
cannot infer objects from material properties without additional
context. For instance, we cannot differentiate between an as-
phalt rooftop and an asphalt road by their spectral signatures
alone. Conversely, if we are only provided an object label,
we cannot (automatically) infer the material composition of
that object. A higher level of semantic context is necessary
to determine the relationship between identified materials and
the object(s) to which they belong, which is beyond the scope
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of this paper. In this paper, we focus on the identification of
materials as determined by their spectral properties.

A. Signature Normalization

In order to compare a cluster signature to a library signature,
it is necessary that both signatures have the same spectral
range and resolution. We assume that atmospheric effects are
accounted for by converting image radiance to surface re-
flectance using appropriate atmospheric correction methods.
After atmospheric correction is performed, we still must
account for scaling effects caused by illumination conditions.
To mitigate illumination effects, we scale each cluster and
library signature by its Euclidean norm. This scales signatures
to unit length while preserving spectral angles but discards
geometric albedo, which can be recovered in postprocessing by
selecting from multiple same-spectrum matches.

B. Combining Spectral Representations: CICRd

We measure spectral similarity using the CICRd distance
proposed in [1], which accounts for the differences in both
continuum shape and absorption bands. CICRd is defined as

CICRd(si, sj) =
d(si, sj)

vCI
+ α

d (CR(si), CR(sj))
vCR

(1)

where si and sj are two CI spectral signatures, d(·, ·) is a
distance measure, α is a weighting factor that determines the
contribution of the CR term, and vCI and vCR are the scaling
factors (described hereinafter). The output of the CR(·) function
is a vector with components in the range [0, 1], where the
values of one lie on the estimated continuum and the values
less than one indicate the depth of absorptions relative to the
estimated continuum. Scaling factors vCI and vCR are the
variances of all pairwise distances between library and cluster
spectra, for CI and CR versions, respectively. Scaling each
term by its respective variance is necessary since d(·, ·) and
d(CR(·), CR(·)) are not (in general) in the same range. For as
straightforward comparison to earlier works as possible, we set
α = 1.0. In this paper, d(·, ·) will be either the ED or SID.

C. Comparing Spectral Similarity Measures

We discuss evaluation measures proposed by Chang [6],
which characterize the performance of a distance measure
d(·, ·): the spectral discriminatory probability (hereinafter re-
ferred to as SDP d), spectral discriminatory entropy (SDEd)
and the power of spectral discrimination (PW d).

The spectral discriminatory probability calculates the likeli-
hood that a cluster signature c will be identified as a library
signature lk using distance measure d(·, ·)

SDP d(c, lk) =
d(c, lk)∑m
j=1 d(c, lj)

(2)

given a set of m library signatures Lc = {l1, . . . , lm}. A small
SDP d value indicates the probability of distinguishing the
cluster signature, and library signature is low, within the context
of the given library. Thus, the “best” matches, according to
measure d(·, ·), are those with the smallest SDP d values.

Fig. 1. Functional forms of the (a) PW d and (b) SDEd for Lc = {l1, l2},
according to (3) and (4). (a) SDP d(l1, l2). (b) SDP d(l1, l2).

In this paper, we inspect the best three (m = 3) matches to
balance the amount of manual validation while providing a
satisfactory demonstration of the technique. We do not thresh-
old the spectral distances when selecting these three matches;
therefore, we will get three candidates per signature, regardless
of their similarity.

The spectral discriminatory entropy quantifies the uncer-
tainty in identifying cluster signature c among the library
matches in Lc

SDEd(c,Lc) = −
m∑

j=1

SDP d(c, lj) log SDP d(c, lj). (3)

The SDEd takes values in the range 0 < SDEd ≤ log(1/m),
reaching its maximum when all m distance values are equal. A
smaller value indicates a better chance of identifying c among
the library signatures in Lc.

The power of spectral discrimination estimates the power,
for a given distance measure d(·, ·), of distinguishing library
signatures {li, lj} ∈ Lc from one another, with respect to a
reference signature c and is defined as

PW d(c, li, lj) = max
{

d(c, li)
d(c, lj)

,
d(c, lj)
d(c, li)

}
(4)

= max
{

SDP d(c, li)
SDP d(c, lj)

,
SDP d(c, lj)
SDP d(c, li)

}
. (5)

The PW d values near one indicate that the library signatures
are “indistinguishable” with respect to cluster signature c.
For each cluster signature c, we calculate the mean power of
spectral discrimination for the corresponding m best library
matches. The mean PW d is defined as

PW d(c,Lc) =
2

m(m − 1)

m∑
i=1

m∑
j=i+1

PW d(c, li, lj). (6)

Both the PW d and SDEd estimate the uncertainty in distin-
guishing cluster signatures from library signatures. In fact, the
PW d and SDEd produce rankings that are order isomorphic,
i.e., given a set of distances between library and cluster sig-
natures, the ordering produced by ranking the distances by the
PW d is equivalent to the ranking generated by the −SDEd.
Fig. 1 shows the functional behavior of the PW d and SDEd for
m = 2. Both the PW d and −SDEd are convex functions with
minima at the same location (1/2, specifically). Thus, both are
monotonically decreasing before, and monotonically increasing
after, that location and are therefore order isomorphic.

This isomorphism also holds for m > 2. In this case, the
PW d is used (6). Clearly, when m = 2, the PW d is a convex
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TABLE I
VSs AND AVERAGES FOR OCEAN CITY SOM CLUSTERS. WE ASSUME THAT CLUSTERS WITH AVERAGE VSs OF ZERO (INDICATED BY ITALICS) ARE

NOT REPRESENTED IN THE LIBRARY. AVERAGE SCORES ARE GIVEN FOR ALL CLUSTERS (ALL) AND CLUSTERS REPRESENTED IN THE LIBRARY

(SELECTED). THE BEST SCORES ARE GIVEN IN BOLD TEXT, AND THE WORST SCORES ARE UNDERLINED. CICRd MEASURES GENERALLY

OUTPERFORM BOTH CId AND CRd MEASURES. VSs ARE IN THE RANGE [0, 3] (0 = WORST MATCH, 3 = BEST MATCH), AND PW d

SCORES ARE IN THE RANGE [1, ∞] (1.0 = INDISTINGUISHABLE w.r.t. THE CLUSTER SIGNATURE)

function (as shown in Fig. 1). Since the sum of convex functions
is convex, PW d is also convex, with minimum at 1/m (when
all outcomes are equiprobable) with value 1. Because entropy
is a concave function, −SDEd is a convex function, with
minimum similarly attained when all outcomes are equiprob-
able (at value log(1/m)). Once again, we have two convex
functions with minima at the same location, both monotonically
decreasing (increasing) before (after) the minimum. Thus, the
order isomorphism holds when m > 2.

Given a set of similarity values, the PW d is better suited
to discriminate values at the extreme ends of the distribution,
whereas the SDEd gives better separation across the midrange.
However, both measures produce precisely the same ordering of
the similarity values, and thus, we focus only on the PW d in
this paper.

The mean PW d for library signatures in Lc characterizes
how “tightly packed” the distances are between the library
signatures and the cluster signature c. Intuitively, we want
this value to approach one for similar signatures and to be
large for dissimilar signatures. However, the PW d may become
skewed if the distances between c and its best matching library
signatures (Lc) are relatively far apart (as demonstrated in
Section V). This often indicates that a representative signature
does not exist in the spectral library, since at least one of the
m matches may be a different spectral species than the other
matches.

In addition, the PW d is sensitive to spectral representation
and, in many cases, does not capture visually strong matches,
particularly with the CRd measures (see Section V-A). To
address this issue, we visually inspect the top m library matches
for each cluster signature c, obtained using ED and SID. We
assign a “visual score” [(“VS”); Table I] to each lk ∈ Lc in
the range of [0, 3], based on the overall spectral shape and
absorption band positions/widths. A VS of zero indicates poor
quality for all m matches. A score of one indicates the majority
(but not all) of the m matches are of poor quality, while a
score of two indicates the majority of the matches are of good
quality. Finally, if all m signatures strongly match the cluster
signature, we assign a score of three. Because these scores
are subjective, multiple observers are necessary to corroborate
them confidently. In this paper, the matches produced by the
CId, CRd, and CICRd measures have been judged by four
independent observers. In addition, each observer has assigned

VSs to 210 CICRED versus CICRSID spectral matches using
a web-based form, and we have observed similar trends in the
per-user rankings, in comparison to the VSs provided in Table I.

We assess the significance of comparisons between similarity
measures using the Wilcoxon signed-rank test (WSRT) [29].
The WSRT is a nonparametric statistical hypothesis test for
paired measurements (similarity values) on a single sample
(cluster signature). Three quantities define the WSRT: the
number of trials performed Nt, the sum of positive differences
in paired measurements W+, and the sum of negative differ-
ences in paired measurements W−. Equal measurements are
handled by adding their mean values to both W+ and W−.
The significance of the performance is based on Nt and
max(W+,W−) [30]. Using the WSRT to test the signifi-
cance of spectral similarity measure comparisons has several
advantages. First, it makes no assumptions on the underlying
distribution of the measurements. Second, greater emphasis is
placed on larger differences in measurements than on smaller
ones. Third, because the statistic for the signed-rank test is
resistant (i.e., unaffected by changes in a few observations),
outliers are naturally suppressed (if the number of outliers is
not particularly large with respect to the size of the sample).
For a detailed discussion on the WSRT, see [31].

IV. DATA AND CASE STUDY

A. AVIRIS Image of Ocean City, MD

We demonstrate our automatic labeling technique on an
urban hyperspectral image of Ocean City, MD [32]. This image
was acquired by a low-altitude AVIRIS flight on November 5,
1998, with a spatial resolution of 4 m/pixel. Data preprocessing,
segmentation, and the resulting image clusters and their signa-
tures are presented in [33]. This image is an example of the
complexity in a real urban study, with many material classes
of interest, and additionally has a good segmentation, with
clusters that have been verified to correspond to known objects
and materials. In this paper, we use the segmentation produced
with an SOM in [33]. The high spatial and spectral resolutions
of AVIRIS imagery, along with the sensitive segmentation
technique, allowed discrimination of 35 clusters with varied
characteristics, including (very) small, and spectrally similar
ones. As verified from field data, most of these clusters rep-
resent objects associated with distinct material types. Examples
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Fig. 2. (Top) PW d scores for each cluster signature according to the (solid
line, circle marker) CIED, (dashed line, square marker) CRED, and (dotted
line, diamond marker) CICRED measures (m = 3). (Bottom) PW d scores
for each cluster signature using the (solid line, circle marker) CISID, (dashed
line, square marker) CRSID, and (dotted line, diamond marker) CICRSID

measures. On average, ED-based measures yield better PW d scores than SID-
based measures. Cluster M (similarity scores given in Table II) is the most
spectrally ambiguous according to the employed measures.

of these are water tower, buildings, roads, boardwalks, parking
lots, mini golf course, coast guard lookout tower, and landscape
units. However, for some clusters which can be recognized
on the functional level (i.e., tennis court), we do not have
a corresponding material identification. Discontinuities in the
spectra, seen in all spectral plots in the following discussions,
are due to the removal of saturated atmospheric water vapor
bands. We also observe a characteristic dip near 1.96 μm,
which may be due to imperfect removal of saturated water
vapor bands, but may also occur due to shadow effects (which
are common in urban areas) or multiple reflections caused by
vegetation.

B. Spectral Library of Urban Materials

The spectral library used in our spectral matching procedure
consists of 1250 spectral signatures from three sources:

1) some 1164 field-measured spectra of mostly urban ma-
terials acquired in 1075 wavelengths in the 0.35–2.4-μm
range (described in [34]);

2) 17 laboratory-measured vegetation spectra from the
USGS splib06a spectral library [2];

TABLE II
SIMILARITY (TOP) AND PW d VALUES (BOTTOM) FOR CLUSTER

SIGNATURE M. SIGNIFICANTLY HIGHER PW d SCORES ARE DUE TO

SPECTRAL AMBIGUITY BETWEEN CLUSTER SIGNATURE M AND LIBRARY

SIGNATURES l2 AND l3, COMBINED WITH A STRONG MATCH TO l1

3) 21 AVIRIS image spectra (mostly vegetation and soil
types) from training regions described in [35].

All library signatures are tagged with metadata, indicating
the objects measured, and most of the entries include a cor-
responding material label. Library signatures are convolved
to appropriate AVIRIS wavelengths. We exclude wavelengths
outside the range [0.42, 2.39] μm due to low signal-to-noise
ratios in some of the library signatures and exclude bands
removed from the Ocean City image. The remaining 165 of the
original 224 AVIRIS bands are used for spectral matching.

V. EVALUATION OF SPECTRAL MATCHING AND

AUTOMATIC LABELING ON OCEAN CITY CLUSTERS

A. Spectral Matching Performance

Table I gives the set of all VSs for the matches of the
Ocean City clusters, along with summary statistics for the
visual and PW d scores for all cluster signatures [“(All)” in
Table I] and signatures which are adequately represented in
the library [“(Selected)” in Table I]. Since precise material
interpretations are not known for all clusters, we make the
simplifying assumption that if the mean VS (for all measures)
for a cluster signature is zero, then that signature does not have
a representative library signature. From Table I, we see that
clusters with mean VSs equalling zero include P, S, X, a,
and c. C, F, and d are also excluded because they could not
be interpreted with adequate confidence (C is a green tennis
court shown in Fig. 3, discussed hereinafter; F consists of
street/sidewalk materials; and d is likely a mixture of water and
nearby building materials).

While the best possible PW d score is 1, high PW d scores
do not necessarily indicate that a measure is performing poorly.
It may suggest that the average of the top m matches is
skewed because the similarity values are on varying scales.
This is evident in Fig. 2, where PW d scores for each cluster
are provided. Of particular interest are the atypical scores for
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signatures M (vegetation) and, to a lesser degree, T (asphalt)
and Y (sand). Table II gives the similarity and pairwise PW d

scores for the best three matches for signature M. In this case
(similar with signatures T and Y), a single similarity score is
relatively distant from the remaining two scores, resulting in a
relatively high PW d value. Note that each similarity measure
returns a different set of library matches, yet we observe the
same effect. In fact, the PW d may be used to indicate that the
library has less than m suitable match candidates.

In terms of VSs, matches using the CICRd measures score
higher than matches made with their CId and CRd counter-
parts, with significant improvements over the CRd measures. It
may seem counterintuitive that simply including a CR term in
the spectral similarity measure will improve spectral matching
performance, considering the poor performance of the CRd

measures, but such performance gains are actually quite easy
to explain: CId measures produce spectral matches that cor-
respond well in terms of spectral shape but fail to capture
characteristic absorption features. Conversely, using CR spectra
alone will often yield matches that differ greatly in spectral
shape. Fig. 3 shows the CId and CICRd spectral matching
results for Ocean City cluster C. The pixels in this cluster
belong to a green tennis court, and while we do not have
ground-truth data on the material composition of this signature,
based on the character of the spectrum, it is probably composed
of asphalt material (and green pigment). The signature has
several significant absorptions at ∼0.45, 0.64, and 2.22 μm that
are captured by both CICRd measures, but poorly captured by
CId measures. The CICRd matches not only are more visually
agreeable but also better represent spectroscopic similarities
between signatures. Fig. 4 shows the CRd matches for cluster
signature E (a metal rooftop). These signatures have nearly
indistinguishable CR representations but differ significantly in
terms of continua, resulting in unsatisfactory matches with
the CRd measures. Even the best match differs significantly
at shorter wavelengths, due to diffusion effects commonly
observed in metallic materials.

Another example where the PW d may not reliably measure
similarity measure performance can be given through a case of
spectral match described by van der Meer in [20, Fig. 7]. In
this paper, he concludes that the SID is more discriminatory
than ED based on the analysis of a synthetic data set consisting
of 601-band field-measured spectra and on AVIRIS imagery
consisting of 50 bands in the 2.0–2.5-μm range, for material
signatures montmorillonite (mont), kaolinite (kaol), quartz, and
alunite (alun). While we do see (visually) a slight improvement
over the ED when matching the Ocean City CI signatures,
the SID performance is worse than the ED with the CRd

measures and nearly equivalent with the CICRd measures.
Furthermore, in terms of PW d scores, we see that the SID-
based measures appear less discriminatory than CIED, CRED,
and CICRED. The previous conclusion that the SID is a better
measure is based partly on the ED versus SID PW d values
for alun–kaol, alun–mont, and kaol–mont, with quartz as the
reference signature. However, this is a somewhat pathological
case for the ED (particularly for the AVIRIS signatures given
in [20, Fig. 7]). On further inspection of the AVIRIS signatures,
the quartz reference signature (a signature lacking significant

TABLE III
WSRT-BASED p-VALUES FOR THE PW d USING CId , CRd , AND

CICRd SIMILARITY MEASURES FOR THE 35 OCEAN CITY SOM
CLUSTER SIGNATURES. SIGNIFICANTLY HIGHER p-VALUES BETWEEN

CI- AND CR-BASED SIMILARITY MEASURES INDICATE THAT THE

SIMILARITY VALUES PRODUCED BY THESE MEASURES DO NOT FOLLOW

THE SAME DISTRIBUTION AND SHOULD NOT BE COMPARED DIRECTLY

absorption features in the selected wavelengths) will yield high
PW d scores in comparison to kaol and alun signatures (both of
which are approximately bisected by the quartz signature) and
the mont signature (which is similar to the quartz signature but
darker). Consider the following: Let the sum of the polygon
areas defined by the upper and lower portions of the alun
signature bisected by the quartz signature be Aa,q, and let
Ak,q be the summed area of the polygons defined by the same
bisector (quartz) with the kaol signature. Next, let Am,q be the
area defined by the polygon with boundaries defined by the
mont and quartz signatures. It is trivial to show that if Aa,q =
Ak,q , then the alun–quartz and kaol–quartz EDs are equal. If
Am,q also has the same area, then these three signatures are
equidistant from the quartz signature, granted, for the signatures
in [20, Fig. 7], that these areas are not precisely equal but they
do show strong similarities, which would result in similar EDs.

Table III gives the WSRT p-scores for the PW d for each
similarity measure, evaluated on the 35 SOM clusters. The
values near 1.0 (bold) indicate low confidence in statistical
significance. The scores indicate that the distributions of CRd

and CICRd similarity values differ and therefore should not
be (directly) compared. The p-scores are also relatively high
between CId and CRd measures. These findings are not
surprising, since spectra that are very different in terms of
continuum shape can be identical after continuum removal (see
signatures h and i in Fig. 6, for instance). Because similar
signatures produce PW d scores near 1.0, the CRd measures
appear more discriminatory than the other measures, which is
contrary to our findings in Figs. 2–4.

B. Automatic Labeling of the Ocean City Image

We evaluate the performance of the automatic labeling proce-
dure by categorizing the spectral library into ten distinct mater-
ial groups (loosely based on the taxonomy of urban materials
given in [34]). We group materials for convenience in these
groups: concrete materials, asphalts, composites (which largely
consist of shingle materials), metals, vegetation, coatings (i.e.,
paint), miscellaneous roofing materials (e.g., tile and wood
shingles), soil/dirt, water, and “other” (“other” refers to library
signatures for which material information is not provided.
In our library, this includes only tennis and basketball court
signatures). We select the best match produced by the CICRED

measure (which yielded the best overall matching performance
experimentally), and if the material group of the matching
library signature corresponds well to the material group of the
cluster signature, we consider the label assignment a success.



BUE et al.: AUTOMATED LABELING OF MATERIALS IN HYPERSPECTRAL IMAGERY 4065

Fig. 3. (Top) Best three matches for cluster C using CIED, CISID, CICRED, and CICRSID measures. (Bottom) Corresponding CR spectra. Using CI
signatures alone results in poor matches of absorption bands (particularly at shorter wavelengths). The CICRd measure can exploit differences in absorption
band characteristics and thus achieves improved matching performance.

Fig. 4. (Top) Best three matches for cluster E using CRED, CRSID, CICRED, and CICRSID measures. (Bottom) Corresponding CR spectra. Due to the
fact that the CR representation discards information on the shape of the continuum in favor of absorption band characteristics, spectral matching with CRED and
CRSID is poor. The matches using the CICRd measure yield improved matches since both the continuum and the absorption features are considered.

For some cases, determining this correspondence requires the
translation of an object label (for instance, “rooftop”) to a
material group [“asphalt”; based on manual inspection of the
cluster signature and expert interpretation], since the expert
interpretations are sometimes given on the object rather than
on the material level.

Of the 25 clusters with adequate library representation, 21
are successfully labeled using the CICRED measure. These
21 clusters comprise 67.6% of the image pixels with known
material labels available in the library. The automatic labeling
results for each Ocean City cluster using the CICRED measure
are shown in Fig. 5. Expert interpretations of clusters are given
in plain text (column 2), and the CICRED library matches are
given in colored text (column 3). If the match is considered a
success (according to our library categorization), the text is col-
ored green, while mismatches are colored red. Clusters without
a clear expert interpretation for their materials are displayed in
black text. Clusters with an asterisk by the expert interpretation
(in column 2) lack representative material signatures in the

spectral library; therefore, these matches should be disregarded.
Selected spectral matches, grouped according to their best
matching library material label, are shown in Figs. 6–10. Even
within these categories, there are often significant differences
in spectral shape for similar materials, but since our library
is sufficiently diverse, we find relevant matches in almost all
cases.

Not surprisingly, including CR signatures does not improve
discrimination between materials without significant absorption
features. Fig. 6 shows the CIED and CICRED matches for
several asphalt cluster signatures. The best library matches
using both measures are the same, with only slight changes in
the ranking order. Moreover, the VSs (in Table I) for many of
the asphalt (h, i,T) and composite (G, I) signatures remain the
same for both the CId and CICRd measures.

Two of the concrete matches are of particular interest. First,
cluster signature L (Fig. 7) is matched to a “shaded concrete”
library signature. This library signature is described in detail
in [34]) and is an example of an “intimate” mixture [36] of
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Fig. 5. Automatic labeling results for all Ocean City cluster signatures. Cluster interpretations (from field knowledge) are given in (column 2) black text, and
the corresponding best match using the CICRED measure is given in (colored text) column 3. Cluster interpretations marked with an asterisk do not have
representative material signatures in the spectral library and are not included in the “Selected” measurements in Table I. Matches in green text (in column 3)
indicate that the material of the best library match corresponds well to the expert interpretation, red text indicates a mismatch, and black text indicates that the
material composition for the cluster signature is unknown. Labels are determined on the basis of the spectral shape similarities. Spectral matches are discussed in
detail in Figs. 6–10.

concrete and a tree canopy. The mixture of the flat concrete
library signature does not cause significant perturbation of the
vegetation library signature and thus appears representative
of vegetation and therefore matches well to cluster signature
L (trees). The other concrete signature U corresponds well
to several gray/dark gray-colored rooftop material signatures.
According to recent aerial photographs, the smaller U signature
(Fig. 5, right image) is a viewing tower, with a small enclosed
building on top, that likely is composed of a concrete roof
and concrete base. The larger U signature (Fig. 5, left image)
appears to contain concrete roof tiles. Moreover, the match to
the gravel rooftop is expected since concrete materials generally
consist of a mixture of cement, gravel, and water.

VI. DISCUSSION

A. Spectral Representation: CI Versus CR

While absorption characteristics are of great importance in
identifying materials from spectral signatures, using the CR
representation alone in spectral matching is unreliable since
continuum shape information is ignored. Furthermore, the CR
signatures are only useful in discriminating spectral signatures
if the signatures have significant absorption features. Many
urban materials, such as concrete and asphalt, often do not
have such features; thus, the performance of CRd measures
will be poor, while the performances of the CId and CICRd

measures will be approximately the same on such material
signatures.

The continuum removal technique employed may have a
significant effect on the CICRd measure. In this paper, we
approximate the continuum by first connecting a set of the most
significant local maxima in a spectral signature via straight-
line segments (this procedure is analogous to the technique
described in [37]). This may lead to slight distortions in the
CR signatures, due to the piecewise linear nature of the contin-
uum approximation. A continuum approximation method using
higher order basis functions (for instance, using the technique
described in [38]) may improve the continuum approximation
and subsequent matching performance.

B. Evaluating Material Mismatches

Sometimes, the translation between the expert interpretations
of image segments and the labels provided in the spectral
library is nontrivial. Fig. 11 shows this issue. Here, the expert
interpretation of cluster C, which is “tennis court” material,
matches well to several of “wood shingle” library signatures,
even though several tennis court material signatures exist in the
library. Since the precise material composition of signature C is
unknown and the library metadata, in this case, do not provide
a material label for the tennis court signatures, it is difficult to
assess the accuracy of this labeling. Here, determining the cor-
rect labeling for C requires additional contextual information,
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Fig. 6. (Top) CI and corresponding CR library matches for category “asphalt” using the CIED measure. (Bottom) CI and corresponding CR library matches for
the same clusters using the CICRED measure. Both measures yield nearly the same matches due to the lack of prominent absorption features in these signatures.

Fig. 7. CI and corresponding CR library matches for category “concrete”
using CICRED. Due to intimate mixing effects caused by the shadow of a
tree canopy on the concrete material, the “shaded concrete” library signature
has a spectral shape that is typical to a vegetation signature and closely matches
cluster signature L (grass).

since the wood shingle signatures are clearly stronger matches
than the tennis court signatures (both in terms of spectral shape
and absorption bands). These ambiguities are best resolved
by employing more diverse spectral libraries with extensive
metadata, complete with material descriptions.

Fig. 8. CI and corresponding CR spectra for category “coatings” using
CICRED. This cluster corresponds to a water tower, painted light blue, for
which the best match is a white paint signature.

C. Segmentation Sensitivity

The performance of our proposed labeling technique is
clearly dependent on the quality of the segmentation to be
labeled. Using a poor segmentation will result in poor spec-
tral matches (and, subsequently, labels without clear meaning)
since cluster signatures would not accurately capture distinc-
tions between spectral species. To demonstrate this, we com-
pare the SOM and ISODATA [39] segmentations of our AVIRIS
image discussed in [33]. The SOM clustering (as mentioned
in Section IV-A) yielded 35 clusters, while ISODATA yielded
20 clusters. Both clusterings, and corresponding cluster sig-
natures, are discussed in detail in [33]. Note that the cluster
labels (colors) in these two segmentations are not consistent
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Fig. 9. CI and corresponding CR library matches for category “composites” using CICRED. As observed in [34], considerable spectral confusion exists
between dark asphalt road and composite shingle rooftop signatures (since the composite shingles often have a strong asphalt component); thus, material matches
such as those observed in signature G are expected. Signature a (a building rooftop consisting of a mixture of metal alloy and aluminum, painted blue) is a
mismatch due to both signatures having dramatically different spectral shapes (which indicates that there is not a representative signature present in the library).
The material content of cluster signature V (mini golf/rooftop) is unknown, but the marked similarity to other asphalt signatures suggests that it may be dominated
by asphalt as well.

Fig. 10. CI and corresponding CR spectra for category “vegetation” using
CICRED. The second and third “green paint” matches for cluster K are due to
strong similarities in absorption features that are common to vegetation species,
as observed in the CR signatures. As a result of these similarities, the measure
would incorrectly label the vegetation spectra as green paint if the first match,
“grass,” had not been present.

with each other because reconciling clusters is nontrivial or
impossible since there is not a one-to-one (or even a clean
one-to-many) correspondence between the two clusterings. In
fact, clusters in the ISODATA segmentation are very different
from the clusters detected by the SOM. Fig. 12 shows the
problem of using a poor segmentation in spectral matching. In
this case, ISODATA assigns pixels, corresponding to a clearly
recognizable building (SOM cluster D in Fig. 5), into three
separate clusters (K, L, and M, not to be confused with the
SOM clusters with the same labels), none of which represents
the true signature of the building. The ISODATA cluster map
is not shown here, but the signatures of ISODATA clusters K,
L, and M are compared to SOM cluster D in Fig. 12. There
are two related issues here: 1) ISODATA fails to detect an
area of a unique signature clearly delineated by the SOM and
2) a number of spectrally similar materials correctly grouped
together by the SOM are incorrectly assigned to several quite

Fig. 11. (Left) Tennis court cluster signature C matched to library signatures
of tennis court materials. (Right) Spectral matching results for signature C
using CICRED. Both CI and CR spectra of the tennis court better match
several library signatures of “shingle” materials in comparison to the tennis
court library signatures.

different ISODATA clusters. Consequently, these ISODATA
clusters give no clear or, worse, misleading interpretations.
Matches from a library—while they may be good matches to
the mean cluster signatures—may not represent the species at
the locations of the incorrectly delineated ISODATA clusters.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated a technique for au-
tomated labeling of segmented hyperspectral imagery using
a library of known material signatures. The labels derived
by our proposed labeling technique are determined by the
contents of the library, the quality of the segmentation, and
the similarity measure used to compare spectral signatures. A
similarity measure designed specifically to characterize hyper-
spectral signatures was evaluated and shown to outperform the
ED and SID measures in matching hyperspectral signatures.
This measure was used to select material labels from a library
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Fig. 12. (Left block) Library matches for ISODATA clusters K (comprising SOM clusters verified as shingle rooftops, roads, and parking areas, and a mini golf
course), L (various rooftop materials), and M (various rooftop and road materials). (Right) Library matches for SOM cluster D (a shingled rooftop). In this case,
pixels that are delineated well by the SOM cluster D are misclustered by ISODATA into three of its clusters—K, L, and M—none of which represents the true
signature. Note that the spatial distributions, as well as the labels, of the ISODATA clusters are different from the SOM clusters (as shown in [33]).

of urban material signatures for each cluster in a verified high-
quality segmentation of an AVIRIS image. The technique we
present successfully labeled 21 of the 25 clusters with known
material interpretations and representative library signatures.
The remaining clusters could not be labeled because either their
material interpretations were unknown or the library lacked
representative material signatures for those clusters. Both of
these issues could potentially be mitigated by augmenting the
spectral library with additional detailed metadata describing the
exact material composition of all library spectra or by including
additional library spectra which include such metadata.

The lack of exhaustive and detailed ground-truth data makes
the objective evaluation of automated labeling methods chal-
lenging. Even in cases where ground-truth data exist, it is often
given for objects rather than materials. Since it is currently im-
possible to acquire exhaustive material labels for large remote
sensing surveys, synthetically generated hyperspectral imagery
may be of significant help. We are currently analyzing several
images generated with Digital Imaging and Remote Sensing
Image Generation image synthesis algorithm developed at the
Rochester Institute of Technology to determine their value in
the verification of automated labeling techniques.

As observed in [1], allowing the CI and CR terms to carry
equal weights in the CICRd measure may be suboptimal. In
this paper, we set α to 1.0 for straightforward comparison
to earlier works, but we expect to achieve improved spectral
matching performance by allowing other α values. An opti-
mization procedure may be necessary to learn the best α value,
dependent on the data. Another extension can be to treat α as a
vector of the same length as the number of spectral bands and
then learn optimal weighting for each band.

It is interesting to note that the CICRd measures outper-
form the CId and CRd measures regardless of whether we
use the ED or SID distance measure. However, the choice of
these distance measures was primarily motivated by convenient
comparisons to existing works, and one could easily substitute
other measures in this calculation. Distance measures that con-
sider global covariances (e.g., the Bhattacharyya distance [41])
or functional measures (e.g., the Sobolev distance [42]) may
improve spectral matching performance.
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