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Abstract. The adaptive and automated analysis of spectral data plays
an important role in many areas of research such as physics, astronomy
and geophysics, chemistry, bioinformatics, biochemistry, engineering, and
others. The amount of data may range from several billion samples in
geophysics to only a few in medical applications. Further, a vectorial rep-
resentation of spectra typically leads to huge-dimensional problems. This
scenario gives the background for particular requirements of respective
machine learning approaches which will be the focus of this overview.

1 Introduction

Spectral data occur in many areas of theoretical and applied research like physics,
astronomy and geophysics, chemistry, bioinformatics, biochemistry, engineering,
and others. One key characteristic of such data is that their vectorial representa-
tion typically leads to huge-dimensional problems. However, spectral vectors are
functional, i.e., the vector dimensions are not independent but reflect a functional
relation. In the simplest case it is a data vector representing a one-dimensional
function, vectorial functions may be described by matrices. Thereby, the amount
of data may range from several billion samples in geophysics to only a few in
medical applications.
The characteristic difference of functional data in comparison to usual vec-

torial data is the above mentioned dependency between the vectors dimensions,
i.e. the vector components are functionally correlated. Thus, the inherent di-
mensionality of functional data vectors is usually much smaller than the vector
dimension. This knowledge can be used to make feasible sparse high-dimensional
data sets of functional data whereas non-functional data of a similar complex-
ity may not be analyzed adequately. The locations, widths, skew, kurtosis, etc.
and shapes of characteristic peaks or valleys (absorptions), as well as their co-
occurrences are important for data analyses. These properties should be used
for specific machine learning approaches designed for functional data analysis.
In case of parametric models the promoters are usually chosen to be descriptors
for shape and density and the machine learning task is to find their true value
given the functional data examples. For example, the normal distribution is suf-
ficiently described by mean and variance. Non-parametric models offer a greater



variability. However, the complexity has usually to be adapted during the ma-
chine learning process. Further, functional data frequently come from natural
or technical processes known to be following mathematical laws like ordinary or
partial differential equations. For these processes it is sufficient to estimate the
parameters of the known functional form from the data stream.
In this paper we will focus on a special type of functional data: spectral data.

In spectral data correlations can be two-fold: on the one hand, the correlation in
vectorial representation may be in neighboring dimensions according to the shape
of peaks. On the other hand, the occurrence and co-occurrence of peaks depends
on the underlying physical, chemical, biochemical or technical process. Thus,
long-range interactions may contribute to correlations which reduce the degree
of freedom and, hence, the inner complexity. These characteristic properties can
be used to handle spectral data effectively. Possibilities for this are particular
metrics or similarity measures or special data transformations which make use
of these characteristics. Different types of spectra may be distinguished like
spectra with broad absorption bands, for example in remote sensing, line-spectra
of isolated sharp peaks in chromatography or mass-spectrometry, etc. Each type
has to be handled in different manner depending on the task and the underlying
process.
In the following we will give a few general remarks highlighting some key

principles for functional data analysis. After that, we give examples from three
different areas of spectral data applications and their respective machine learning
data analysis approaches: astronomy and geophysics, computational biology,
and biochemical spectral data. These areas reflect typical issues of spectral and
functional data analysis applications in machine learning: the underlying process
of the data stream is not completely known therefore parametric approaches of
the underlying model cannot be used. This is in contrast to many engineering
problems where functional data analysis can frequently be reduced to parameter
estimation of the respective theoretical functional model.

2 Some General Aspects of Functional Data Analysis

Functional data analysis is fundamentally based on the concept of similarity
between functions which can often be described by functional norms. If a Hilbert
space is assumed norms are related to inner products [1]. Well known examples
are the family of Lp-normes [2], divergence measures for density functions [3], or
kernel approaches [4].
The Lp-norms can be extended to take into account the spatial shape of the

functions using the derivatives in case of differentiable functions. The respective
norms are the Sobolev-norms, which can also be related to inner products [5].
Sobolev-norms can be used for spline approximation adapted to functional data
as it is demonstrated in [6]. Other distance measures, which cannot be derived
from norms but which are suitable for function shapes, may also be successfully
applied in machine learning approaches [7]. Yet, the choice of an adequate
similarity measure may crucially influence the performance of a method [8]. An
adequate metric can reduce the complexity of the problem.
Further, classical mathematical methods like multivariate analysis can be



transferred to functional data analysis adequately for special data types: To
give a prominent example, functional principal component analysis (PCA) can be
reduced to the usual principal component analysis (PCA) using approximation
theory [9]. For this purpose it is assumed that the real functions f, g over X ⊆ R
can be represented by orthogonal basis functions φk which form a basis of the
functional space containing f and g. Thereby, orthogonality is defined by the
(Euclidean) inner product

φk, φj
®
E

=

Z
X

f (x) g (x) dx (1)

= δk,j . (2)

The basis may contain an infinite number of basis functions. Prominent ex-
amples are the the set of monomials 1, x, x2, . . . , xk, . . . or the Fourier-system
of sin (kωx), cos (kωx) with k = 0, 1, 2, . . . in case of periodic functions. Using
a basis system of K linearly independent functions, an arbitrary (continuous)
function h can be approximated by

h (x) =
KX
k=1

αkφk (x) (3)

which can be seen as a discrete Euclidean inner product hα,φ (x)iE of the coordi-
nate vectorα = (α1, . . . , αk)

T with the function vector φ = (φ1 (x) , . . . , φk (x))
T.

We denote by A the function space spanned by all basis functions φk:

A = span (φ1, . . . , φk) . (4)

Following the suggestions in [10] and [11] to transfer the ideas of usual multivari-
ate PCA to FPCA, we obtain for the Euclidean inner product (1) and function
approximations according to (3)

hf, giE =
KX
k=1

KX
j=1

αkβj

Z
X

φk (x)φj (x) dx (5)

=
KX
k=1

KX
j=1

αkβj

φk, φj

®
E

(6)

whereby in the second line the Fubini-lemma was used to exchange the integral
and the sums. Let Φ be the symmetric matrix spanned by Φk,j =


φk, φj

®
E

using the symmetry of an inner product. Using this definition, the last equation
can be rewritten as hf, giE = hf, giΦ with the new inner product

hf, giΦ = αTΦβ (7)

We remark that Φ is independent of both f and g. If the basis is orthogonal,
Φ is diagonal with entries Φk,k = 1. Thus, the inner product of functions is
reduced to the inner product of the coordinate vectors

hf, giE = hα,βiE (8)



and, hence, FPCA may be reduced to usual PCA of the coordinate space. For
handling non-orthogonal basis systems we refer to [11].
Yet, there exists a great variety of other linear transformations of functional

data, which can be used for complexity reduction and model simplification. A
linear projection of spectral data based on noise variance estimation is demon-
strated in [12]. A linear mapping for optimized learning vector quantization,
dependent on class separation, is proposed in [13].
As we can see from the above example and remarks, the utilization of the

knowledge of the data structure, here the functional behavior of the vector com-
ponents, may be used for adequate handling of functional data. For further
reading about general functional approaches we refer to the monograph [10].

3 Machine Learning of Spectral Data in Astronomy and
Geosciences

Earth and space science have perhaps the longest history of using spectral data.
Line spectra are used, at Angström resolution, to probe elemental composition,
spectral measurements in the visible and near-infrared (VNIR), and thermal in-
frared (TIR) regions of the electromagnetic spectrum, sampled at a few to a
few hundred nanometers, are used to infer mineralogical composition of various
targets. In the VNIR and TIR, the many measured values (reflectances, trans-
mittances, emitted heat, etc. at various wavelengths) are typically considered as
one data “item" – a sampled spectrum – and the spectrum is used as a whole
for species identification. The underlying physical process that determines the
spectral shape is the preferential interaction of light with different materials at
different wavelengths. In the VNIR, this manifests in absorption (transmission,
emission) features (bands), whose depth, width and other properties are specific
to a given material and wavelength. Depending on the sampling rate, we dis-
tinguish multi-spectral data (few spectral channels with wide bandpasses) and
hyperspectral data (hundreds of narrowly spaced bandpasses, as in Figure 1).
Sample VNIR spectra in Figure 1 illustrate the variety of features that exists

even among similar species. The functional relations among the spectral channels
manifest in multiple correlations with any index differences. Materials can have
multiple absorption features, each of which may be very narrow or quite wide.
For example, the clays all have a sharp feture near 2.1 μm, and also at 1.4 and 1.9
μm. However, the depth and width of those features varies across the individual
species. The overall spectral shape is also important in material identification.
In Earth and space science spectra are obtained mostly by remote sensing,

from telescopes, aircraft or spacecraft, and by robots such as the Mars Explo-
ration Rovers. In the VNIR and TIR range, imaging spectroscopy (acquiring
high-resolution spectra in image context, as opposed to spatially sparse mea-
surements of single spots) became the standard for many applications. Mapping
the geology on remote planets; precision agriculture; monitoring environmental
contamination are but a few. Since most often the whole spectral shape is used
for identification of materials pattern recognition, with either or both supervised
classification and unsupervised clustering, is a primary task. Machine learning
(ML) has become increasingly attractive for spectral data because it effectively



Fig. 1: VNIR spectra of plants and geologic materials (clay minerals). Both
illustrate the range of variations in absorption features, unique to the particular
species, and the degree of (dis)similarities within the same family of materials.

handles the associated pattern recognition challenges. Some of these are:

1. The spectral shapes are extremely hard to model from first principles.

2. Data vectors can be high dimensional (hundreds to thousands of channels).

3. Imaging spectroscopy maps large areas, therefore a large number of spec-
tral species (classes, clusters) is expected to be found.

4. Subtle but important differences (such as those between some of the plant
spectra in Figure 1) are expected to be recognized.

5. High spectral dimensionality may be aggravated by a scarcity of data points
(e.g., spectra taken of distant asteroids or planetary surfaces such as Pluto,
one at a time, through telescopes, using hours of integration time).

VNIR spectroscopy has also spread outside the fields of aspronomy and plane-
tary science. Examples are quality control in food industry, drug manufacturing,
and gemology (mostly using spot measurements), and imaging spectroscopy in
medical diagnostics. These data have similar general characteristics, thus much
of this discussion also applies to them. An important difference is that remote
sensing spectra typically exhibit more complicated structure. The reader is in-
vited to compare the plots in Figure 1 with, for example, spectra of food in [12].

Machine learning of multi- and hyperspectral data started in the 1980-s and
early 1990-s, respectively, mostly applying Back Propagation (BP) nets, and
reporting improvement over more traditional methods for classification of ter-
restrial [14, 15] and simulated Martian spectra [16], for moderate number of



classes. The difficulty of training BP nets for many inputs and classes, however,
turned attention to other ML schemes. SVMs are favored by many [17, 18],
partly because of the justified use of small training sample size. Hybrid ar-
chitectures that consist of an SOM hidden layer coupled with a categorization
output layer, alleviate the training difficulties of BP nets and can produce precise
classification of high-dimensional spectra into many classes [19].
In unsupervised tasks, SOMs proved their discovery power for a variety of

situations: low-dimensional large data sets of Earth and Mars [19, 20, 21], small
number of high-dimensional astronomical spectra with many clusters [22] and
massive hyperspectral imagery with very large number of clusters [23]. A success-
ful alternative to SOMs are ART maps [24] for clustering and novelty detection.
With Associative Memories [25, 26] improved on traditional spectral unmixing
(a frequently used analysis tool for spectral images), by automatic identification
of endmembers and by the use of a large number of endmembers, both of which
have limitations in traditional methods.
Estimation of physical parameters from complex spectral shapes is an im-

portant task, whose difficulties can be addressed by ML, as in [27], this session.
Another related issue is feature extraction in the spectral dimension. Exist-

ing methods are inapplicable because most operate in the spatial domain, which
misaligns the spectra. Methods simultaneously handling all spectral bands are
not yet generally available. ML efforts in this area started in the early 1990s but
remained scarce. In [28] an interesting Decision Boundary Extractor is shown
to improve classification accuracy, in addition to making the reduced hyperspec-
tral data suitable for BP learning. The invention of the Generalized Relevance
Learning Vector Quantization [29] opened new powerful principled possibilities,
by jointly optimizing classification performance and feature extraction. This
was further engineered by [30] for hyperspectral data. In this session, [13] of-
fers additional developments of GRLVQ, while [12] proposes a different way by
identifying latent variables for nonlinear models.
Various transformations have also been proposed for a preprocessing step,

which – indirectly – effect a more advantageous metric in the transform space.
In all cases, sampling of continuous functions is involved. The question of clas-
sification consistency for sampled functions is addressed theoretically in [6].
We encourage the reader to explore the cited articles for more details.

4 Machine Learning Techniques for the Analysis of Func-
tional Data in Computational Biology

The amount of data in typical computational biology (bioinformatics) applica-
tions [31] tends to be quite large but is on a manageable scale. In contrast,
astrophysical applications have huge amount of data, and medical research often
only has a rather limited number of samples. The challenges in bioinformatics
seem to be:

• Diversity and inconsistency of biological data,

• Unresolved functional relationships within the data,



• Variability of different underlying biological applications/problems.

As in many other areas, this requires the utilization of adaptive and implicit
methods, as provided by machine learning [32, 33]. Due to the above mentioned
wide scope of potential bioinformatics applications, we have restricted this review
to a number of key issues with a focus on spectral data.
Protein function, interaction, and localization is definitely one of the key re-

search areas in bioinformatics where machine learning techniques can beneficially
be applied. Protein localization data, no matter whether on tissue, cell or even
subcellular level, are essential to understand specific functions and regulation
mechanisms in a quantitative manner. The data can be obtained, for example,
by fluorescence measurements of appropriately labelled proteins. Now the chal-
lenge is to recognize different proteins, and classes of them , respectively, which
usually leads to either an unsupervised clustering problem or, in case available
a-priori information is to be considered, a supervised classification task. Here a
number of different neural networks have been used [34, 35, 36, 37, 38, 39]. Due
to the underlying measurement technique, often artifacts are observed and have
to be eliminated. Since the definition of these artifacts is not straightforward,
here too, trainable methods are used. In this context, for the separation of arti-
fact vs. all other data, support vector machines have successfully been applied
as well [40].
Further major applications areas comprise the analysis of genomic data on

transcript and metabolic level [41, 42]. The particular field of spectral data will
be covered by the following section.

4.1 Spectral Data in Bioinformatics

The analysis of biochemical data is a common task in many life science disciplines
as well as in chemistry and physics, food industry etc. [32],[43]. Frequently
used measurement techniques providing such data are mass spectrometry (MS)
and nuclear magnetic resonance spectroscopy (NMR). Typical fields, where such
techniques are applied in biochemistry and medicine, are the analysis of small
molecules, e.g., metabolite studies, or studies of medium or larger molecules, e.g.,
peptides and small proteins in case of mass spectrometry. One major objective
is the search for potential biomarkers in complex body fluids like serum, plasma,
urine, saliva, or cerebral spinal fluid in case of MS or search for characteristic
metabolites as a result of metabolism in cells (NMR).
Spectral data in this field have in common that the raw functional data

vectors, representing the spectra, are very high-dimensional, usually containing
many thousands of dimensions idepending on the resolution of the measurement
instruments and/or the specific task [44]. Moreover, the raw spectra are usually
contaminated with high-frequency noise and systematic baseline disturbances.
Thus, before any data analysis may be done, advanced pre-processing has to
be applied. Here application specific knowledge can be involved. For example,
for comparison of spectra an alignment, i.e., a frequency shifting, is necessary
to remove the inaccuracy of the instruments [45], [46]. A second step usually
follows the alignment to reduce the noise, Figure 2. Here machine learning
methods including neural networks offer alternatives to traditional methods like



Fig. 2: Illustration of basic preprocessing of spectra: left) baseline correction for
a single spectrum, right) alignment of a set of spectra.

averaging or discrete wavelet transformation [47],[48].
Preprocessed spectra often still remain high-dimensional. For further com-

plexity reduction usually peak lists of the spectra are generated which then are
under consideration. These peak lists can be considered as a compressed, infor-
mation preserving encoding of the originally measured spectra. The peak picking
procedure has to locate and to quantify the positions and the shape/height of
peaks within the spectrum. The peaks have to be identified by scanning all local
maxima and the associated peak endpoints followed by a S/N thresholding such
that one obtains the desired peak list. This method is usually applied to the
average spectrum generated from the set of spectra to be investigated. This ap-
proach works fine if the spectra belong to a common set or two groups of similar
size, with similar content to be analyzed. However, the averaging over multiple
imbalanced and non-similar data may lead to significant prune out effects in the
obtained average spectrum, i.e. the loss of maybe relevant information. Hence
a peak list generated on the basis of such a spectrum is loosing significant in-
formation. To overcome these problems peak lists on single groups or on single
spectra can be generated. This is the best way to preserve the peak information
obtained by the single spectra. However a peak picking on single spectra reveals
problems with respect to the Signal-to-Noise Ratio leading to more complex peak
selection procedures like peak picking using neural networks (here magnification
controlled neural gas) [49]. After peak list generation the spectra are described
in terms of this list such that the resulting data vectors usually contain only a
few hundred vector dimensions or less. Thus, algorithmic complexity for data
processing is drastically reduced. Further, processing of the aggregated data
showed promising results and therefore became one of the standard techniques.
A further possibility of complexity reduction is the representation of the

spectra as linear combination of basis functions as outlined in sec. 2, whereby
a (complete) system of independent basis functions serves as a generating sys-
tem. However, this last restriction can be relaxed by sparse coding approaches
[50],[51]. Other functional representations may include splines approximations



[6] or specialized functional metrics (usually taking the shape of the data into
account), which should be chosen in consistency with the subsequent processing
procedure [5].
After the preprocessing following the above methodologies, the reduced data

can be analyzed in unsupervised or supervised manner depending on the task
(clustering, classification). For this purpose, standard techniques like multivari-
ate statistical data analysis [52, 53], support vector machines and statistical
learning [54, 55, 56], as well as neural network methods [57, 58, 59] have been
used. For improvement of these methods, metric adaptation and non-standard
but task-specific metrics can be applied, like relevance learning in vector quanti-
zation for scaled Euclidean metric [56, 29] or generalizations thereof as presented
also in this volume by matrix learning vector quantization [13]. These techniques
of metric adaptation can also be seen as feature selection methods.
If the resolution of the spectral data is not too high, i.e., if the dimension

of the functional data vector is moderate, then a processing without complex-
ity reduction may become feasible. Of course, the above mentioned standard
methods can be applied in this case. Yet, by doing so, the functional aspect of
the data is lost, i.e., the vector dimensions are handled as independent by the
methods, because they do not pay attention to the functional aspect. However,
some of the methods can also deal with non-standard metrics whose straightfor-
ward integration into the respective theoretical framework may be complicate
and tricky sometimes. Examples of such approaches are the batch variant of
the neural gas vector quantizer for clustering and its supervised counter part for
classification [60, 61], or Hebbian learning network for PCA-learning proposed
by E. Oja [62, 63, 5]. This research area is rapidly grown during the last years
but still in the beginning [8].

5 Conclusion

In this tutorial paper we discussed new trends and developments in machine
learning of spectral data, which usually are available as huge-dimensional vec-
tors. Thereby, the functional aspect of the data should explicitly be taken into
account. This means that methods should deal with the inherent correlations
in the vectors directly or use adequate preprocessing. We outlined, without
completeness, several possibilities for appropriate handling of spectral data de-
pending on the task.We strongly recommend further reading on the subject.
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