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ABSTRACT

In developing algorithms that exploit model-generated data,
it is important to understand the realism of the data gener-
ated by that model. One way to address this issue is to ex-
ercise a well understood, yet diverse process, that will help
draw out the strengths and weaknesses of the data genera-
tion system. We accomplish this by using a typical chain of
processing steps on a synthetic hyperspectral image created
by the Digital Imaging Remote Sensing Image Generation
(DIRSIG) tool [1]. The clustering, classification, and feature
selection, which are part of this processing, are used to assess
the realism of the data based on the performance compared to
previous similar analysis on real hyperspectral data.

Index Terms— Self-organizing map, relevance learning,
learning vector quantization, synthetic hyperspectral imagery

1. INTRODUCTION

Hyperspectral imagery has found widespread use in commer-
cial and defense applications. The complexity of the problem
domains and datasets creates a need for sophisticated algo-
rithms. These algorithms require validation, which is costly
as scene truthing involves non-trivial logistics, and access to
samples and the accuracy of the sampling is often limited.

One potential alternative to more traditional scenario de-
velopment, data acquisition, and ground truthing is to use
synthetic imagery from a system such as the Digital Imag-
ing Remote Sensing Image Generation (DIRSIG) tool [1].
Synthetic data allow for flexible scenario development, re-
duced acquisition cost, and the availability of absolute ground
truth. The importance of absolute knowledge of ground truth
should not be undersold; it enables accurate algorithm assess-
ment provided the image synthesis process is realistic. By
realistic we mean that the data generation system should not
make the synthetic image so pristine that it does not reflect
noise sources such as those present in the sensor or environ-
ment. The synthesis should also avoid imposing some specific
“well-behaved” statistical distribution on the data in the case
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of hyperspectral imagery since it is a widely observed fact
that statistical models are hard to find for such data. Analysis
on data that are too pristine can lead to a bias in algorithm
results that tend toward better performance when in fact true
performance is more limited.

This article aims to analyze synthetic hyperspectral im-
agery from the point of view of the realism of the data ex-
ploitation results. To this end, we assess the potential of a
DIRSIG synthetic hyperpectral image by emulating a typi-
cal processing chain of clustering, interpretation and labeling
of clusters, followed by supervised classification, and assess-
ment of the accuracy of the obtained thematic map.

2. EVALUATION METHODOLOGY

We use a Self-Organizing Map (SOM) [2] for clustering, and
learning vector quantization (LVQ) [2] for subsequent su-
pervised classification. Both SOM clustering and LVQ clas-
sification (which is the supervised equivalent of the SOM)
have been used on real NASA/JPL AVIRIS [3] hyperspectral
imagery of the Lunar Crater Volcanic Field (LCVF) im-
age [4] [5]. SOM clustering was also used previously on an
AVIRIS image of Ocean City [6]. In both cases, performance
is well understood and is used as a comparison for the work
here. In all steps of this processing chain, we compare the
outcome to the quality — level of detail, accuracy, and sim-
ilarity/differences — of the results we obtained in previous
studies on real data.

Comparison of the results of clustering may be semi-
qualitative, whereas evaluation of classification results is
purely quantitative. However, in both cases, the results of the
process are described in a manner that is consistent with the
interpretation of previously obtained results.

We use a SOM for clustering because the SOM is ca-
pable of discovering many clusters with a wide variety of
shapes, sizes, densities, and proximities, in contrast to many
other techniques which are sensitive to the data distribution.
For example, K-means favors hyperspherical clusters and
may not capture other shapes accurately. In hyperspectral
dimensions, the structure of the data space can be quite com-
plicated in terms of the variability of the statistical properties
of the similarity groups, which is exacerbated by the poten-
tially large number of the clusters. In [6] each of 38 SOM



clusters could be associated with a unique physical entity in
the scene. In contrast, ISODATA (K-means) produced very
confused results from the same data.

For background on SOMs, see [2]. Briefly, it is an
unsupervised neural learning algorithm that maps an n-
dimensional data manifold M ⊂ R

n to prototype (weight)
vectors attached to neural units, and organizes the prototypes
in a lower (1- or 2-) dimensional rigid lattice A of N neural
units. The weight vector wi of each neural unit i is adapted it-
eratively by repeated application of the following steps: Find
the best matching unit i for data vector v ∈ M , such that

‖v − wi‖ ≤ ‖v − wj‖ ∀j ∈ A (1)

and update the weight wi and its neighbors wj according to

wj(t + 1) = wj(t) + α(t)hi,j(t)(v − wj(t)) (2)

where t is time, α(t) is the learning rate, and hi,j(t) is a neigh-
borhood function (often a Gaussian kernel) around the best
matching unit wi. Through the above process, the weight vec-
tors become vector quantization prototypes of the input space
M , distributed so as to best represent the data density. In the
learned SOM, groups of similar prototypes collectively repre-
sent groups of similar data. The data points mapped to a group
of similar prototypes comprise a data cluster. Our implemen-
tation is the “conscience” SOM, which produces more faithful
representation of the data density than the original Kohonen
SOM (see [4] and references therein).

For supervised classification we use Relevance Learn-
ing, a form of learning vector quantization [2] (LVQ), which
is the supervised version of the SOM. The form of LVQ used
here is based on iterative improvements to LVQ2.1 [2] and
is the maximal margin classifier Generalized Relevance LVQ
Improved [5] (GRLVQI). The GRLVQI is an embedded-type
feature selection and classification method that optimizes fea-
ture selection for the classification problem. It has demon-
strated excellent performance on real hyperspectral imagery
in [5] for 7-, 23-, and 35-class problems.

In GRLVQI, the indexes of the winning prototypes are
selected as:

c = arg min
q

(
n∑

k=1

λ (k) (xm (k) − wq (k))2
)

, (3)

where the Euclidean distance between input sample xm and
prototype wq is weighted by the relevances λ. Two winners,
the best matching in-class, and the best matching out-of-class
prototypes, wJ and wK , are adapted iteratively such that the
winning in-class prototype is moved toward, and the out-of-
class prototype is moved away, from the sample. Prototype
updates are accomplished using gradient descent and are a
function of the relevances in order to incorporate relevant data
dimensions, for classification, in the learning process. The
vector of relevance factors λ is also updated at each step by

gradient descent, according to an equation coupled with the
weight update which contains classification error in the cost
function. Thus, directions (spectral features) that are more
important for the classification will be weighted with larger
relevance values. Relevances are non-negative and are scaled
by their �1-norm to avoid numerical instabilities. This scaling
also gives relevances a nice interpretation as probabilities.

3. SYNTHETIC HYPERSPECTRAL DATA

We use a 400 × 400 pixel image covering 800×800 m2 with
2m×2m resolution, generated with the DIRSIG tool [1]. A
natural color composite is shown in Fig. 1. The image was
spectrally resampled to resemble a NASA/JPL AVIRIS [3]
image, then atmospherically corrected using empirical line
correction. Noisy bands due to water vapor absorption and
other atmospheric affects were deleted resulting in 184 spec-
tral bands. More details on this image, including description
of material types in the scene, are given in [7].

4. PROCESSING CHAIN

4.1. Cluster Analysis: Determining Classes of Interest

In order to determine relevant groupings in the data, we cap-
ture groups of similar prototype vectors in the SOM by exam-
ination of the distances of the weights in data space (not in the
SOM lattice). Visualization of such distances over the SOM
lattice delineates boundaries of prototype (weight) clusters in
the SOM. Data points mapped to a cluster of prototypes com-
prise a data cluster. For the prototype clusters identified in
the SOM, we refer the reader (due to space limitations) to [7].
The clusters in the image are shown in Fig. 2. Many more
than the indicated 38 clusters were detected by the SOM. We
resorted to showing this number of clusters because it would
be too confusing to use more colors on the thematic map. It
is obvious, for example, that while we are color coding 15
roof types, a number of other roof types were left uncolored
(small black rectangles). This image is very rich in the va-
riety of man-made materials such as roofing materials. The
15 color coded roof types are highlighted and enlarged in a
version of the cluster map that has the large background clus-
ters (paving, light green cluster V; grass, dark green and flesh
colors, K, T; and some trees) removed, in [7].

While the statistical variations of clusters are similar, the
number of clusters found in the DIRSIG image using the
SOM is considerably higher than that in the urban image
in [6]. This may in part be a result of generating the synthetic
image with a large number of roofing materials. Furthermore,
the DIRSIG image has twice the spatial resolution of the
urban image in [6] and little mixing within pixels.

Samples from the SOM clusters in Fig. 2 are selected, an-
alyzed, and used in subsequent classification. Mean spectra
of the samples for 34 material types, used in this study, are



Fig. 1. RGB color composite of the DIRSIG synthetic image.

Fig. 2. Clusters found in the DIRSIG hyperspectral image.

presented in Fig. 3. Interpretation of the clusters was done
by visual inspection, based on user recognition of the object
functionalities (i.e., playing field, road, parking lot, tennis
court, houses, trees, etc.), combined with the spectral varia-
tions among objects of similar functional categories. For ex-
ample, for the different clusters delineating roof tops (e.g., A,
B, F, L, N. Q, R. X, a, b, h, j, l), we verified that the spectral
signatures were different, and therefore these different clus-
ters were labeled as different classes.

Selection of training samples followed a typical situation,
where a user knows parts of the scene and takes samples from
those areas, for various cover types. We did this for each
of the 34 selected clusters. The number of training samples
taken for each class is also intended to emulate a typical re-
mote sensing situation, where the user does not have equal
access to all cover types, and therefore the obtained training

samples are unevenly distributed. This is important for cre-
ating a challenging — as well as realistic — classification
situation. Altogether 1811 samples were collected.

Fig. 3. Mean spectra for 34 material classes. The labels are
keyed in Fig. 2.

4.2. Classification

Classification is accomplished using the GRLVQI classifier
described in Section 2 with 5 prototypes per class and a sim-
ilar learn schedule as in [5]. The 1811 samples across 34
material classes are used in training and testing. Classifica-
tion performance is determined using 5-fold cross validation
in order to balance the bias and variance of the classification
and relevance factor results. Each fold has 362 (1449) testing
(training) samples. Testing accuracy for each of the 5 folds is
100%. Although the accuracy is higher then anticipated, it is
worth noting that the piece-wise linear decision boundary pro-
duced by GRLVQI with 5 prototypes per class on the LCVF
data set is 97.2% [5], for 35-class case. The results presented
show an accuracy rate of 2.8% over that of the comparison
image, which is not an unreasonable outcome. Results from
the LCVF data were generated using three-fold cross valida-
tion over 1464 samples, and so fewer representative samples
were used in the training, which may account for some of the
difference in performance. The much larger, and thus more
mixed, pixels in the AVIRIS image can also work against per-
fect classification results. Yet another source of this difference
is the physical nature of surface that is imaged. Some of the
geologic materials at the LCVF site have less defined spectral
boundaries than man-made materials.

Selected mean class spectra and relevances for two of the
five cross-validation runs, and the average of all five runs, are
presented in Fig. 4(a-c), respectively. The results here show



that a majority of the significant relevance values occur for
wavelengths < 1400nm, which is consistent with the 35-class
LCVF data results in [5]. There are no significant relevances
for 1400 <wavelength< 1800nm, which is different than that
of the 35-class LCVF data in [5]. Finally, there are a few sig-
nificant relevances for wavelength> 2000nm, which is con-
sistent with the 35-class LCVF data in [5]. There are 40 sig-
nificant relevance values greater than 0.001 for the average of
the relevances over the 5 cross validation runs. (The value of
0.001 was chosen to match that used in [5].) This is nearly
63% fewer features than that reported for the 35-class LCVF
problem in [5]. An interesting thing to note is that different
feature combinations result in the same classification perfor-
mance. This result indicates that a unique feature combina-
tion does not necessarily exist that provides best performance
for a given problem. However, we note that it is possible
that as the problem becomes significantly more difficult, the
number of solutions that generate a given classification per-
formance would likely diminish.
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Fig. 4. Selected representative spectra (A-red, J-blue, O-
green, V-magenta, i-black) with relevances overlaid. Areas
between vertical dashed lines indicate deleted image bands
due to atmospheric water absorption.

The difference in classification between the 35-class
LCVF data and the 34-class DIRSIG data does not appear
to be unreasonable with a performance increase of 2.8%.
However, a classification accuracy of 100% for a problem of
this magnitude, across all cross validation runs, does seam
unlikely. The reduced set of features may be an indication
that feature selection results are optimistic. The number of
significant features (those with relevances greater than 0.001)
is more in line with the 7-class problem reported in [5]. The
difference in feature selection results may be attributed to
two primary causes. First, pixels in the LCVF data set are ap-
proximately 17m×17m while 2m×2m in the DIRSIG image.
This means that the spectra in the LCVF data set likely have
more complex spectral mixtures (i.e., more material types in
one pixel) then those of the DIRSIG image. Secondly, the

DIRSIG image is over an urban site where man-made materi-
als dominate and which may be more sharply distinguishable
from one another than geological materials at the LCVF site
(e.g., volcanic cinders and weathered cinders).

5. CONCLUSIONS

Our preliminary results suggest that synthetic hyperspectral
imagery generated by DIRSIG may be viable for the devel-
opment of complex exploitation algorithms. One indication
of this is that the number of clusters/classes extracted from
the image, and the level of detail which distinguishes the de-
rived thematic units are very similar to those obtained in two
previous analyses with the same tools, on real hyperspectral
(AVIRIS) images. The seemingly unrealistic 100% classifi-
cation accuracy — although only 2.8% higher than for the
real LCVF data in earlier work — and the significantly lower
number of spectral bands deemed relevant for the classifica-
tion, are likely due to a combination of the very high spatial
resolution of the DIRSIG image and crisper spectral distinc-
tions among man-made materials than among geologic cover
types. Future work will consider more complex imagery gen-
erated by DIRSIG to further examine these issues.
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