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Biologically inspired
computation for intelligent
autonomous exploration
Erzsébet Merényi

Processing massive and complex data with brainlike neural compu-
tation is critical to achieving onboard decision-making systems for
robotic missions on Earth and in space.

Autonomous operation of unmanned spacecraft, aircraft, and
other robotic vehicles has long been a goal for the exploration
of faraway, hostile frontiers of space and hard-to-access or dan-
gerous environments on Earth. Robotic capabilities already exist
that allow hazard avoidance by smart navigation systems using
fast, fault-tolerant, and reliable onboard computing devices that
can withstand harsh environments.1, 2

However, systems do not yet exist that are able to employ a
sophisticated enough understanding of scientific data to enable
trustworthy autonomous decision making based on information
learned in situ. For example, NASA’s Mars Exploration Rovers
have excellent hazard avoidance capabilities based on perceived
terrain properties, but do not have onboard understanding of
scientific data capable of recognizing scientifically interesting
surface features. The rovers thus cannot autonomously decide
to examine interesting science opportunities instead of passing
them by based on preprogrammed navigation commands.

Autonomous robotic operations are based on the information
provided by the data collected on board and provided for de-
cision making. In the case of scientific (as well as surveillance
and other) applications this often means extracting, in sufficient
detail, relevant information from a mass of complicated high-
dimensional (multivariate) data. A prime example in space and
Earth applications is analysis of hyperspectral imagery, which
employs more than the standard three to eight channels, ac-
quired in most missions for the wealth of information it contains.
Detailed analysis of this and other similarly complex data, how-
ever, has proved difficult with conventional approaches.

Intelligent data interpretation is a core challenge, which in
turn requires complex algorithms that can be computationally

Figure 1. A simple simulated six-band image with five classes for con-
cept demonstration. Each pixel is a 6D stack vector (a ‘spectrum’). The
color blocks at left show how the spectral types, plotted right, are dis-
tributed in the image. Class U contains only one pixel. The spectra are
offset for clarity.

expensive. In centralized environments on Earth supercomput-
ing clusters can be employed, but in onboard, embedded system
scenarios this is not possible. Fortunately, long before supercom-
puters were invented, nature invented and engineered a solu-
tion that combined speed and intelligence—brains—which are
compact, light, power-efficient, fault-tolerant, robust, adaptive,
and fast. A brain effectively detects targets of predefined char-
acter, recognizes unknown surprises, and can resolve relevant
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Figure 2. (top) The weight vectors in a 10×10 self-organizing map
(SOM) after learning the data set described in Figure 1. (bottom) The
same SOM, with the vector distances between neighbor weights shown
as ‘fences’ on a black-to-white gray scale. The fences delineate groups
of prototypes each of which collectively represents one of the classes in
Figure 1.3

information all of which can contribute toward optimal decision
making based on the immediate environmental stimuli.

Neural computing architectures strive to mimic the intelligent
information processing of brains and nervous systems by char-
acteristics such as massive parallelism, where many instructions
are carried out simultaneously, the dense interconnectivity of
many simple processor units, which are like individual neurons,
and other observed properties of brains. Massive parallelism
makes neural architectures well suited to compact hardware,
which is then embedded in onboard processing and decision-
making systems.

Our group uses a neural architecture called a self-organizing
map (SOM) to capture some of the ways that the cerebral cortex
is believed to organize sensory data and derive detailed knowl-
edge of the environment.

Discovery through self-organized learning
The neurons in SOMs4 learn to collectively represent the a pri-
ori unknown structure of a data set by simultaneous competi-
tion and collaboration among the locally acting neural units in
an unsupervised iterative procedure. This involves finding an
optimal distribution of prototype vectors, the neural weights, in
the data set (which is an adaptive vector quantization process),
and simultaneously organizing the prototypes on a rigid lattice,
according to their similarity relations. For example, consider the
simple synthetic spectral image described in Figure 1. The SOM
is given the spectral signatures (the 6D stack vectors at each im-
age pixel) but not the class labels. Figure 2 reveals the knowl-
edge acquired by a SOM after learning these signatures. At the
top, the prototype vectors of the neurons are plotted in the cor-
responding grid cells. The prototypes have molded themselves
to look like the signatures of the spectral classes and organized
themselves in five distinct regions of this lattice. These regions,
color-coded at the bottom, manifest through the differences (vec-
tor distances) of the adjacent prototypes, which are visualized
as ‘fences’ on a black-to-white gray scale. Black means no dif-
ference, and white means a large difference. The groups of pro-
totypes that represent similar data vectors—the clusters in the
data—are separated. The 1-pixel class U gained representation
by one SOM prototype, while the others have a roughly equal
size area (discounting border effects caused by the finite size of
the SOM). In more noisy real data with many clusters, the rep-
resentation of rare species can be suppressed in a quantization,
by SOM or other means, or not resolved at all. Nature’s way to
ensure that important rare signals are noticed is through a ‘per-
ceptual magnet’ effect,5 which preferentially magnifies the area
of the cortex that represents the rare stimuli. Such magnification
can be induced in a SOM-based system on the theory by Bauer
et al.,6 without prior knowledge of the data distribution. We
showed in systematic studies that this theory—formally proved
only for 1D data and 2D data with uncorrelated dimensions—
can be applied to broader classes of data.3

We demonstrated this approach to be effective in detailed in-
formation extraction from intricate volumes of real data. Previ-
ously successful examples are the detection of rare mineralogy
from Mars Pathfinder’s multispectral imagery,7 and the finding
of very small, 3–10-pixel spatial objects (such as in Figure 4) from
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Figure 3. The simulated rare event ‘alert‘ caused a magnification of
the area in the artificial brain which represents the one-pixel class, rep-
resented by the 10 shaded prototypes.3 The sensitivity and thus the
chance of a discovery of this class greatly increased. The location of
the same signatures is different in the two SOMs because of random
starting conditions.

Figure 4. A real example of discovering small, unique urban objects
from a hyperspectral image of Ocean City, MD.8

a hyperspectral urban image.8 Importantly, knowledge of the
data distribution or the fact that rare clusters exist in the data
is not required for the magnification to take place. Hence, SOM
magnification is a genuine tool of discovery.

Outlook
Autonomous robotic discovery is one of the most promising
applications of self-organized learning by neural computing sys-
tems. We also use self-organized neural learning to achieve faith-
ful, detailed segmentation of a data space, and to aid precise

supervised classification of a complex data set into predefined
classes. These capabilities, augmented by neural feature extrac-
tion, can be packaged together to produce systems that will be
able to facilitate highly intelligent data understanding.7 This ap-
proach, implemented in massively parallel hardware on board
autonomous vehicles, will enable unexpected discoveries, as
well as detection of targets with known signatures, represented
within massive and complex data sets. While fabrication of the
necessary neural chips with appropriate scaling properties is still
a challenge, nanotechnology is expected to provide that capa-
bility soon. This approach promises to combine the intelligence
of neural computing algorithms with the speed needed for real-
time exploration, decision making, and operations on board ve-
hicles on Earth and in space.

This article samples joint work with students and collaborators. Sup-
port by the Applied Information Systems Research and Mars Data
Analysis Programs of NASA’s Science Mission Directorate is greatly
appreciated.
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