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Abstract. Utilization of remote sensing multi- and hyperspectral im-
agery has been rapidly increasing in numerous areas of economic and scien-
ti�c signi�cance. Hyperspectral sensors, in particular, provide the detailed
information that is known from laboratory measurements to characterize
and identify minerals, soils, rocks, plants, water bodies, and other surface
materials. This opens up tremendous possibilities for resource exploration
and management, environmental monitoring, natural hazard prediction,
and more. However, exploitation of the wealth of information in spectral
images has yet to match up to the sensors' capabilities, as conventional
methods often prove inadequate. ANNs hold the promise to revolutionize
this area by overcoming many of the mathematical obstacles that tra-
ditional techniques fail at. By providing high speed when implemented
in parallel hardware, (near-)real time processing of extremely high data
volumes, typical in remote sensing spectral imaging, will also be possible.

1. Challenges in remote spectral image analyses

Airborne and satellite-borne spectral imaging has become one of the most ad-
vanced tools for collecting vital information about the surface covers of Earth
and other planets. The utilization of these data includes areas such as mineral
exploration, land use, forestry, natural hazard assessments, water resources, en-
vironmental contamination, ecosystem management, biomass and productivity
assessment, and many other activities of economic signi�cance, as well as prime
scienti�c pursuits such as looking for possible sources of past or present life on
other planets. The number of applications has dramatically increased in the past
ten years with the advent of imaging spectrometers, which greatly surpass tradi-
tional multi-spectral imagers (e.g., Landsat Thematic Mapper) in that they can
resolve the detailed spectral features that are known to characterize minerals,
soils, rocks, and vegetation, from laboratory measurements. While a multi-
spectral sensor samples the given wavelength window (typically the 0.4 { 2.5
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�m range in the case of Visible and Near-Infrared surface reectance imaging)
with several broad bandpasses, leaving large gaps between the bands, spectral
imagers (hyperspectral sensors) sample the spectral window contiguously with
very narrow badpasses. Figures 1 and 2 illustrate the above.

Figure 1 (left). The concept of spectral imaging. Figure from Campbell (1996) [1].
Figure 2 (right). The spectral signature of the mineral alunite as seen through the
6 broad channels of Landsat TM, as seen by the moderate spectral resolution sensor
MODIS, and as measured in the laboratory. Hyperspectral sensors such as AVIRIS of
NASA/JPL [2] provide spectral details comparable to laboratory measurements.
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the kth image band (k = 1; :::; NB) at pixel location (x; y), is called a spectrum.
It is a characteristic pattern (Figures 1, 2) which provides a clue to the surface
material(s) within pixel (x; y). NB denotes the number of image bands. The
feature space spanned by VIS-NIR reectance spectra is [0; U ]NB � <NB where
U > 0 represents an upper limit of the measured scaled reectivity. Sections of
this space can be very densely populated while other parts may be extremely
sparse, depending on the materials in the scene and on the spectral resolution
of the sensor. Great spectral detail comes at a cost of a very high data volume,
and it also poses new mathematical challenges in the classi�cation of images
with high spectral dimensionality. The speci�c problems associated with remote
sensing spectral image analyses arise from any combination of the following [3]:

� The spectral patterns are high dimensional (dozens � NB � hundreds);

� The number of data points (image pixels) can be as large as several millions;

� The pixels are mixed: Several di�erent materials contribute to the spetcral
signature detected from each pixel;

� Given the richness of data, the goal is to separate many cover classes;

� Di�erent surface materials may be distinguished by very subtle di�erences
in their spectral patterns;

� Very little training data may be available for some classes; and classes may
be represented very unevenly.



ANNs have been gaining recognition as powerful answers to the above chal-
lenges. It should be emphasized that traditional lower dimensionalmulti-spectral
images also bene�t greatly from ANN algorithms because remote sensing spec-
tral images of any dimensionality share all but the �rst problem above.

For this discussion, we will omit additional e�ects such as atmospheric distor-
tions, illumination geometry and albedo variations in the scene, because these
can be addressed through well-established procedures prior to classi�cation.

2. A review of ANN approaches and results

In the following, emphasis is on works that overcome mathematical obstacles,
or improve classi�cation quality over conventional algorithms. In particular, the
speed bene�t of parallel hardware implementations is not discussed. For sake of
space, the reader is referred to the bibliographies in the referenced papers for
relevant further works, including well-known ANN paradigms.

Traditional multi-spectral images (e.g., Landsat TM) have long been shown
to gain improved accuracy from ANN classi�cations, using BP networks [4-6], or
variants of self-organization, vector quantization, and their hybrids [7-8]. ART
networks and variants by [9] were successful in distinguishing vegetation species.

Much less work has been done with hyperspectral images, although this type
of data would clearly be much better exploited with ANNs than with classical
methods. The reason for little work in this area is a combination of the novelty
of hyperpsectral imaging (< 10 years in comparison to over 25 years of Landsat),
and that the high dimensionality of the input data space requires large, complex
networks. [10] presented one of the pioneering papers on simulated 201-band
spectra, which were reduced to 20, 40 and 60 bands using feature extraction
prior to classi�cation into 3 classes. Comparison of several classi�ers including
Maximum Likelihood (ML), BP network and a Parallel Self-organizing Hierar-
chical Neural Network (PSHNN) favored the ML, with PSHNN next. However,
the authors admitted that the ML had an advantage by virtue of gaussian data
generation. [11] successfully classi�ed a real AVIRIS image of the Neovolcanic
Zone in South-Central Iceland into 9 geological classes, reducing �rst the 224
AVIRIS bands to 35. As an important advantage over traditional feature ex-
tractors such as PCA, they used an ANN (the same network that performed
the classi�cation itself) for Decision Boundary Feature Extraction (DBFE). The
DBFE is claimed to preserve all features that are necessary to achieve the same
accuracy as in the original data space, by a given classi�er.

Self-Organizing Maps have been recognized as useful tools for classi�cation of
images with high sepctral dimension. For supervised case, the general observa-
tion is that an SOM component in the ANN architecture makes network training
much easier (than, e.g., training a BP network); that it produces more accurate
classi�cation results based on a smaller amount of training spectra than would
be required for the training of BP [10]. Using a hybrid SOM-BP architecture,
[12] mapped previously undetected soil variants on Mars from 90-band images,
[13] improved asteroid compositional taxonomy from 65-band spectra, with no



prior feature extraction. Full spectral resolution AVIRIS images were classi�ed
into large number of output classes by a similar approach [3].

For discoveries in data spaces, SOMs have also been successfully used for the
detection of surface compositional classes that were missed by PCA or other
conventional techniques [13{14]. MacDonald et al., [15] compare three unsu-
pervised techniques: the Kohonen SOM, the Scale Invariant Feature Map, and
the Generative Topographic Mapping, which is a \principled alternative to the
SOM". They arrive at similar preliminary results as [13], on the same 65-D data.
Since convergence of the GTM can be proven and it has a well-de�ned cost func-
tion, this investigation may develop into better understanding of hyperspectral
spaces than was gained by the above previous works.

The mixed pixel problem is addressed by Pendock [16], using an associative
ANN to establish a linear mixture model for the areal contributions of \endmem-
ber" materials in each pixel. (The endmembers are the spectra whose weighted
sum makes up the spectral signature of each pixel. These are typically not the
same as the Principle Components of the spectral image.) The linear unmix-
ing approach is one of the most popular conventional techniques in interpreting
spectral images [17]. Automated determination of the endmembers, however,
has not been very successful. Pendock's approach [16] brings a new solution.

In remote sensing, obtaining an ideal number of reliable training samples can
be hindered by the inaccessibility of certain locations, or by the fact that small
outcrops of important metarials may contain very few recognizable pixels in
the scene [3]. This can render some of the most valued conventional classi�ers,
notably covariance based ones such as ML, useless because those require at
least NB + 1 samples for each class [10], [3]. Identi�cation of NC � (NB + 1)
samples, where NC is the number of surface cover classes, can be prohibitively
expensive, or impossible, for large NB and NC. Fardanesh and Ersoy [18] o�er
an architectural approach to compensate for small training sets.

Many believe that hyperspectral images are highly redundant because of band
correlations. Others maintain an opposite view. Few investigations exist yet
into intrinsic dimensionality (ID) of hyperspectral images. Bruske [19] �nds the
spectral ID of an AVIRIS image to be between 4 and 7, using OptimallyTopology
Preserving Maps. This seems consistent with the number of mixture model
endmembers in many works, and can be a step toward understanding spectral
image compression. The number of separable meaningful spectral classes is an
important related question, the answer to which was seen to be more complex
when ANNs were utilized than with conventional methods [13{14]. [20] presents
a Growing SOM approach applied to Landsat imagery, which can provide more
theoretical insight as well as a better practical handle on cluster determination.

Visualisation of data clusters in higher-dimensional spaces as detected by
SOM type mappings has been targeted by several works [21{24], however, no
application to hyperspectral images has been published yet. Mer�enyi engineered
a tool speci�c to hyperspectral data, utilizing [21{22] and [24], and detection
of �30 geologically meaningful clusters in an AVIRIS 194-band image from its



SOM is demonstrated at http://www.arizona.edu/�erzsebet/annps.html .

3. Future work, outstanding problems

Application of ANNs to spectral, especially to hyperspectral imagery is in its
infancy. Further, robust solutions are urgently needed to the above, as well as
to some other closely related issues (not discussed here) such as classi�cation
of multi-source disparate data in conjunction with spectral images [9]; missing
bands; variable spectral resolution.

Image compression has an even more pressing signi�cance for multi- and hy-
perspectral data than for monochrome and RGB images. Transmission of enor-
mous data volumes from satellites with limited downlink capacity, and storage of
these data merit serious considerations. Encouraging improvement over the most
widely used JPEG compression algorithm is presented by Amerijckx et al., [25]
using an SOM. Hopefully, such approaches can be extended to multispectral im-
agery in a way that takes into account and makes use of the band correlations.
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