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Explicit Magnification Control of Self-Organizing
Maps for “Forbidden” Data

Erzsébet Merényi, Senior Member, IEEE, Abha Jain, and Thomas Villmann

Abstract—In this paper, we examine the scope of validity of the
explicit self-organizing map (SOM) magnification control scheme
of Bauer et al. (1996) on data for which the theory does not guar-
antee success, namely data that are n-dimensional, n � 2, and
whose components in the different dimensions are not statistically
independent. The Bauer et al. algorithm is very attractive for the
possibility of faithful representation of the probability density
function (pdf) of a data manifold, or for discovery of rare events,
among other properties. Since theoretically unsupported data
of higher dimensionality and higher complexity would benefit
most from the power of explicit magnification control, we conduct
systematic simulations on “forbidden” data. For the unsupported
n = 2 cases that we investigate, the simulations show that even
though the magnification exponent �achieved achieved by magni-
fication control is not the same as the desired �desired, �achieved

systematically follows �desired with a slowly increasing positive
offset. We show that for simple synthetic higher dimensional data
information, theoretically optimum pdf matching (�achieved = 1)
can be achieved, and that negative magnification has the desired
effect of improving the detectability of rare classes. In addition,
we further study theoretically unsupported cases with real data.

Index Terms—Data mining, high-dimensional data, map magni-
fication, self-organizing maps (SOMs).

I. POTENTIAL BENEFITS, AND KNOWN LIMITS OF SOM
MAGNIFICATION CONTROL

ONE theoretically interesting and powerful data analysis
aspect of self-organizing maps (SOMs) is the map mag-

nification, which relates the density of SOM weights in the
input space, to the probability density function (pdf) of the
input data by the following power law:

(1)

Here, is the magnification exponent and is a constant [1].
Certain values of have been associated with particular quan-
tization or information theoretical properties [1], [2]. An SOM
with maximizes information theoretic entropy, therefore,
such mapping produces the best approximation to the pdf of the
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data with the given number of codebook vectors (SOM weights).
for 1-D data corresponds to minimum mean-squared

error quantization, or, in general, leads to min-
imum mean-squared error quantization of -dimensional data
in -norm [2]. Thus, magnification control enables the realiza-
tion of different similarity concepts in the underlying cost func-
tion (description error) based on the respective -norms. For ex-
ample, near-zero values for approximate the maximum norm
in the description error. As suggested in [1] on the basis of
biological observations of the ”perceptual magnet” effect that
enlarges the cortical representation areas for rare events (e.g.,
events of particular danger that an organism must be alert to),

can enable better categorization by allocating larger-
than-proportional areas of the SOM lattice for low-frequency in-
puts. Regions of lower data probability become more accurately
represented by prototypes, which can lead to detection of rare
clusters. That, in turn, increases the chance of discovery. In data
mining, this mechanism could alert for very small, ”interesting,”
or ”suspicious” groupings in data such as caused by mineralog-
ical deposits of tiny spatial extent that may be indication of past
life in Mars imagery, or by terrorist activity in data gathered by
security agencies. As is known, the inherent property of the Ko-
honen SOM (KSOM) [3] is a map magnification of
(under certain conditions) [4], [5]. This value of is optimal
in neither minimum distortion nor maximum entropy sense. An
SOM variant called conscience algorithm [6] is constructed to
achieve , but cannot induce any other value. The con-
science algorithm is based on heuristics, and although it works
well in practice, theoretical proof does not exist for the achieved
map magnification.

Controlling the magnification of self-organizing neural maps
is, therefore, an extremely attractive possibility because various
values of the magnification exponent can affect desirable quan-
tization properties and serve specific data mining purposes.

The explicit SOM magnification control introduced by Bauer
et al. [1] (referred to as BDH from now on) provided a powerful
principled approach to obtaining a desired magnification expo-
nent for 1-D data and for -dimensional data whose components
are statistically independent. To briefly quote the method, let
and denote the input data manifold and the SOM grid of pro-
cessing elements (PEs, nodes, or neurons), respectively, and

the pdf of , and the pdf of the SOM weights in , respec-
tively. The SOM PEs are indexed by their (potentially multidi-
mensional) grid locations . The weight attached to node
is . For any input, the KSOM learning algorithm [7]
selects a winner node by

(2)
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and then, updates the weights according to

(3)

where the neighborhood function defines the degree of up-
date for each weight. is typically a Gaussian function cen-
tered over the winner node, which we will assume here. In gen-
eral, the neighborhood can be defined in many different ways. In
(3), the learning rate is globally defined, i.e., it is the same for
all PEs for a given time step and its value is independent of any
local properties of the map. The key idea of the BDH learning
is to make the learning rate dependent on the local input density
so as to effect

(4)

This goal is achieved by changing in (3) to

(5)

where is a free parameter, is the time step, and is the
time difference since the PE won last. is a constant and

denotes the effective dimensionality of the receptive field of
. Note that is locally determined, but then, applied to all

weight updates in the current step. By doing so, the local prop-
erty of the map is propagated to the neighbors. With a derivation
similar to that of Ritter and Schulten [4] in which the
property of the KSOM was proven, Bauer et al. showed that the
learning rate in (5) modifies the power law under (1) to

(6)

where the free parameter can be used for controlling the value
of . Therefore, to achieve a desired magnification exponent ,

needs to be used in (5). The reader is referred
to [1] for further details.

Most real data, of course, do not obey the conditions stipulated
for BDH learning (listed in Section II), yet it is real-data scenarios
that would benefit the most from explicit magnification control.
Extension of analytical proof of the BDH scheme for such higher
dimensional cases hinges on analytical proof of the SOM as seen
from, e.g., [4], with which there has not been much luck so far.
This, however, doesnot necessarilymean that the BDH algorithm
should not work for more complex data than it is proven for.

This paper examines and extends the limits of the BDH
through carefully constructed numerical simulations. It also ex-
tends and makes more precise our preliminary results published
in [8] and [9].

II. BEHAVIOR OF THE BDH SCHEME ON 1-D AND 2-D DATA

The theory put forward by Bauer et al. [1] proves that the
BDH algorithm will successfully induce the intended value of

for the following cases:
• 1-D input data;
• -D data, , if and only if

(i.e., the pdf factorizes into the
marginals).

We examine the possible validity of the BDH algorithm be-
yond these limited cases. We specify various values of the mag-
nification exponent as the desired target value to be induced

Fig. 1. Results of magnification control on 1-D data for data set I (open circles)
and data set II (crosses). The graphs compare the values of the magnification ex-
ponent, �, obtained through the explicit magnification control scheme of Bauer
et al. [1] with the desired values of � (filled dots) that were input to the BDH
algorithm. The obtained values were derived by the evaluation of the converged
SOM, similarly as described in [10], using the known pdfs of data sets I and II.
Case number refers to separate runs of the BDH algorithm with different desired
� values.

by the BDH. In each case, achieved by the converged SOM
is calculated by a histogram-based method, as used in [10] and
compared to the desired . Details of the histogram method are
discussed in [11]. We provide a basic description in Appendix A
after the discussion in Section IV.

First, we confirm that the BDH works well for the previous,
theoretically supported cases. Simulations with 1-D data, sim-
ilar to those in [1], are shown in Fig. 1 for two 1-D data sets.
Data set I is generated by and data
set II is generated by , . As seen from
Fig. 1, the values of the magnification exponent to be induced
by the BDH are in tight correspondence with the actual values
achieved, between . The slight discrepancies
can be attributed to the granularity of the quantization (100 SOM
weights). The discrepancies are appreciable for
and for ; however, it is worth noting that the de-
viations are not random: the values seem to be at-
tracted to 1 or 0 (for and ), respec-
tively. The source of the obvious discrepancies outside of the

range could be due to less accuracy in the cal-
culation of or instability of the magnification control.
To our knowledge, this has not been investigated for the BDH.
We know, however, from analyses for other magnification con-
trol approaches that instability regions may exists [12].

Next, we investigate the performance of the BDH algorithm
on simple 2-D data. Experiment 1) will verify the BDH under
the stipulated theoretical conditions of independency. Experi-
ments 2) and 3) explore theoretically unsupported cases where
data in 2-D are weakly and strongly correlated, respectively. The
following cases, with different correlations between the two
dimensions of the data space, are evaluated.

1) Data independent in the two dimensions:
, generated according to the following pdf:

(7)

As demonstrated in Fig. 2, the BDH magnification control
works as advertised, for this data set.
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Fig. 2. BDH simulation with the data set defined under experiment 1) in Section II, whose 2-D input samplesv = (v ; v ) are such that v and v are independent.
(a) 2-D input data samples (small green dots) and distribution of SOM weights (larger black dots), resulting from BDH with � = 0:6 after 2 000 000 learning
steps. Weights adjacent in the SOM lattice are connected. (b) Comparison of the achieved � to � shows very good agreement, as expected. The
discrepancies are largely due to the fact that the theoretical results are asymptotic and we only have a finite number of PEs (100).

Fig. 3. BDH simulation with the data set under experiment 2) in Section II, whose 2-D input samples v = (v ; v ) are such that v and v are weekly correlated,
� � 1. (a) 2-D input data samples (small green dots) and distribution of SOM weights (larger black dots), resulting from BDH with � = 1:0 after
2 000 000 steps. Weights adjacent in the SOM are connected. (b) Difference between � achieved and � increases in a predictable manner as �

decreases from 1.

2) Data weakly correlated in two dimensions: . The
data consists of two equal size subsets of 2-D samples,
defined by

for the first subset

for the second subset (8)

where . and are weakly corre-
lated with the correlation coefficient . From
Fig. 3, it can be seen that achieved and the desired are
almost equal at and the two values differ increas-
ingly but in a predictable manner as decreases. This is a
stronger result than available from the theory, as the theory
only guarantees successful prediction if and only if and

are independent.
3) Data strongly correlated in two dimensions: . This

data set consists of 2-D samples generated by

(9)

where . The correlation coefficient is
. In this strongly correlated case, even

though achieved by the map differs from the desired
value, there is a clearly observable trend that the achieved
values of are systematically decreasing, following the
desired values with a shift that increases slowly with
decreasing values (Fig. 4). This is again a stronger result
than the theory provides.

Additional 1-D and 2-D cases are analyzed and more details
given on analysis considerations in [11].

III. BDH ON HIGHER DIMENSIONAL DATA

The BDH algorithm has no analytical justification for data
with two or more nonseparating dimensions. However, the sys-
tematic results from numerical simulations on 2-D “forbidden”
data in Section II encourage investigation of the BDH behavior
on higher dimensional data.

Our methodology to examine the performance of the BDH al-
gorithm on 1-D and 2-D data sets was to induce a certain value
of , evaluate the achieved by the converged SOM, and com-
pare the two. However, evaluation of is not an easy task in
general, especially when the input pdf is unknown, as is most
commonly the case. The evaluation of involves the estima-
tion of the pdf of the data and that of the SOM weights. So far,
we were using a histogram-based method for evaluation [10].
This method becomes inapplicable for high-dimensional data as
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Fig. 4. BDH simulation with the data set under experiment 3) in Section II, whose 2-D input samples v = (v ; v ) are such that v and v are strongly correlated,
� � 1. (a) 2-D input data samples (small green dots) and distribution of SOM weights (larger black dots), resulting from BDH with � = 1:0 after
1 000 000 steps. Weights adjacent in the SOM are connected. (b) Difference between � achieved and � shows a clear trend of a shift that slowly
increases with decreasing � .

the number of samples required for the estimation of the pdf in-
creases exponentially with dimensionality. For the 6-D and 8-D
data in this paper the required number of samples for pdf estima-
tion could easily be over ten million, a number that far exceeds
the total number of our data samples in each case. A summary
of requirements of pdf estimation for higher dimensional data
is given in [11]. Here, we have to restrict ourselves to giving a
brief introduction, along with further pointers to related issues
and references in Appendix A.

There exist several neural approaches to estimate the pdf of
the data on the prototype level. Prototype-based approaches are
the DeSieno conscience learning [6], frequency-sensitive com-
petitive learning [13], the magnification-controlled neural gas
[14], kernelized variants of the SOM [15], and a Gaussian mix-
ture approach based on SOM [16], to name just a few. How-
ever, comparison could be difficult. For example, VanHulle re-
ports, based on 1-D experiments on artificial data, that con-
science learning could be unstable for precise pdf estimation
because the conscience may be taken up by only a few proto-
types [15]. Also, there is no theoretical proof for conscience
learning. Frequency-sensitive competitive learning is theoreti-
cally proven only for the 1-D case and we do not know of nu-
merical verification for higher dimensions.

For higher dimensional cases, we evaluate the performance
of the algorithm indirectly: by observing the resulting map and
comparing to independently known properties of the input data.
We concentrate on cases where we can evaluate the magnifica-
tion results in some meaningful way, from an application’s point
of view. One special case is pdf estimation (forcing ), an-
other is negative magnification. Both can be particularly useful
for complex, high-dimensional data if systematic experiments
indicate a predictable behavior of the BDH for such ”forbidden
data.” For example, if successful forcing of negative magnifi-
cation can be shown, the magnification effect is useful for data
mining regardless of the exact value of the induced magnifica-
tion exponent, which we cannot calculate.

A. BDH-Induced Negative Magnification on 6-D Synthetic
Data

Finding very small classes in a data set is a challenging task.
Input classes of rare occurrence may have little or no represen-

Fig. 5. The 6-D synthetic image data sets: the known class structure and spec-
tral signatures of the classes. Each spectral signature is displayed with an offset
for clear viewing. The data numbers (DN) on the y-axis indicate the values of
the first band of each respective spectrum. The spatial area of both images is
128� 128 pixels. (a) Five-class image data set with four large square classes
(A, C , E, and K , with 4095, 4096, 4096, and 4096 pixels, respectively), and
one one-pixel class U . The spectral signature of class U is dramatically dif-
ferent from the rest. (b) The 20-class image data set, with 16 nearly equal area
(32� 32 pixels) classes A–P , and four additional very small classes: R, Q, S,
and T contain 1, 16, 64, and 128 pixels, respectively. Classes Q–T take away
the corresponding number of pixels from those of the A–P classes in which
they are embedded.

tation in the output map when KSOM is used. As shown for 2-D
factorizing data in [1], application of BDH with results
in negative magnification: The areal representation of low-fre-
quency input samples becomes enlarged in the SOM. This is
promising for detection of rare classes. Does it, however, work
for higher dimensions?

We use two synthetic six-band (spectral) images with known
cluster structure, described in Fig. 5, to show that negative mag-
nification can be induced on this type of “forbidden” data. A
spectral image consists of coregistered image bands, each
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Fig. 6. Magnification results with the five-class data set. (a) Using KSOM. Top: Weight vectors of the 10� 10 SOM. Only one PE represents the rare class U in
the lower right corner. Bottom Left: Clusters identified in the map by visualizing the weight distances of adjacent PEs (the darker the fence between two PEs, the
smaller the difference between the corresponding weights). Bottom Right: This figure shows which class each weight vector is closest to, which complements the
information on the left. (b) Using BDH with � = �0:8. Top: Weight vectors in the 10� 10 SOM. The rare class U is now represented by ten PEs. Bottom Left:
Clusters identified in the SOM. Bottom Right: The map of nearest class for each weight vector.

of which is taken at a different wavelength. Every pixel of the
image, therefore, is characterized by an -dimensional vector,
called the spectrum, similar to the data in Fig. 5. In real spectral
images, taken of material surfaces, the spectrum carries compo-
sitional information about the material in the respective pixel.
See, for example, [17] for more detail. Spectral images are pow-
erful information sources and are used in many areas of scien-
tific research, business, industry, defense systems, etc. Detailed
and precise exploitation of such data is of great interest. One es-
pecially valuable capability is the discovery of small, interesting
groups of data.

The synthetic data sets used in this section are 128 128
pixel images, with a 6-D vector associated with each image
pixel. These 6-D vectors are the input patterns for the SOM.
Both images are artificially divided into rectangular areas within
which the spectral signatures are the same. The spatial distribu-
tion of the various classes, along with their mean spectral sig-
natures, are described in Fig. 5. The two images represent two
levels of data complexity. The five-class data is illustrated in
Fig. 5(a). Class is a rare class with only one data point and
with a spectral signature that is very different from the signa-
tures of the other four classes. The rest of the classes have 4096
or 4095 data points each. In this data set, correlation coefficients
between the different dimensions range from to

, which renders it a “forbidden” case for appli-
cation of BDH. When a 10 10 KSOM is used, the rare class

is represented by only one PE in the SOM [Fig. 6(a)]. BDH
with magnifies the rare class in the map: In
Fig. 6(b), it is represented by ten PEs.

The choice of comes from an extrapolation
of the curves in Fig. 4, from which we estimated that a value
of will likely induce , so,
in order to ensure a significant negative induced value, we need
to specify . On the other end, Fig. 1 cautions
us not to choose too large negative values. This extrapolation
is admittedly only a hypothesis at present, not only because the
simulations in Fig. 4 were not conducted for negative values but
also because even if we had values for 2-D data assuming the
same behavior for higher dimensional data would still remain a
hypothesis. Evidence of successful forcing of negative magni-
fication may motivate extension of the Fig. 4 simulations to the
negative range in future work.

The synthetic image data set with 20 classes is similar to the
five-class image data set in concept, but it has 20 classes, as
shown in Fig. 5(b). Two of the classes, marked and are
very small, with only one and 16 data points, respectively. Here,
the signatures of the rare classes are very similar to those of the
larger classes, unlike the contrasting signature of the class in
the previous case. Trying to find these rare classes among the
20 classes using the same 10 10 SOM is a larger data mining
challenge than finding the class in the five-class image. Corre-
lation coefficients between the different dimensions range from

to , so this too is a ”forbidden”
case for BDH according to the available theory. Clustering this
data set using KSOM is depicted in Fig. 7(a). The rare classes
are detectable but each is poorly represented, only by a single
PE. Also, because of the tight quarters (the same SOM size for
more classes), the separating fences (the contrasts between the
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Fig. 7. Magnification study with the 20-class image. (a) Using KSOM. Top: Weight vectors in the 10� 10 SOM. Only one PE is allocated for each of the rare
classes R and Q. Bottom Left: Clusters identified in the SOM. Fence intensity from black to white is proportional to the distance between the corresponding
weights. Bottom Right: This figure shows which class each weight vector is closest to, which complements the information on the left. (a) Using BDH with
� = �0:8. Top: Weight vectors in the 10� 10 SOM. Now, four and seven PEs represent the rare classes R and Q, respectively. Bottom Left: Clusters
identified in the SOM. Bottom Right: Map of closest class for each weight vector.

Fig. 8. The 6-D eight-class data set as represented by an SOM that learned by
the conscience algorithm. (a) Cluster boundaries, visualized as the distance of
weights of adjacent PEs, similarly to that of the U -matrix [18] except we com-
pute and display the distances to all eight neighbors separately, by the fences on
the edges and corners of the PE grid cells. White is high fence (large dissimi-
larity), black is low fence (great similarity). The SOM has a 15� 15 square grid.
Each grid cell is shaded by an intensity of red proportional to the number of data
points mapped to the PE in that grid cell. Black grid cells between the strong
fences indicate that the receptive fields of the corresponding PEs are empty. The
fairly uniform density over the nonempty PEs indicate a good approximation of
maximum entropy mapping. The entropy of this map (relative to the theoretical
maximum) is 0.998 for the active PEs and 0.962 for all PEs. (b) Known class
labels superimposed over the PE grid cells. Both representations show that the
PEs (and SOM weights) are divided among the classes in proportion to the sizes
of the classes: A and B (red and white) contain 4096 data points each, C and
O (green and grey) 2048, and D;H; I; and M have 1024 points. The corre-
sponding number of designated PEs are A:48, B:49, C:25, O:21, D:13, H :9,
I :10, andM :9. The deviations from the exact 4 : 2 : 1 proportions can be due to
the small size of the SOM, integer arithmetic, and the formation of intercluster
gaps.

PE weights) are less pronounced, which makes the small classes
less discernible. Fig. 7(b) shows that BDH with

Fig. 9. Eight known classes of the same 6-D patterns as in Fig. 8, as represented
by an SOM that learned via the BDH magnification control, forcing � = 1.
Since this is a “forbidden” data set with strong interdimensional correlations,
inducing � = 0:7 effectively produced � = 1, as suggested by
the experiments in Fig. 4. (a) Cluster boundaries and data density are visualized
the same way as in Fig. 8. The entropy of this map (relative to the theoretical
maximum) is 0.96 for the active PEs and 0.914 for all PEs. Note that many of
the dark grid cells on either sides of single line fences have data points mapped
to them albeit few. (b) Known class labels superimposed over the PE grid cells.
Both representations show that the PEs (prototype vectors) are divided among
the classes in proportion to the sizes of the classes, similarly to the conscience
algorithm results in Fig. 8: A and B (red and white) contain 4096 data points
each, C and O (green and grey) 2048, and D;H; I; and M have 1024 points.
The corresponding number of designated PEs areA: 47,B: 44,C: 24,O: 19,D:
10,H : 10, I : 10, andM : 10. The deviations from the exact 4 : 2 : 1 proportions
can be due to the small size of the SOM, integer arithmetic, and the formation
of intercluster gaps.

magnifies the rare classes in the map: The 1-pixel class is now
represented by four PEs in contrast to one PE in the map formed
by KSOM, and class is represented by seven PEs. The de-
tectability of the rare classes has been increased by magnified
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areal representation as well as by higher contrast in the weight
differences.

The aim of negative magnification is to enhance the SOM
areal representation of low-density data regions by forcing the
allocation of more prototypes to those regions. This may im-
prove the detectability of unknown rare classes. Naturally, the
representation of the nonrare classes in such a map will be some-
what repressed as is apparent from the bottom of Fig. 7. The
map obtained with and the one obtained with

together provide a more complete picture of the
structure of a data set.

In order to further chart the behavior of the BDH, we now
present additional controlled experiments with synthetic as well
as real data sets. Beside , of special interest is the case of

because it effects maximum entropy quantization, and
thus helps faithful mapping of the input data structure.

B. Inducing Magnification on 6-D Synthetic Data

After demonstrating that negative magnification can be
achieved on higher dimensional data, now, we show that
can also be achieved by BDH, fairly accurately, on similar data.

is a special case in that the heuristic conscience algo-
rithm by DeSieno [6] is believed to achieve maximum entropy
quantization, therefore, if we verify that, we can compare the
properties of the SOM obtained by BDH magnification with an
SOM obtained by conscience, to determine if the BDH realized

. In addition, we can compare the entropies of the two
maps.

The simulations presented in this section serve two purposes.
One is to demonstrate that the conscience algorithm indeed pro-
duces pdf matching, and the second is to show that by forcing

the BDH can accurately model the pdf, at least on the
level of the cluster structure of the data. We do this by a di-
rect comparison of the clusters detected by the SOMs with the
known labels of data points (the known clusters) in the arti-
ficially generated data. In many data mining pursuits, among
them remote sensing and medical applications, the main objec-
tive is to find interesting, relevant groupings in the data, but not
necessarily a finer approximation of the pdf. Such challenges
can be met without a very precise evaluation of .

The data set we use for this purpose is an eight-class syn-
thetic image consisting of six image bands, similar to the data
described in Fig. 5 except that here eight spectral types are
distributed over subareas of the 128 128 pixel image in the
following manner: Classes and each cover 4096 pixels,
classes and are each 2048 pixels, and classes and

have 1024 pixels. Gaussian noise, about 10% on average,
was added to create more realistic variations within the spec-
tral classes. The conscience algorithm is expected to map each
of these classes onto areas in the SOM that are proportional in
size to the areas of the classes, namely classes and
should each occupy half as many PEs than either of class or

, and and both should be represented by twice as many
PEs as or , and by four times as many PEs as any of
and . Fig. 8 shows that indeed, this is the case within the ac-
curacy allowed by the size of the 15 15 square SOM grid, by
integer arithmetic, and taking into account the empty PEs that
form dividing gaps between clusters. The clusters are captured

using a somewhat modified version of the -matrix [18], in that
we compute and visualize the distances to the neighbor weights
on either side of a PE separately, and do this also for the diag-
onal neighbors (we use an eight-neighbor neighborhood). The
intensity of the “fences” between PEs is proportional to the dis-
tance between weights, on the black to white grayscale. White is
large difference and black is great similarity. Clusters are clearly
outlined by the white fences. Fences within the clusters are uni-
formly very low (virtually 0). Out of 225 SOM PEs, classes
and cover 48 and 49 PEs, and cover 25 and 21 PEs,
and the smallest four classes occupy 13, 9, ten, and nine PEs,
respectively. The 41 black PEs belong to intercluster gaps. The
largest deviation from the expected values occurs in the smallest
classes, which is understandable considering that just one addi-
tional PE in each of and , taken away from would even
out the areas to ten and 11 PEs each. The SOM was run for two
million steps to ensure convergence, but the cluster structure in
Fig. 8 was already formed after 2–300 000 steps. It is noteworthy
that the precision of the pdf estimation is better than the level of
the cluster structure: The intensity of the red color in each PE
cell in Fig. 8(a) is proportional to the relative winning frequency
of the respective PE, and as is evident the red shades are fairly
uniformly distributed within clusters.

Since a maximum Shannon entropy (equiprobabilistic) map-
ping provides the most faithful match of the pdf by the given
number of prototypes, the entropy of the SOM is a good indi-
cator of the quality of the learned quantization. The Shannon
entropy of the SOM is given by

(10)

where is the PE index in the SOM ,
is the probability that PE wins an input sample, where

is the number of input samples mapped to (won by) PE , and
is the total number of input samples. The higher the value of

the map entropy, the closer the mapping is to equiprobabilistic.
In an equiprobabilistic map , and in that
case, would have a maximum value of . We compute
a normalized entropy by dividing by the theoretical maximum

(thus, the maximum possible value of the entropy of any
map is one), so that entropies can be compared across SOMs
of different sizes. The (normalized) entropy of the conscience
SOM in Fig. 8, is 0.998 for the active PEs, and 0.962 for all
PEs.

After this verification of the expected performance of the con-
science algorithm, we can evaluate the magnification perfor-
mance of the BDH on the same data. The pairwise correlations
of the various dimensions of this data set are typically strong,
(most are between 0.3–0.8, and only two are less than 0.05).
Based on the 2-D experiments summarized in Fig. 4, and lacking
any guidance from theory or other works, we hypothesize that
a similar trend (as in Fig. 4) may apply for higher dimensional
forbidden data, i.e., in order to produce a certain value
one needs to request an value that is offset according to
some observed function. Since this paper is the first one to chart
such functions, the most reasonable assumption we can make is
the functional relationship we charted for 2-D data with strong
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Fig. 10. Comparison of supervised classification and BDH clustering with � < 0, on an eight-band spectral image of Ocean City, MD. (a) Earlier supervised
classification that satisfactorily mapped 24 known cover types of interest, based on verification against ground truth. Shown centered in the small black rectangle
within the framed upper right quadrant is an unclassified gray spot (the color of the background, “bg”) apparently of the shape of a building, to the right of a yellow
rectangular patch. He pale aqua spots in the black ovals belong to the rare class V , known at the time of the supervised classification. (b) SOM clustering using
BDH magnification control with � = �0:8 on the upper right quadrant of the image. First, notice that the agreement between the supervised class map and
this cluster map is striking, which inspires confidence in the clustering. Second, notice that the spot that remained unclassified in the supervised map is now filled
exactly and with a color (greenish-yellow) that is different from all previous class colors: The spectral signature of this area is distinct. We discovered a new class.
Moreover, this cluster only occurs at this location, and nowhere else: We discovered a small rare class. Fig. 11 shows the SOM view of this discovery. Note that
the formerly known rare class V (pale aqua spots in black ovals) became better defined. Class spectral signatures are plotted in Fig. 12.

Fig. 11. Comparison of SOMs developed by BDH versus conscience learning. (a) SOM learned by BDH � = �0:8, using the upper right quadrant of the
512� 512 pixel Ocean City image, shown framed in Fig. 10. (b) SOM learned by the Conscience algorithm (� � = 1), using the entire Ocean City image. (c)
Rare classes in the image. The newly fond cluster (indicated in the rectangles) only occurs in one other spot in the entire image, outside of the BDH-discovered
location within the upper right quadrangle. It is apparent, as explained in Section III-C, that the rare clusters are magnified in the BDH SOM in comparison to the
Conscience SOM.

dimensional correlations, and correct our assumption according
to the outcome of the simulation, if needed. By extrapolation
of Fig. 4, we assume that in order to achieve
the BDH needs to be run with a choice of . The
SOM, formed by BDH magnification forcing of

in this way (Fig. 9), shows that it has a very similar area dis-
tribution over the eight classes as the conscience SOM in Fig. 8
(again, with similar accuracy considerations). This indicates that
the BDH fairly closely achieved the desired maximum entropy
mapping on this “forbidden” data set. The normalized entropy
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of this map is 0.96 for the active PEs and 0.914 for all PEs. We
note that the normalized entropy of the BDH SOM is lower than
that of the conscience SOM. This is also obvious from the den-
sity of the cells that are close to the cluster boundaries in Fig. 9.
By preliminary observation, the entropy of the BDH SOM very
slowly increases over a very long run, however, it does not reach
the entropy of the conscience SOM in approximately seven mil-
lion steps. We think that this discrepancy could be due to other
circumstances that the BDH may be more sensitive to, such as
the combination of the number of clusters and the size of the
SOM lattice, or the learning schedule including the decay rate
of the neighborhood. This needs to be evaluated in subsequent
work.

One difficulty with the BDH is the estimation of the data and
weight density at the locations of the weights [see (4)] [19]. The
estimation [see (5)] uses a rough approximation of the volume
of the receptive field of , , where is the effec-
tive dimensionality of the receptive field. This dimensionality
may vary from weight to weight and is usually unknown, there-
fore, any global value of is a crude estimate. For that reason,
we can expect the BDH to work well with a range of values
(within ). Therefore, we chose , which is the squared
Euclidean distance, and thus, has the advantage of saving on
computational cost. We add that the relative insensitivity of the
BDH to the value of agrees with our experiences with a lim-
ited number of trials.

C. Finding Rare Clusters in a Real Spectral Image

As we mentioned in the introduction, magnification control
can lead to the detection of rare clusters. In particular, for
inverted (negative) magnification, prototypes are preferentially
placed in low-density areas of the data space, resulting in
more accurate description of those low-probability regions.
Low-density regions may contain meaningful, separate clusters,
which are not detectable if there are not enough representing
prototypes but may become “visible” through better repre-
sentation using negative magnification. We will demonstrate
this effect with a real–world data example, which is an urban
remote sensing spectral image of Ocean City, MD. We use a
512 512 pixel, eight-band subset of the Ocean City image to
study the effect of forced negative magnification. This data set
also has high pairwise correlations, the magnitudes of which
are mostly between 0.5 and 0.95. We cannot compute the value
of , but we can compare the appearance of known
small classes in the BDH SOM and in an SOM that learned
with the conscience algorithm to see if the rare classes occupy
larger areas in the BDH SOM than in the conscience SOM.
In addition, we look for previously unidentified clusters. An
earlier supervised classification that was independently veri-
fied against ground truth provides the knowledge of existing
clusters in the data. Fig. 10 demonstrates the discovery of one
new—very small—cluster. It also shows another small cluster
(pale aqua, class ) that was known at the time of the earlier
supervised classification, but was more definitely outlined by
BDH clustering. Fig. 11 compares the two SOMs. Shown in
Fig. 11(a) is the 40 40 SOM formed by BDH learning with

, using only the upper right quadrant of the
image (framed in Fig. 10), i.e., 1/4 of the data. The newly

Fig. 12. Mean spectral signatures of the clusters identified in the Ocean City
spectral image. Spectra are offset for clarity. The DN value on the vertical
axis indicates the value in the first spectral band. The newly discovered cluster
(greenish-yellow in Fig. 10) is labeled “a” on top of the right panel. The
spectral dissimilarity of this cluster with the rest is obvious. The other rare
classes discussed in Section III-C are class C and V .

discovered rare cluster (greenish-yellow) is indicated by the
middle arrow. The spectral signature of this cluster is distinc-
tively different from all other clusters, as seen in Fig. 12. Also
indicated are two other small clusters that correspond to the
previously known (pale aqua) and (white) classes from the
supervised class map in Fig. 10. The 40 40 SOM produced
by conscience learning, using the entire image, is in Fig. 11(b).
The greenish-yellow cluster was hard to see in this map, and
was only “discovered” because we looked for it based on the
BDH discovery. This rare cluster covers only three PEs in the
conscience SOM in contrast to seven PEs in the BDH SOM
where it is also contoured by better developed “fences.” Simi-
larly, the previously known small class is represented by four
PEs in the conscience SOM versus six PEs in the BDH SOM,
even though the conscience SOM was learned with four times
as many data points, including more occurrences of the class
in the large image outside the upper quadrangle, and as seen
from Fig. 11(c). The previously known white class occupies
four PEs in both SOMs, in spite that within the 1/4 subimage
used for BDH clustering, the white class only occurs in a small
rectangle (not circled) in the upper right corner of Fig. 11(c),
while there are many more white class pixels in the entire image
used for the conscience SOM training [most notably the long
vertical rectangle in the lower right corner of Fig. 11(c)]. These
observations clearly indicate that, compared to Conscience the
SOM, the BDH preformed negative magnification.

IV. DISCUSSION OF PROBLEMS AND CONCLUSION

We mention here some issues related to this paper but not
discussed previously. All of our evaluations assume topologi-
cally correct mapping by the respective SOMs (that the learning
does not result in “twisted” maps). Ensuring and verification
of this is not easy, especially for high-dimensional, complex
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data. Although supporting theories exist [20], [21], those, sim-
ilarly to the BDH itself, need systematic evaluation for higher
dimensional data. In these applications, we used data of which
we knew the cluster structure from independent investigations,
thus we could verify the validity of the clusters identified by the
SOM.

In our experience, finding “good” learning parameters is more
difficult for the BDH algorithm than for KSOM or for the con-
science algorithm. One especially important question seems to
be the value of negative : Can one “overdistort” the rest of the
map while discovering rare clusters, by using a too large nega-
tive value? In several cases of real data, we saw that while ex-
tremely rare classes were beautifully magnified and further sep-
arated into meaningful subclusters such as in discovering rare
Martian mineral types [22], the rest of the data were mapped
onto thin filament-like groups of PEs leaving most of the SOM
grid empty.

A related item is that it is hard to estimate what value
should be used as input to the BDH, in order to achieve a spe-
cific value. The experiments presented in Fig. 4 suggest a
trend but we caution against straight extension of those values
to higher dimensional data. Some preliminary experiments with
the eight-class data seem to indicate that may success-
fully be induced within a range of . We found that to
be the case for , with this particular data
set. It may be worth further simulations to get a firmer grasp on
stability regions (that we suspect may exist), especially for neg-
ative values. The current lack of capability to evaluate
from the SOM of high-dimensional data makes this problem
even harder.

The previous considerations suggest that magnification con-
trol may influence other properties of the SOM, namely, the
ability of topographic mapping. Thus, if one is interested in op-
timizing both magnification and topographic mapping, one has
to balance between these aspects and to prove the topography
by appropriate tools. Alternatively, the magnification scheme
can be integrated directly into the growing self-organizing map
(GSOM) approach [23].

The estimation of the data and weight density at the locations
of the weights [see (5)] is problematic in the BDH algorithm, as
we mentioned in Section III-B. A more accurate assessment may
be possible by the estimation of the volume of the Voronoi cells,
which may be done through the size of the respective receptive
fields (that the algorithm can record continuously) and may re-
sult in marked improvement of the algorithm. This is a follow-up
task for us, worth pursuing in our opinion, especially since the
BDH approach seems to be the most convenient method to con-
trol the magnification (see [12]).

Of course, the most interesting and outstanding issue is the
theoretical justification of magnification control for higher
dimensional cases. Kohonen proposed a theoretical approach
for higher dimensions by modeling the local receptive field
densities with simple hyperspheres of constant data density,
which enables local factorization [19]. However, this assump-
tion is generally not true for real data. In addition, Kohonen’s
considerations require that the SOM dimensionality match that
of the data. A modification of the SOM winner determination
by Heskes [24] leads to an energy function for the learning
of SOMs, valid also for higher dimensions, but derivation of

magnification properties seems to be very difficult because in
the Heskes scheme the neighborhood function influences the
winner selection. If we were to follow the derivation of Ritter
and Schulten [4], a recursive equilibrium equation would result
for which no solution exists at present. Another extension of
SOMs is the neural gas paradigm whose learning dynamics also
has an energy function [25]. For the neural gas, analytical proofs
exist for several different magnification control paradigms in-
cluding the BDH learning. However, since the energy function
is obtained by the modification of the neighborhood function
such that it is evaluated in the data space, the neighborhood
structure among PEs is lost. The difficulties illuminated by
these investigations further motivate the numerical simulations
we described in this paper.

In conclusion, we presented systematic experiments with the
map magnification control by BDH [1], on data for which the
BDH scheme is not supported by existing theory. Based on our
observations of the systematic BDH behavior on 2-D nonsepa-
rating “forbidden” data, we were able to induce maximum en-
tropy mapping and negative magnification on 6-D syn-
thetic data. We also showed that negative magnification worked
on 8-D real image data and helped enhance the areal representa-
tion, and thereby, the discovery of rare clusters. While the range
of our studies is too limited to draw definite conclusions, the
simulations indicate consistent behavior of the BDH on some
set of “forbidden” data. This encourages further simulations to
investigate the predictability of the BDH for potential analyses
of complex, high-dimensional data. That, in turn, perhaps can
inspire more theoretical studies and algorithm development.

APPENDIX

HISTOGRAM-BASED METHOD FOR EVALUATION OF

The following power law relates the density of weights in the
input space to the pdf of the input samples

(11)

where , the density of weights in the input space, is the
number of reference vectors in a small volume of the input
space. If both sides of (11) are divided by , the total number
of weight vectors, on the left, we get , the pdf of the
weight vectors, and on the right, can be absorbed
into a new constant . From now on, we will use
the same power law as in (11), but with the understanding that

now denotes the pdf of the weight vectors.
From (11), it is clear that finding the value of re-

quires the estimation of the two pdfs. The following histogram-
based method can be used to estimate the pdfs and evaluate .

Let and be samples of the two densities and ,
respectively. and can be obtained from the input samples
and weights by partitioning the input space into bins and
constructing frequency histograms in the following way:

(12)
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where is the number of weights in the th bin, is the
total number of weights, and is the volume of the th bin

(13)

where is the number of input samples in the th bin, is
the total number of input samples, and is the volume of the
th bin.

The value of that best satisfies

(14)

in other terms, one that minimizes the error measure

(15)

is the value of by the SOM. can be found by
varying in a range around the value of , determining
the corresponding value of the error , and then, choosing
the as that value of that minimizes .

The constant for a particular value of can be determined by
noting that (where is the probability
that a weight lies in the th bin; summing this over all bins yields
one). Multiplying both sides of (14) by and summing over

bins gives

(16)

This histogram-based method for determining the value of
seems simple but there are difficulties in extending

it to higher dimensions. The bin in a -dimensional space is
a hypercube. In order to have an accurate estimation of the
pdf, and hence, that of , it is important to determine
the correct size of the bin. As it turns out, this is not an easy
task. The number of input samples required for estimating
either of the pdfs for high-dimensional data is prohibitive. As
a consequence of this, the evaluation of in a general
high-dimensional case is a difficult problem. We refer the
reader to [26] for discussion of bin size selection and other
issues involved in pdf estimation.
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