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Abstract: - Magnification in Self-Organizing Maps refers to the functional relationship between the density of 
the SOM weights in input space, and the density of the input space. The explicit magnification control scheme 
proposed by Bauer, Der and Herrmann [1] in 1996 opened the possibility to achieve specific magnifications 
that have attractive properties for data mining. However, the theoretical support only extends to 1- and 2-
dimensional data with independent dimensions. This paper studies the scope of validity of the magnification 
control approach in hope to justify its application to real, high-dimensional data, which do not fall in the 
categories supported by the theory. We show encouraging results on synthetic as well as on real data. 
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1 Magnification in SOMs 
One theoretically interesting and powerful data 
analysis aspect of Self-Organizing Maps (SOMs) is 
the so called map magnification which refers to the 
power law that relates the density of weights in the 
input space Q(w) to the pdf P(v) of the input 
samples: 
                             Q(w) = c P(v)α

 where α is the magnification exponent and c is a 
constant [1]. As shown by [1] a converged SOM 
with α = 1 maximizes information theoretic entropy. 
α = d/(d+2) for d-dimensional data corresponds to 
minimum mean squared error quantization. α < 0 
enlarges response areas in the SOM for low-
frequency inputs, which is potentially useful for 
making discoveries as it would enhance the 
detectability of rare classes. Kohonen's SOM 
algorithm (KSOM) [2] is known to achieve α = 2/3 
(under certain conditions) [3] which is optimal in 
neither minimum distortion nor maximum entropy 
sense. A SOM variant called Conscience algorithm 
[4] can effect α = 1 but not any other value. Bauer, 
Der and Herrmann proposed a principled SOM 
algorithm (which we will call BDH in this paper) for 
the explicit control of the magnification exponent by 
using adaptively adjusted local learning rates [1]. 
This possibility is extremely attractive because one 
would have a turn-of-the-knob solution for obtaining 
various quantization properties, appropriate for a 
given data mining purpose.  However, the theory 
only guarantees success for 1-dimensional input data 
and for 2-dimensional data whose components are 
statistically independent. Most real data do not obey 

these conditions, yet it is data mining of real data 
(and especially of high-dimensional data) that would 
benefit the most from explicit magnification control. 
Validations of the BDH algorithm were given on 
appropriate 1- and 2-dimensional simple data in [1].  
We are not aware that the validity and power of this 
intriguing scheme has been gauged for real data. 
 
 
2 Magnification control tests on data 

unsupported by the theory 
Our objective is to investigate whether the BDH 
algorithm can be applied to data outside of the 
category for which the theory can guarantee success. 
As usual, in cases where analytical proof is not 
available one can run carefully constructed simu-
lations to chart the scope of validity. Our two main 
interests are: maximum entropy (or equiprobab-
ilistic) quantization (α = 1) because in this case the 
weights of the converged SOM achieve the most 
faithful representation of the input data space; and 
negative magnification (α < 0) because in this case 
low-frequency inputs (rare clusters) could be 
detected much easier than from a regular KSOM or 
from a maximum entropy map thus facilitating 
specific data mining pursuits.  

 
2.1 BDH for low-D synthetic “forbidden 

data” 
In a recent work [5] we verified that the BDH 
indeed achieves the above theoretically derived 
magnification exponents on data supported by the 
theory. Then we examined the effect of BDH 
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magnification on relatively simple synthetic data 
that fall into the “forbidden” category in [1]: 2-
dimensional data with weakly and with strongly 
correlated dimensions. On these, the magnification 
exponent αachieved  obtained by the SOM showed a 
systematic difference from the intended magni- 
fication exponent αintended  within the range of α that 
we explored (0.6 – 1.2). These results are stronger 
than the theory offers: even though we did not 
achieve the exact value of αintended the experiments 
suggested that the value of αachieved    could be 
predicted from the value of αintended used in the BDH. 

2.2 BDH for >2-D synthetic data 
Encouraged by the apparent wider scope of BDH 
than guaranteed in [1] we then ran simulations to 
observe the effect of negative magnification on 6-
dimensional data with small (5) and larger number 
(20) of known classes, including extremely rare 
clusters. Figure 1 shows the results obtained in [5] 
for the 20-class data consisting of 6-dimensional 
inputs. The class highlighted in magenta has 1 data 
vector in it, the aqua class contains 16 input vectors. 
All other classes have approximately 1024 data 
vectors.  
 
 

 

 
Fig. 1. Clustering a 20-class data set (from [5]). Left: Using 
1 node represents each of the rare classes, the 1-element class
aqua. Bottom: Clusters identified in the SOM by visualizing
“fences”. Lighter fence means larger difference between the
separate well. The 1-element magenta cluster mapped very clo
fences separating the aqua class from the dark blue class are 
separation between the purple (a 256-element moderately ‘
through the distance of their weights in the diagonal directio
Using BDH with α = -0.8 . Top: Weight vectors in the 10 x 10
respectively.  Bottom: Clusters identified in the SOM. The
Original figure is in color. Paper can be downloaded from htt

 

 
 

KSOM. Top: Weight vectors in the 10 x 10 SOM map. Only 
 highlighted in magenta, and the 16-element class shown in 
 the distances of weights of adjacent nodes as grey scale 
 weights of the corresponding nodes. The regular classes 
se to the red class, their separation is weak.   Likewise, the 

less developed than fences among the non-rare classes. The 
rare’ cluster) and the light green class is well developed 
n, in spite of the adjacency of the respective nodes. Right: 
 SOM map. 4 and 7 nodes represent now  the rare classes, 

 magenta cluster now separates well from the red class. 
p://www.ece.rice.edu/~erzsebet/papers/wseas-paper.pdf . 
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We note that evaluation of the achieved 
magnification exponent, similarly as was done in [6] 
is only possible for low-dimensional data because it  
involves estimation of both the pdf of the weights in 
input space and the pdf of the input data. Since the 
required number of data points for acceptable 
estimation grows exponentially with dimensionality, 
the pdf estimation becomes practically impossible 
for higher than 3-4 dimensions. Therefore, for 
higher dimensions we evaluate αachieved by direct 
observation of the converged SOM. 

Negative BDH magnification works well on 
fairly complex, albeit synthetic data. Figure 2 shows 
that maximum entropy quantization (α = 1) also 
works very well. We compared the performance of 
BDH with that of the Conscience algorithm on a 

known 8-class, 6-dimensional synthetic data set, 
where the sizes of classes were precisely known. 
The details are explained in the caption of Figure 2. 
This test was two-fold. First, it confirmed that the 
Conscience algorithm produced maximum entropy 
mapping (that the number of nodes that represent 
each known class is proportional to the size of the 
class). Second, we obtained the same result with 
BDH inducing α = 1, thus confirming that the BDH 
indeed achieved αachieved  = 1. To obtain αachieved  = 1 
we used αintended  = 0.7 in the BDH based on the 
systematic difference we observed between αintended 
and αachieved in [5]. The comparison with the 
Conscience algorithm is a special case of great 
importance because it provides a way to evaluate  
the magnification for αachieved =1. 

 
Fig. 2. Comparison of the performance of Conscience, and BDH forcing α = 1.  The synthetic data set consists of 6-
dimensional patterns that fall into 8 known classes. The two panels on the left illustrate the clusters learned by  the 
Conscience algorithm, and the two right panels illustrate the BDH clusters, respectively.  Left of each pair of panels:  
The cluster  boundaries, visualized as the distance of weights of adjacent nodes. White is high fence (large dissimilarity), 
black is low fence (great similarity). The SOM has a 15 x 15 rectangular grid. Each grid cell is shaded by an intensity of 
red proportional to the number of data points mapped to the node in that grid cell. Black grid cells between the strong 
fences indicate that the receptive fields of the corresponding nodes are empty. Right of each pair of panels:  The known 
class labels, color coded and  superimposed over the grid cells representing the nodes. Both representations show that 
the nodes (SOM weights) are divided among the classes in proportion to the sizes of the classes: A, B (red and white) 
contain 4096 data points each, C, O (green and grey) 2048, and D, H, I, and M have 1024 points. The corresponding 
number of designated weights are A:48, B:49, C:25, O:21,  D:13, H:9, I:10, M:9. The deviations from the exact 4:2:1 
proportions can be due to the small size of the SOM, integer arithmetic, and the formation of inter-cluster gaps. Original 
figure is in color. Paper posted at http://www.ece.rice.edu/~erzsebet/papers/wseas-paper.pdf . 
 
 
3 BDH on real, >2-D “forbidden 

data” 
Naturally, the real interest is in the application of the 
BDH algorithm for real data, especially where it is 
desirable to increase the chance of discovery. 
In [7] we showed a comparison between an SOM 
obtained by the Conscience algorithm, and an SOM 
obtained by BDH magnification with αintended  = -0.8, 
for an 8-band remote sensing spectral image of 
Ocean City, Maryland. This data set is outside of the 
category of data that the theory supports, on two 
counts: it is more than 2-dimensional, and because 
the pairwise correlations between image bands range 

anywhere from 0.5 to 0.95. Direct  computation of 
the magnification achieved by the SOM was not 
possible (see [5]), but we could compare the areas 
occupied by the same clusters in the SOMs 
produced by Conscience and BDH. A supervised 
classification from an earlier study [7] that was 
sufficiently verified to be considered as “ground 
truth” (known labeling of image pixels) also served 
the evaluation. The Ocean City analysis showed 
beautifully that very small clusters gained more  
areal representation in the BDH SOM than in the 
Conscience SOM. In fact we discovered a new 
cluster (a roof type) that filled a very small area, left 
unclassified in the earlier supervised classification.  
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3.1 Rare clusters in spectral images of Mars 
One of the most important things in the exploration 
of other planets is the discovery of new, surprising 
or rare materials. Spectral imagery is a frequently 
used type of data for mapping planetary surface 
composition, similarly to earth remote sensing. 
Encouraged by the success with terrestrial imagery 
we analyzed a spectral image of the Martian surface 
taken by the Imager for Mars Pathfinder (IMP) in 
1997. This image is one of the so-called octants of 
the SuperPan (360 degree panorama) image 
obtained by the left eye of the IMP. (The IMP had a 
left and a right eye, with different but somewhat 
overlapping wavelength sets.) The left eye images 
consist of 8 bands taken at wavelengths from 0.44 to 
1.001 microns. The spatial size is nearly 1,000 x 
1,000 pixels, with a large area occupied by the 

lander’s ramp. The Martian surface shows in about 
600,000 pixels. We clustered this image in a 
previous work [8] with a Conscience SOM, and 
found known, very rare occurrences of a “black 
rock” type that is of mafic composition (fairly 
pristine, olivine and/or pyroxene rich) and of great 
interest from a geologic point of view. We also split 
the rare black rock type into two subtypes the 
spectral signatures of which are distinct: one subtype 
has pyroxene absorption at approximately 0.93 
microns (consistent with orthopyroxene), the other 
has an absorption at a longer wavelength, around 1 
micron (consistent with clinopyroxene or olivine). 
One subset of the clustered image is in Figure 3, 
with the inset enlarging an occurrence of both rare 
classes. The full image can be seen in [8], posted at 
www.ece.rice.edu/~erzsebet/publications.html . 

 

 
Fig. 3. Clusters obtained with a Conscience SOM, from IMP SuperPan octant S0184 of the Martian surface at the Mars 
Pathfinder landing site. The full image and discussion of clusters is given in [8]. Here we point out two extremely rare 
clusters that represent geologically relevant materials: the pink class (label O in Figure 6) and the pale aqua class (label 
R in Figure 6), occupying tiny areas within  the white rectangle and the white small oval, respectively, and which are 
enlarged and  pointed at by arrows in the inset. These occurrences contain less than 50 pixels each. 
 
Figure 4 shows that the same clusters were found by BDH SOM clustering. (Since figures 1 through 5 are in 
color,  this paper as well as others that we referenced for related color imagery are posted for easy access at 
http://www.ece.rice.edu/~erzsebet/publications.html . ) 
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Fig. 4. Left: The inset from Figure 3. Right: The same area showing the clusters found by BDH SOM clustering. For 
easier comparison only the rare clusters were highlighted in the BDH cluster map. The pink and aqua clusters match 
very well those in the Conscience SOM cluster map at left. In addition, there are further variations within each one. The 
pink class has distinct parts highlighted in white and blue and the aqua class also has a blue subarea. Note that blue and 
white here and in Figure 5 are not the same clusters as in Figure 3, these colors were recycled to make visible 
distinctions within the tiny pink and aqua clusters. As seen from Figure 6 the spectral signatures of these four clusters 
group into two types: O (pink) and O1 (white) are close to the original O signature from the Conscience mapping (Figure 
6, left), while R  is close to the original R signature. R1 has an absorption band around 1 micron, but deeper than in R. 
 

 
Fig. 5. Left: Detail from the 40 x 40 Conscience SOM used in [8], showing the learned representation of the pink (label 
O on Figure 6, left) and aqua (label R  on Figure 6, left)  clusters. Right: Detail from the 40 x 40 BDH SOM showing the 
learned representation of the same two rare clusters. Notice that the separation between pink and aqua clusters is much 
more definite than in the Conscience SOM. The areal representation of the aqua class is much larger in the BDH SOM. 
The original O spectral type is now represented by the pink and white areas together, doubling the representation area. 
The R1 type (blue) is in between, closer to the pink cluster because of the similarity of the overall spectral shape, but 
separated by strong fences because the center of the absorption band is different from that of the the pink/white clusters. 

 
 
The corresponding mean spectral signatures in 
Figure 6 confirm these clusters. In the Conscience 
map the rare clusters did not receive enough spatial 
representation to make further distinctions within 
them. Significant mixing  remained unresolved. 
With BDH magnification control, both the 
separation and distinction increased.  

 
4 Conclusion 
We showed that the explicit magnification control 
scheme of Bauer, Der and Herrmann [1] produced 
predictable behavior on some data for which the 
theory does not guarantee applicability. While this is 
very encouraging for data mining pursuits, one must 
proceed with caution: there are several aspects of the 
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BDH that we need to understand better in relation to 
“forbidden” data, for confident applications. We 
plan to perform further systematic investigations in 

order to determine the validity of the BDH for  high-
dimensional complex data and evaluate its benefits. 

  
Fig. 6. The mean spectral signatures of the clusters obtained with Conscience SOM (left) and with BDH SOM (right). 
(The left plot is from [8] and contains additional cluster signatures.) 
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