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I. INTRODUCTION

R EMOTE sensing is nowadays a part of society, industry,
science, and engineering. As a prominent example of its

societal value, remote sensing images are integrated in naviga-
tion systems, and an ever-increasing number of images taken
from space or from airborne sensors is continually used by the
press and in the monitoring of public events. Long before its
recreative use began, remote sensing had become a valuable
source of data for scientists, entrepreneurs, public institutions
and manufacturers to aid decision making in resource explora-
tion, environmental protection, ecology, agriculture, urban de-
velopment, quality control, and for discoveries about uncharted
territories (including other planets). The easy access and com-
prehensive coverage that remote sensing provides to hard-to-
reach parts of the world has opened wide possibilities, for
example, for disaster forecasting and proactive mitigation [1]
or for observing the evolution of dynamic processes at the global
scale [2], [3].

Remote sensing is a polyvalent and accurate source of data
recording the processes at work at the surface. These data are
often massive, high-dimensional, and evolving in time; hence,
mining such rich datasets has become a priority in order to
provide actionable information to various stakeholders including
the general public. This much-needed information is hidden in
huge archives of undistilled digital data, from which simple
queries may not produce interpretation on the level required for
decision making. Therefore, machine learning algorithms have
become a natural choice to facilitate the translation from raw data
to useful information, as introduced in [4] and detailed in [5].

Machine learning algorithms [6]–[9] offer solutions that can
generalizewell tounseen situations, implement trackingof space/
time processes, or discover uncommon events. However, remote
sensing data also carry some unique characteristics such as
geographic consistency, spatial context, multiscale behaviors,
scattering geometry, or spectral correlations, which require spe-
cific knowledge and dedicated approaches different from those
used in machine learning models applied to other types of data
[10], [11]. For this reason, synergies between machine learning
and remote sensing science are increasingly emerging to help
tackle the problems specific to data dimensionality [12]–[14],
complex data manifolds [15]–[17], small sample scenarios [18],
[19], spatial dependencies [20], signalmixing [21], content-based
retrieval from databases of high-dimensional data [22], and
presence/discoveryofnovelties [23], [24]. Such fruitful synergies
allow to look at the future—and the explosion of the number of
sensors and the deluge of data to be treated—in anoptimisticway.

This special issue of the IEEE JOURNAL OF SELECTED TOPICS IN

APPLIED EARTH OBSERVATIONS AND REMOTE SENSING is a follow-up

to special sessions organized at WHISPERS conferences with
the involvement of two of the guest editors (M.G. and E.M.).
Such sessions drew unexpectedly large attendance, signaling the
interest and need for a focused platform to exchange knowledge
at the intersection of machine learning and remote sensing. The
collection of papers in this special issue presents a comprehen-
sive sample of the latest trends in the design of machine learning
algorithms for geospatial data. It covers a wide spectrum of
remote sensing applications and presents new solutions to
answer to the call of the new generation of sensors, covering
the electromagnetic range from optical to microwave data.

We have selected 27 papers for this special issue. In this
foreword, we introduce the contributions and provide an over-
view of the related topics. The guest editors would like to thank
all authors for their excellent work and all the reviewers who
made this special issue possible.

II. OVERVIEW OF THE SPECIAL ISSUE

This section presents the salient features of the contributions
under several nonexclusive categories.

A. Machine Learning Methods: Supervised Classification
Is the Main Topic

Either through discriminative or generative approaches, su-
pervised classification has been themost investigated topic in the
special issue. Out of the accepted papers, 20 propose supervised
classification techniques and related methodologies for remote
sensing data [25]–[41] or target detection (classification with a
single class of interest) [42]–[44]. In contrast, unsupervised
classification is considered in [45] via the use of evolutionary
algorithms.

This is in-line with the trends observed in the remote sensing
community, whose main products are thematic maps describing
the spatial distribution of land cover types and land use. Support
vectormachines (SVMs) [7] are considered as the state-of-the-art
supervised classifiers and are often used as a de facto standard.
SVMs are therefore challenged by the proposed innovative and
established approaches, especially in small sample scenarios
(see, e.g., [28]–[30], [36], [39], [40]). In these cases, active
learning [18] is often proposed as a way to solve exploratory
problems [27], [35], [41].

B. Variety of Other Machine Learning Approaches

Closely related to classification, a large body of research in the
special issue is devoted to feature extraction and feature selec-
tion. These strategies are used to help increase performance
through the use of more expressive features than those in the raw
data or to reduce data dimensionality in order to apply available
classifiers. The majority of the above-cited papers include someDigital Object Identifier 10.1109/JSTARS.2014.2311915
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feature extraction/selection approach. Also fundamental to clas-
sification is the similarity metric used. Exploring the effects of
Mahalonobis metrics is pursued in [31].

Regression of biophyisical parameters is also represented in
the special issue. In [46], a series of multivariate regression
methods (including Gaussian process, kernel ridge regression,
multilayer perceptron, and others) are extensively compared for
retrieval of land biophysical parameters. In [47], neural networks
deliver sophisticated retrieval of atmospheric parameters from
combined hyperspectral and microwave data. Two papers tackle
the problems of super-resolution and pansharpening. In [48],
authors propose the use of support vector regression to achieve
super-resolution of land covermaps frommid-resolution satellite
data. Pansharpening ofmedium-resolution images is proposed in
[49], with a contribution rooted in dictionary learning and sparse
coding [50].

C. Data Types: Hyperspectral as a Driving Force

Out of the accepted contributions, 16 propose (although not
alwaysexclusively)methodologies for hyperspectral images (HSI)
[25]–[32], [39], [43]–[48], [51]. Due to their inherent high di-
mensionality and complexity, HSI have traditionally been a driver
for the synergies between machine learning and remote sensing
[52].Works in HSI sometimes have contributed to the advances of
machine learning in remote sensing, such as the recognition of
specific nonintuitive properties of high-dimensional data [53], the
effect of class noise in classifier performance [54], or the very early
introduction of semi-supervised classification ideas [55]. The con-
tributions to this special issue indicate that hyperspectral imagery
continues to be one of themain reasons for methods development.

Very-high-resolution (VHR) passive optical sensors, provid-
ing submetric passive optical images, are also well represented.
Contributions focus on problems specific to the given resolution,
as in object retrieval by [35] and human–machine interaction by
[27]. Medium–resolution sensors with long temporal series such
as MODIS [36] or AVHRR [37] are preferred in studies exploit-
ing temporal trends at large scales (see Section III-B) or change
detection [41].

While passive optical measurements are the dominant data
source, papers dealingwithother types of sensors such as synthetic
aperture radar (SAR) [34], [35], polarimetric SAR [38], [42], and
their joint usewithHSI [47] introduce new research objectives and
raise novel challenges such as the extraction of features specific to
these type of signals [38] or the use of the acquisition geometry in
the algorithms. The potential of machine learning in these fields is
still underexploited, but the results of the studies above promise
definite advances in the near future.

D. Wide Range of Applications

Awide range of applications is represented in the special issue.
In addition to the construction of thematic maps, a number of
interesting applications show the potential of techniques and
methodologies in new areas: in [43], authors detect chemical
plumes, while [47] studies the reconstruction of atmospheric
profiles. Authors in [46] present a toolbox including a set of
methodologies to retrieve parameters such as Chlorophyll and
Leaf Area Index (LAI) in fields, while authors in [37] present a

method tomap and survey the evolution of burned areas. Authors
in [40] compare features and classificaton methods specifically
for land use and land cover mapping of tropical regions from
PALSAR data. The search for patterns in large databases in [35]
poses interesting teaching/learning problems that are common to
diverse image modalities such as optical and SAR. Additionally,
[56] proposes a method for the estimation of time of flight in
sonar and radars, while [31] turns the focus far from our planet by
studying the presence of minerals on Mars.

E. Validation Methodology

Acceptance of these new machine learning approaches by the
community requires a rigorous validation methodology, to en-
sure a set of algorithmic standards and best practices to be
followed. The first aspect of this methodological standard is the
comparison of algorithms on widely accepted benchmark data-
sets (e.g., the Indian Pines, University of Pavia or Salinas datasets
in HSI). It is an accepted standard for papers (e.g., [25]–[30],
[39]) to exploit such datasets as a proof of concept and in order to
demonstrate the effectiveness of the proposed solution in specific
scenarios. However, the need for the creation andmaintenance of
public repositories of datasets is real and made urgent by the fast
pace of innovation in the computational algorithms as well as in
the sensors. New data sources may render obsolete previous
computational approaches, or validation results obtained on old
datasets may be meaningless for the new data stream. New
challenging repositories of data benchmarks (along with ground
samples) are therefore much needed by the community.

The second aspect of the methodological best practices is the
statistical soundness of the design of the experiments. For
example, we observed that the strict separation of test and
training data is enforced less often than desired. The imperative
to report improving results, instead of well reasoned and de-
scribed processes often seems to suppress the mandate for the
best methodology. In this special issue we strove to strongly
encourage methodology standards (including clear description
of separate training and test data). Authors in [31], [39] bring this
concern to an exemplary level by specifying further clear sepa-
ration of data used for training and model selection.

The final aspect to be considered is the publication of the code,
which allows for reproducibility of results and remains the best
way to disseminate the proposed methods. A paradigmatic
example is the LIBSVM [57], which has been influential in the
dissemination of SVMs as a de facto standard. Following this
reasoning, the contribution of [46] is exemplar, since the authors
provide a fully functional and open toolbox for regression
algorithms along with their paper.

III. CONTRIBUTION TO THE DEVELOPMENT OF MACHINE

LEARNING IN THE REMOTE SENSING COMMUNITY

This section is a subjective taxonomy of the papers of the
special issue, driven by some common methodological trends
observed in the contributions.

A. Enforcing Spatial Consistency

Spatial consistency is an assumption that allowed the main
advances in remote sensing image processing [20], [58]: the
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images are spatially smooth and so are the objects they represent.
In other words, data (i.e., pixels in the images) are highly
correlated spatially. Approaches proposed in this issue enforce
spatial smoothness via the use of spatial filters [25], [26], [39],
spatial clustering [45], segmentation based on Markov Random
Fields [34], or by hypothesis generation from sets of neighboring
pixels [28]. In the latter reference, a linear correction of the pixel
spectra is computed by regularized least squares based on the
neighboring pixels. In addition, the approach also profits from
spectral redundancies by performing a block decomposition
based on the correlation between bands. The approach in [39]
involves spatial preprocessing in order to obtain improved
features for classification, by the combined use of Wavelet
transforms and morphological profiles, features that are also
used in [29] for spectral–spatial feature extraction.

B. Exploiting Temporal Information

Analysis of data structured in time series is one of the
challenging issues in remote sensing [59]. The availability of
time series of images is a primary advantage of medium-resolu-
tion sensors such asMODIS orAVHRR.Mining such time series
and using the observed spectral trends is the basis of the proposal
of [36] and [37],where the authors exploit the temporal structures
to improve the quality of the classifications of vegetation and
burned areas, respectively. Another traditional application in
bitemporal remote sensing is change detection, represented by
[41], where authors propose the use of active learning to improve
the detection of changes.

C. Increasing Robustness Under Insufficient Ground Truth

The acquisition of remote sensing data remains much faster
than the generation of ground truth. The imbalance between the
presence of labeled information and the increasing size (and
dimensionality) of the data acquired is among the main problems
faced in training classification algorithms or in searching large
databases (see [35]). In many contributions to this issue, authors
of [28], [30], [31] acknowledge this situation by testing their
algorithms on a collection of small-sample cases. To increase
robustness, some authors explore unsupervised algorithms [45],
while others use the information contained in unlabeled pixels:
such information either leads to the selection of new sampling
sites via active learning and relevance feedback [27], [35], [41] or
it allows to increase the robustness ofmodels using the unlabeled
data as an opposing class in one-class problems [42]. In all cases,
thesemethodologies lead to drastic improvements in performance.

D. The Strength of Collective Decision

Ensemble methods [60], [61]—offering the strength of col-
lective decision—are probably the most represented family of
innovation algorithms of this special issue. Some well known
approaches, i.e., Random Forests, are used as standards compa-
rable to SVMs [36]. A combination of different classifiers is
proposed in [33], while [28] proposes to evaluate classifiers
based on different hypotheses about the location of training
samples and spectral subsets. Reference [29] applies successful

bagging and boosting methodologies to increase the robustness
of an extreme learning machine. Authors in [51] use ensembles
of random spectral subspaces selected with a genetic optimiza-
tion to improve SVM classification. Authors in [35] propose a
cascade of coarse to fine classifiers trained with active learning
for object recognition in databases. Finally, authors in [32]
analyze ensemble methods, feature selection and post-classifi-
cation in terms of bias-variance decomposition.

E. Alternative Representations

The papers grouped here consider alternative data representa-
tions [62] to retrieve either compact or nonlinear descriptions of
the data space. Authors in [30] propose to model HSI as a series
of class-manifolds and evaluate classification of a test sample in
terms of the perturbation that such sample provides on the
manifold characterization (if the perturbation is small, the pixel
is likely to belong to that manifold). The use of sparse repre-
sentations is proposed in [49], where pansharpening is performed
by learning coupled dictionaries at each resolution, along with
sparse coefficients for optimal reconstruction. In [43], authors
perform sparse feature selection in the feature space spanned by
the empirical kernel map [63]. The exploration of the diverse
Mahalanobis metric learning algorithms in [31] is another way to
perform alternative representation trough the use of adaptive
distances for similarity-based classification algorithms.

IV. CONCLUDING REMARKS

This special issue is a snapshot of the open problems and
challenges that bring machine learning and remote sensing
closer. The spectrum of topics covered raises a variety of lively
questions, and calls for further debate about the future of synergy
between the two disciplines.We hope that youwill enjoy reading
it and that it will foster discussion and future developments.
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