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Abstract— With all the exciting advances in sensor fusion
and data interpretation technologies in recent years, including
co-registration, 3-D surface reconstruction, object recognition,
spatial reasoning, and more, high-quality detailed and precise
segmentation of remote sensing spectral images remains a much
needed key componenent in the comprehensive analysis and un-
derstanding of surfaces. Urban surfaces are no exception. In fact,
urban surfaces can represent more challenge than many other
types because of the very large variety of materials concentrated
in relatively small areas. Segmentation (unsupervised clustering)
or supervised classification based on spectral signatures from
multi- and hyperspectral imagery, or based on other multi-
dimensional signatures from stacked disparate (multi-source) im-
agery, provide delineation of materials with various compositional
and physical properties in a scene. Such a cluster or classification
map lends critical support to further reasoning for accurate
identification of surface objects and conditions. It is, therefore,
imperative to develop methods whose data exploitation power
matches that of the discriminating power of the data acquisition
instrument. We present a study of unsupervised segmentation,
comparing the performances of ISODATA clustering and self-
organized manifold learning on an urban image from a Daedalus
multi-spectral scanner and on an AVIRIS hyperspectral image.

I. BACKGROUND AND OBJECTIVES

Multi- and hyperspectral imagers, in general, produce fused
data from several regions of the electromagnetic (EM) spec-
trum, typically Visible, Near-IR and Mid-IR, where the mea-
sured physical quantity is reflectance, and sometimes also from
Thermal IR, where thermal emission is measured. Each of
these windows has diagnostic power for various materials.
These data can also be fused with signals acquired in other
parts of the EM spectrum, which reflect completely different
physical properties (for example, passive microwave, radar)
and thus can be preferentially diagnostic of material prop-
erties that other windows may not be sensitive to, or have
complementary information of. Such fused data are immensely
rich. We take the view that for optimal exploitation — i.e., to
discriminate classes to the extent the sensor makes possible
— one should use all available spectral bands together in
clustering or classification. This approach requires powerful
techniques, given the large number of relevant classes in an

urban scene, with many of them potentially very small, thus
statistically insignificant in a large image. For images with
several hundred bands the high dimensionality of the data
vectors doubles the challenge. Many of the available popular
segmentation and classification techniques severely underper-
form on such data, failing to make important discoveries, or
unable to discriminate subtle but consistent spectral differences
that sometimes distinguish quite different materials.

Spectral properties of man-made materials, including most
objects in urban scenes are known to be complex (e.g., [1],
captured only by high spectral resoluion (hyperspectral) imag-
ing. Several recent studies focus on developing methods to
exploit such data for precise mapping of urban environments.
Good examples include model-based mixture supervised clas-
sification [2], feature extraction with mathematical morphol-
ogy [3], spatial reclassification [4], feature-level fusion of
hyperspectral imagery with LIDAR and aerial photography [5],
and multigrid Gibbs distribution based partitioning [6]. These
provide robust segmentations but often use a significantly
reduced number of bands and consequently find less number
of classes than exist in the data. New approaches, taking
advantage of the full spectral resolution are needed, to identify
as many classes as the sensor can discriminate, and to increase
the chance of discovery of rare classes.

We present Self-Organizing Map (SOM) based cluster-
ings and classifications that stand to these challenges due
to advanced augmentations to the basic Kohonen SOM [7].
We present segmentation studies of urban scenes, from data
acquired by different sensors. Since automation of mapping —
the production of thematic and other maps from combination
of images and other data — is a major goal, and the use of
supervised classification can reduce the degree of automation
under many circumstances, one objective of this work is to
show the high degree of detail that we can achieve with un-
supervised segmentation. Another objective is to demonstrate
how new knowledge about urban scenes is revealed from fused
data sets by the use of this sophisticated approach.
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A. SOMs and advanced versions

The Self-Organizing neural network paradigm was invented
in the early 80’s by Teuvo Kohonen [7]. It is an adaptive
vector quantization where the quantization prototypes (the
weights of the neurons) are anchored to the grid cells of
a rigid (usually) two-dimensional lattice. During an iterative
unsupervised learning process the prototypes (which have the
same dimensionality as the data vectors) are adjusted and
become optimally distributed in data space, to collectively
best represent the unknown density distribution of the input
data. The number of prototypes is given by the lattice size
but no assumption is required about the number of clusters.
The unique nature of the SOM, compared to other vector
quantization methods, is that the prototypes also become spa-
tially ordered on the rigid lattice according to their similarity
relationships: the closer two prototypes are in data space the
closer they should be in the SOM lattice and vica versa. This
ordered layout of a (correctly) learned SOM facilitates, in
the SOM lattice, the detection of spatially contiguous groups
of prototypes that represent clusters of similar data vectors.
This is a two-stage clustering: after the quantization phase,
the SOM prototypes are grouped, and all data points that
are mapped to one distinct group (one cluster) of prototypes
will then be assigned to one data cluster. Such two-stage
clusterings have the advantage of reduced noise after the
first (quantization) stage, and faster clustering of the much
smaller number of protoypes than the original data points.
However, it is important that this is a topological mapping,
which means that the lattice distances of the prototypes
are not linearly proportional to their Euclidean distances in
data space (which is the measure of their similarity). To
see the similarity landscape of the prototypes in the SOM
lattice one must evaluate their distances in data space and
superimpose on the lattice by some appropriate visualization.
Correct (topology preserving) learning involves several issues
for which theoretical background can be found in [8], [9],
[10]. Some of the more obvious aspects are lattice size and
the number of learning step taken. In our analyses 40 x 40 and
60 x 60 SOM grids were used (for the Daedalus and AVIRIS
images, respectively), and typically 2 - 6 million learning steps
performed for good fine tuning of the SOM.

Detection of the groups of similar protoypes in the SOM
lattice can be done either by clustering the prototype vectors
by some algorithm, or by semi-manual extraction from a
visualization of the SOM’s knowledge. Visualization is used
more often than clustering algorithms because with clever vi-
sualization more information can be displayed and the human
expert is more successful in capturing the cluster boundaries in
finer detail than can be done with current clustering methods
(see, e.g., [11], and a comparison in [12]). Since the invention
of the U-matrix [13], many other visualizations were proposed
(see an overview in, e.g., [14]). The U-matrix displays the
Euclidean distances of the SOM prototype vectors over the
SOM lattice, typically averaging the distances to the lattice
neighbors and coloring the grid cell of each prototype to a

grey level proportional to this average distance, which results
in “fences” delineating clusters (see, e.g., [15]). For relatively
small data sets with few clusters mapped to a large SOM lattice
this works well, but for large data sets with many clusters
(such as remote sensing imagery) a moderate size SOM lattice
becomes densely populated and no “empty” corridors are left
for easy delineation of prototype clusters. (The use of large
SOM lattices can be computationally too expensive for high-
dimensional data such as hyperspctral images.) Therefore, we
have been applying our own modified version of the U-matrix
(mU-matrix), which computes the distances of a prototype to
all of its lattice neighbors (8 neighbors on a rectangular grid)
separately and displays those over each of the lattice borders
between neighbors. For the diagonal neighbors this display is
reduced to the corner points, nevertheless the information is
provided and can be used. This refinement allows us to find
as small as 1-prototype clusters (that in turn may represent
a small number of data vectors) thus rare data clusters.
Some illustration and insight to this can be found in [16].
With semi-manual cluster extraction from the SOM lattice,
some prototypes may, however, remain unclustered. This can
result from conservative judgement of the human analyst, or
from uncertainty because of noise present in the knowledge
representation visualized over the SOM.

We have recently proposed a richer visualization than the
mU-matrix, called ConnVis, and have been assessing its util-
ity [12]. SOM clustering based on ConnVis is very similar
to that of the mU-matrix based clustering in our analyses,
therefore we do not show both. Instead, we present a ConnVis
based SOM clustering for our first study from a Daedalus
multi-spectral scanner image, and a mU-matrix based SOM
clustering for our second study from an AVIRIS image. We
are developing the ConnVis technique because it shows more
promise for automation than the U-matrix based clustering.

The learned SOM can be coupled with a categorization
learning neural layer to form an excellent supervised classifier.
The preformed clusters (the SOM’s own view of the data
structure) greatly aid accurate learning of labeled training
samples, and subsequent classification of unseen data vectors.
Such an SOM-hybrid neural net is fairly easy to train and does
very well with relatively few and unevenly distributed training
samples for supervised training, which is particulary important
in remote sensing (see [17], [18], [19], [20], [21]). We use
information theoretically motivated variants of SOMs, which
can control the relative size of the SOM lattice areas allocated
to clusters found in the data. For example, it is possible to
“magnify” the representation areas for rare clusters (without
any prior knowledge of their existence or any properties) thus
increasing the chance of their detectability from the learned
SOM ( [22], [16]).

II. DATA ANALYSES

A. Mapping Ocean City from Daedalus data

First we compare analyses of an image of Ocean City,
Maryland, obtained in April, 1997 by a Daedalus AADS-
1260 multispectral scanner, with 12 channels in the 0.38–1.1



TABLE I

THE COVER TYPES IN THE CLASSIFICATIONS IN FIG 1

Class Cover type description # tr
A parking lot, roof #0 30
B roof #1 79

mostly of town houses
C roof #2 40

mostly of apartment bldg
D roof #3 32
E divider line on road (paint) 32

roof #4, driveway
F roof #5, metallic 26
G road between houses, and roofs 24
H Dirty sea water at houses 20

in canals; pool
I clean ocean/gulf water 72
J ocean/bay water, likely with 67

suspended sediments and algae
K vegetation #1 around houses 42
L vegetation #2 around houses 40
M Dray grass or soil #3 (iron rich) 97
N vegetation at shoreline 28

and on empty lots
O vegetation #3, yellowish lawn 35
P Coastal marshland #1 36
Q Coastal marshland #2 36
R Sea water in city canals 102
S dry empty soil 27
T pier, and decks at houses(wood) 28
U roof #6 55
V roof #7 29
W shadows of houses 48
X Coastal marshland #3 35

Total number of training samples 1060

µm and 11–14 µm windows. The image comprises 512 x 512
pixels with a spatial resolution of 1.5 m/pixel at the middle
of the swath. No geometric correction was done. For lack
of reliable parameters conversion to reflectance was not an
option, therefore we worked with the radiance data. Details of
the data acquisition are described in [23]. We excluded bands
1 and 2, and the thermal channels for concerns of extreme
noise, so this analysis is somewhat conservative and should
be regarded as a first step in the exploration of the potentials
of these data. Our present study was conducted with bands
3–10. The image was normalized by dividing each spectrum
by its Euclidean norm. This cancels linear effects of viewing
geometry and terrain while preserving spectral angles. Thus
computing the Euclidean distance between two normalized
reflectance spectra is equivalent to using inner product distance
(the same as the Spectral Angle Mapper uses in ENVI).
We first prepared a supervised classification by training an
SOM-hybrid neural net with carefully verified training samples
of 24 known material classes, summarized in Table I. The
resulting class map, in Fig 1, left, was found showing tight
correspondence with aerial photographs and field knowledge.
The acquisition of the Daedalus images was part of an ini-
tiative by the International Society of Photogrammetry and
Remote Sensing (ISPRS) to collect a multisensor data set

over an urban area [23]. The data, consisting of Daedalus
and AVIRIS imagery, high and low altitude photographs and
airborne laser scanning (Airborne Topographic Mapper, ATM)
were used in several studies to demonstrate different aspects
of data fusion (e.g., [24], [25]). Digital elevation models,
oriented stereo photographs and orthophotos derived from this
multisensor data set as well as field observations served as
ground truth for our supervised classification. While these data
were sufficient to distinguish between major land cover types
(e.g., roofs, vegetation, sea water), they proved insufficient for
unique identification of all spectrally different materials (such
as roof variants #1, #2 etc.). Such identification would need
field spectrometry, which is a logistical challenge since much
of the surface is covered by roofs of private houses. This also
prevented acquisition of a sufficient number of test samples
for a statistically significant, formal accuracy assessment.

Fig 1 compares our “benchmark” supervised classification
(24 classes) with an SOM clustering obtained through ConnVis
visualization as described in the previous section. The unsu-
pervised clustering clearly finds all supervised classes and,
in addition, discovers several new ones. Clusters that were
not known as distinct classes at the time of the supervised
classification and that were discovered by SOM clustering
later, are indicated in ovals of different colors, but they are
not included in Table I. While it is fairly obvious that the
features in the red and blue ovals are roofs, and the end of
the road in the white oval has a different surface paving than
the rest of the road, further interpretation of these will require
additional field work or study of aerial photos.

The ISODATA algorithm was run in ENVI (ITT Indus-
tries, Inc., http://www.ittvis.com/index.asp). It is an iterative
clustering in which first a set of initial cluster means is
chosen arbitrarily, followed by the classification of each pixel
to the closest cluster mean [26]. Then new cluster means
are calculated and the pixels are reclassified. This process
continues until the number of pixels that change in any class
is less than a selected (%) threshold or the maximum number
of iterations is reached. We have run the procedure with the
default parameters values in ENVI (change threshold = 5%,
minimum number of pixels in class = 1, maximum class
standard deviation = 1, minimum class distance = 5 and
maximum number merge pairs = 2) for a maximum of five
iterations. Experiments allowing more iterations and more
pairs of clusters to be merged produced no visible change.

Fig. 2, left, shows the resulting 10 ISODATA clusters when
the number of cluster centers was allowed between 5 and 10.
The 18 clusters in the right image resulted from allowing 10–
20 cluster centers. We tried to recolor the randomly assigned
ISODATA colors to those in the cluster map in Fig 1 to help
visual comparison. This obviously has limits since clusters be-
tween maps from two different algorithms are not necessarily
the same. For the same reason the labels on the color wedges
on each cluster map are different! In the 10-cluster case (Fig 2,
left) ISODATA obviously formed superclusters of the clusters
in the SOM map. Seven spectrally distinct roof types (clusters



Fig. 1. Left: Supervised classification of the Daedalus Ocean City image, mapping 24 known cover types. Red, white and blue ovals show unclassified
shapes of buildings and a circle at the end of a road (the colour of the background, bg). Right: Clusters identified from a SOM of the Ocean City image, by
semi-manual extraction of the cluster boundaries based on ConnVis visualization. The agreement between the cluster map and supervised class map is very
good. The apparent difference — the larger amount of green color on the right, compared to the supervised class map — is due to many unclassified pixels
in the supervised class map for this rather noisy image, whereas in the cluster map most pixels are assigned to clusters, which produces more appearances
of some colours such as green (vegetation) and turquoise (ocean water). The unclassified gray spots (in red, white and blue ovals on the left) are now filled
exactly, and with colors different from the 24 colors of the supervised color scheme. Their spectral signatures are distinct from the rest. These newly detected
clusters only occur at these locations, indicating the discovery of roof types distinct from the known ones used for the training of the supervised classifier.

Fig. 2. ISODATA clusterings of the Daedalus Ocean City image. Left: 10 clusters resulting from allowing 5 – 10 clusters. Examination of detailes reveals
that the ISODATA clustering represent quite clean cut superclusters of the SOM clusters, as discussed in the text. Right: 18 clusters resulting from allowing
10 – 20 clusters. Here the ISODATA clusters are still forming supergroups of the SOM clusters, but the relationships are less clean cut. The spectral statistics
in Figures 3 and 4 provide an insight to, and comparison of cluster separations.
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Fig. 3. Spectral statistics of the 28 SOM clusters of the Daedalus image (Fig 1, right). Mean spectra and the envelope of each cluster (shaded area) are
displayed, vertically offset for viewing convenience. The number at left of each curve indicates the DN value in the first channel. The standard deviation for
all channels are shown by vertial bars.

B, C, D, E, F, U and V) and the concrete roads (G) in the SOM
map were put in one ISODATA cluster (G), while SOM cluster
A seems to have a match in ISODATA cluster J. However,
this ISODATA cluster also maps the water in the bays and
canals. Similarly, vegetation groups P, Q, and X, and soil
S in the SOM map are contained in ISODATA cluster Q.
(Note that X is deep purple in the SOM cluster map, which is
the only color inconsistency between the SOM map and the
supervised class map.) Clusters N, O and Q (orange, split-pea
green, and light brown) are in best correspondence between the
two maps. While we cannot state one-to-one match between
ISODATA supergroups and SOM groups, given the constraint
of maximum 10 clusters ISODATA did a good job. The 18-
cluster case (Fig 2, right) is more complicated, but ISODATA
still formed recognizable superclusters, albeit a larger number
of them. (We can see this not only from the cluster maps
shown here, but also from an SOM “recall” of the ISODATA
labeled image pixels. The latter means that we check where the
labeled samples map in the SOM lattice and how they relate to
the SOM clusters.) The correspondence between water bodies
is obvious. SOM clusters G (road) and B (roof #1) now have
one-to-one match with the same labels in the ISODATA map
(altough B in the ISODATA map also includes the divider
paint and roof type #4 (E, light blue) and a bare lot (top row
of houses). SOM cluster A still maps to ISODATA J, along
with part of the D type roofs (the other part of D maps into
G), but C corresponds between the two maps. Further scrutiny

confirms that the confusion of clusters increased when a larger
number of clusters were allowed for ISODATA.

The spectral statistics of the SOM and 18-cluster ISODATA
maps, in Figures 3 and 4, provide another way to assess
clustering quality. Shown are the mean spectra of the clusters
with the standard deviation in each channel indicated by a
vertical bar, and the envelope of the cluster (the min/max
values for each channel). Small standard deviation along with
a tight envelope that generally follows the shape of the mean
spectrum (such as for clusters D, E, F, S, T, and others in
Fig 3) is convincing of good segmentation. When the envelope
is large but the standard deviation is small (such as for clusters
A and B in Fig 3) one can assume a few outliers rather than a
“loose” cluster. With larger deviations in the channels where
the envelope is wide (e.g., cluster C), one may be concerned
about cluster confusion. Comparing Figures 3 and 4 one can
see that the SOM clustering is tighter and cleaner.

Visual comparison of both the spatial maps of the clusters
and the attendant spectral signatures is important in assessing
clustering success. The previous example, however, illustrates
that it becomes rather difficult as the number of clusters
increases. Partly for this reason, one would like to use more
objective, and more automated measures as well. Tables II
and III present two popular and well established cluster
validity indices for the cluster maps shown in Fig 1 and Fig 2.

Cluster validity indices, in general, reward a segmentation
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Fig. 4. Spectral statistics of the 18 ISODATA clusters of the Daedalus image
(Fig 2, right). Mean spectra and the envelope of each cluster (shaded area)
are displayed, vertically offset for viewing convenience. The number at left
of each curve indicates the DN value in the first channel. Standard deviation
is shown by vertial bars for all channels.

according to what extent it is true that data points in a cluster
are more similar to one another than to data points in any other
cluster. All indices combine, in some way, a “compactness”
(or “scatter”) and a “separation” quantity. The former measures
how tight a cluster is in terms of its members being similar to
one another; the latter measures how dissimilar the clusters are.
The sensitivity of the index depends on what information is
used about the data points (for example, distances or densities),
what distance metrics are used for (dis)similarity (e.g., average
of k nearest neighbors, or maximum within cluster distance
for similarity; centroid or single linkage distance for cluster
dissimilarity), and what quantities are computed to formulate
the index (e.g., ratio of “compactness” and “separation”). Two
major families of indices are those that are computed from
distances between data points, and those that use (in addition
or alone) some density measure. For literature on cluster
validity indices we refer the reader to [27], [28]. One can
measure clustering quality not only from the data directly,
but from a clustering of the quantization prototypes, in case
of prototype based clustering methods such as mU-matrix
and ConnVis clustering of SOM prototypes. Computation
of indices from prototypes is at a much reduced expense
compared to obtaining the same indices from data points. In
the tables below, the Davies-Bouldin Index [29] (DBI) and the
Generalized Dunn Index [30], [27] (GDI) are distance based
indices. Conn Index [28] is based on data densities local to

the quantization prototypes, through the use of a “connectivity
matrix” [12], and is only applicable to prototypes, not to the
data vectors directly. Therefore we can use it for the clusterings
that were produced from the SOM prototypes. We can also
run the ISODATA clusters (the data labeled by ISODATA
clustering) through our learned SOM and get an ISODATA
label assignment for each SOM prototype. By computing the
validity indices for these ”ISODATA labeled” prototypes we
get a comparison of the SOM and ISODATA clustering on the
prototype level. Conn Index and its two components for “com-
pactness” and “separation”, Intra Conn and Inter Conn, are
under development [28]. We are evaluating the performance
of these new indices against the popular indices because the
latter seem unreliable for data of high complexity. Table II
shows indices computed directly from data points, whereas in
Table III indices were computed from the SOM prototypes (as
labeled by mU-matrix, ConnVis, and ISODATA clusterings).
One obvious difficulty with cluster validity indices is how
to interpret the numerical differences. The range of DBI and
GDI values is [0,∞], while Conn Index and its components
have values in [0, 1]. It is unclear how to map the range of
one index to the range of another, even when they have the
same range (such as the DBI and GDI). Therefore, we only
make the relative comparison that a clustering is “better” or
“worse” than another according to the values that the same
index assigns to them.

The DBI and the GDI both favor one of the SOM clusterings
over the ISODATA clusterings, in Table II as well as in
Table III, i.e., regardless whether the indices were computed
from data vectors or from SOM prototypes. (We note that from
our experiments it seems that in general, and where applicable,
the relative ranking by all indices is the same whether we
compute from data vectors directly or from SOM prototypes.)
It is interesting, however, that the “runner-up” by the DBI
index is the 10-cluster ISODATA map, while we know from
the discussion of Fig 1 that this is the least accurate of the three
cluster maps presented. DBI gives high mark for this clustering
because it particularly favors spherical clusters: both the scatter
(compactness) and the cluster separation are calculated from
distances to cluster centroids. The DBI value will increase (the
grade will decrease) with increasing number of clusters if they
do not fit the natural partitions of the data. When only a small
number of clusters is allowed, the clusters ISODATA produces
are relatively closer to spherical even if those clusters do not
fit the natural partitions. In contrast, a large number of ill-
fitting clusters is less likely to be close to spherical shapes.
The GDI chooses the other (mU-matrix) SOM clustering as
second best because it computes the ratio of the minimum
separation between clusters to the maximum within-cluster
scatter (minimum compactness). In this case, the mU-matrix
clustering has considerably less number of data points assigned
to clusters because of conservative delineation of a number
(but not all) of prototype cluster boundaries in the SOM lattice
by the human operator. ConnVis clustering, owing to more
explicit density information visualized on the SOM, was able



to identify the boundaries more accurately, and add a few
small clusters (the ones highlighted in the ovals in Fig 1). This
increased the scatter in several larger clusters, and decreased
the minimum separation between clusters, resulting in a higher
GDI index. DBI did not favor ConnVis over mU-matrix
because it averages the maximum ratios of pairwise scatter
and separation, therefore, increased scatter and decreased
separation for a few clusters has much less impact in this index
than on the GDI. We consider the ConnVis clustering better
than the mU-matrix clustering, in this particular case. It is also
interesting to analyze the prototype based indices in Table III.
Similarly to GDI, Conn Index favors ConnVis clustering. The
large Inter Conn values (≈ 0.5), for ISODATA clusterings in-
dicate many incorrectly clustered data vectors since Inter Conn
≥ 0.5 means that either prototypes at cluster boundaries
are assigned to the wrong cluster or two clusters should be
merged [28]. Intra Conn, the compactness of clusters, strongly
depends on the size of the clusters. This effect is somewhat
counterbalanced by Inter Conn, the separation component of
Conn Index: even though Intra Conn (compactness) is largest
for ISODATA (5–10), this case also has the largest Inter Conn
value (i.e., smallest separation), which makes it the worst
clustering as measured by the composite Conn Index.

TABLE II

VALIDITY INDICES FOR CLUSTERINGS OF THE OCEAN CITY DAEDALUS

IMAGE. INDICES ARE COMPUTED FROM DATA VECTORS. KEY TO

CLUSTERING METHODS: MU-MATRIX: SEMI-MANUAL CLUSTERING FROM

MODIFIED U-MATRIX VISUALIZATION OF THE SOM; CONNVIS:

SEMI-MANUAL CLUSTERING FROM CONN VISUALIZATION. FOR

ISODATA, THE ALLOWED NUMBER OF CLUSTERS IS SHOWN IN

PARETHESES. IN EACH CASE THE ACTUAL NUMBER OF RESULTING

CLUSTERS IS GIVEN AS k = xx. KEY TO VALIDITY INDICES: DBI:

DAVIES-BOULDIN INDEX, LOWER VALUE MEANS BETTER CLUSTERING;

GDI: GENERALIZED DUNN INDEX; HIGHER VALUE MEANS BETTER

CLUSTERING. THE BEST CLUSTERING BY EACH INDEX IS IN BOLD FACE.

mU-matrix ConnVis ISODATA ISODATA
clustering clustering (10–20) (5–10)

k = 28 k = 28 k = 18 k = 10
Index
DBI 1.17 1.30 1.30 1.19
GDI 0.41 0.55 0.17 0.38

B. Mapping Ocean City from AVIRIS data

We present clusterings of another image of Ocean City, ac-
quired by AVIRIS on Nov 5, 1998, at a relatively low altitude
of 4000 m, resulting in 3.8 m/px spatial resolution [5]. The
image was orthorectified using the direct orientation derived
from position and attitude observations recorded by onboard
GPS and INS [31]. Radiance measured by AVIRIS was
converted to reflectance by Empirical Line Calibration Method
using samples collected by an Analytical Spectral Devices
field spectrometer over sand and asphalt during the aircraft
over-flight. A false color composite in Fig 5 gives a view

TABLE III

VALIDITY INDICES FOR CLUSTERINGS OF THE OCEAN CITY DAEDALUS

IMAGE. INDICES ARE COMPUTED FROM THE SOM PROTOTYPES LABELED

BY VARIOUS CLUSTERINGS. KEY TO CLUSTERING METHODS:

MU-MATRIX: SEMI-MANUAL CLUSTERING FROM MODIFIED U-MATRIX

VISUALIZATION OF THE SOM; CONNVIS: SEMI-MANUAL CLUSTERING

FROM CONN VISUALIZATION; ISODATA: SOM PROTOTYPES LABELED

BY ISODATA CLUSTERED DATA POINTS. FOR ISODATA, THE ALLOWED

NUMBER OF CLUSTERS IS IN PARETHESES. IN EACH CASE THE ACTUAL

NUMBER OF CLUSTERS IS GIVEN AS k = xx. KEY TO VALIDITY INDICES:

DBI: DAVIES-BOULDIN INDEX; GDI: GENERALIZED DUNN INDEX;

ITRAC: INTRA CONN, DENSITY BASED MEASURE OF CLUSTER

COMPACTNESS; INTRC: INTER CONN, DENSITY BASED MEASURE OF

CLUSTER SEPARATION; CNI: CONN INDEX, COMPOSED OF INTER CONN

AND INTRA CONN. FOR DBI AND INTER CONN, LOWER VALUE MEANS

BETTER CLUSTERING; FOR THE REST, HIGHER VALUES MEAN BETTER

CLUSTERING. THE WINNER BY EACH INDEX IS IN BOLD FACE.

mU-matrix ConnVis ISODATA ISODATA
clustering clustering (10–20) (5–10)

k = 28 k = 28 k = 18 k = 10
Index
DBI 1.03 1.17 1.18 1.06
GDI 0.44 0.63 0.20 0.13
CnI 0.63 0.66 0.51 0.50

ItraC 0.74 0.83 0.83 0.86
IntrC 0.17 0.21 0.39 0.42

of the south part of Ocean City where the AVIRIS imagery
was collected, with white boxes indicating the two subsections
that we included in our cluster analysis. An aerial photograph
(Fig 6) shows fine details of surface objects in part of the
northern boxed area. The spectral image was preprocessed
by the same normalization as the Daedalus image, dividing
each spectrum by its Euclidean norm. Bands 1–4, 107–116,
and 151–169, showing strong atmostpheric attenuation, were
excluded from the analysis. Using all remaining 192 spectral
bands, we find 35 meaningful clusters, more than from the
Daedalus image, and from the AVIRIS signatures we can
identify materials more precisely. Algorithmically this is a
larger challenge than the Daedalus case.

Two cluster maps are shown for comparison in Figures 7
and 8. We placed the two boxed areas side by side here
and enlarged, for better viewing. An SOM clustering based on
modified U-matrix visualization is presented in Fig 7. Because
of the semi-manual cluster extraction from the SOM lattice,
some prototypes may remain unclustered resulting in a number
of unclustered pixels, as explained in section I.A.

In contrast to the Daedalus cluster maps, recoloring the
ISODATA map to facilitate visual comparison with the SOM
map turned out impossible for this AVIRIS case because of
the complexity of the cluster structure and because the cluster
structure that ISODATA detects is too intermixed with the
cluster structure detected by the SOM. Here, we always refer
to cluster labels in each map according to its own color
scheme. The spectral signatures of the clusters in these two



Fig. 5. Color composite of the south part of Ocean City. AVIRIS bands 55
(0.8749 µm), 35 (0.683 µm), and 19 (0.5468 µm) were combined into RGB.

maps are shown (with the respective labels) in Figures 10
and 11. There are a few clusters that show great overlap, such
as the sea water, beach sand, vegetation, roads and parking
lots (S, e, K-L, I-W-Z-h in the SOM map, and B, E-D, I-J-P,
M-K in the ISODATA map, respectively). However, some of
these ISODATA clusters contain multiple spectral species, for
example, clusters M and K (medium and dark green) map part
of the building marked with the single label D (hot pink) in the
SOM map. Similarly, the label B (red) in the ISODATA cluster
map, which is mostly sea water, also shows on some buildings.
One small feature, mapped uniquely by white (C) in Fig 7, left,
is a tennis court, which is also well outlined in the ISODATA
image but has both I and P signatures. The signature of the
SOM cluster C matches quite nicely that of a tennis court
signature published by Roberts et al., [32] (“Tennis Court
(g)”), whereas the ISODATA cluster signatures I and P have,
at best, some slight resemblance to it. This tennis court and
a few other objects of interest occur in the northern box in
Fig 5, and are also pointed out in an aerial photo in Fig 6.

It is interesting to examine some of the smaller details,
annotated in Fig 9, left, in comparison to the ISODATA map
(Fig 9, right). These cutouts are from the respective cluster
maps of the southern part of Ocean City (from the right
images in Figures 7 and 8). The arrows point to the exact

Fig. 6. Aerial photograph of part of the upper boxed area in Fig 5. Circles
highlight several objects discussed for their spectral properties: a tennis court
(white, cluster C in Fig 7); a fountain in a landscaped area (teal, cluster X);
a spectrally unique building (lilac, U); and a water tower (cherry, ’j’).

same locations in both images, and the white circles enclose
the exact same features. The annotations indicate the cluster
labels (and thus the cluster colors) associated with the object
we discuss. We again remind the reader that the labels in
each map are according to that map’s color / label wedge.
We recommend viewing these maps magnified on a computer
screen since 35 colors inevitably include a number of similar
ones that may be hard to distinguish in a small size or in a
hardcopy, and rare clusters are also hard to see.

Label D on the SOM map indicates a large building and
some smaller structures. The spectral signature of these shows
a strong iron oxide feature, and can be consistent with the
spectrum of a “Dark Roof with Red Gravel”, in Roberts
et al., [32]. Label V on the left points to a fairly homogeneous
spot, which is a miniture golf course, with a unique spectral
signature. In the ISODATA map it is not clearly outlined
and has three (I,D,K) clusters mixed whose signatures are all
different. Cluster V also shows up in a very small spot on
the SOM map (circled in white toward the lower right), at the
edge of the large parking lot. The actual spectra at these pixel
locations indeed match those of the golf course. According to
a local map, there are four small structures in a row parallel to
the north-south edge of the parking lot, and this V feature is
one of them. It appears to be adjacent to a larger building but
with a different roof or coating. The ISODATA map assigns
its clusters G and S to the same location, both rather flat an
featureless spectra and different from the spectra associated
with these pixels. In the SOM map the cluster ’a’ (greenish-
yellow, semi-U shape) is truly unique spectrally (see Fig 7,



Fig. 7. 35 clusters extracted from mU-matrix visualization of the SOM’s knowledge learned from the AVIRIS image of Ocean City. Roads are in the dark
blue and medium grey hues (I,J,Z,i), green (K,L) is vegetation, e,O,P,Q map sand layers on the beach, X, S, and P code water. Smaller, unique features are
discussed in the text. Left: The northern boxed area from Fig 5. Right: The southern boxed area from Fig 5. The color ’bg’ (black) stands for unclustered
pixels.

Fig. 8. The 21 clusters produced by ISODATA from the AVIRIS image of Ocean City. Left: The northern boxed area from Fig 5. Right: The southern
boxed area from Fig 5. There are no unclustered pixels.

Fig. 9. Details of cluster maps, for a subsection of the south part of Ocean City. Left: SOM clusters. Right: ISODATA clusters. In both figures, labels and
arrows point to the exact same locations. The labels in each figure are given according to their own color / label scheme as keyed in Figures 7 and 8. The
selected features are dicussed in the text. Spectral signatures of all clusters are shown in Figures 10 (for SOM) and 11 (for ISODATA), respectively.
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Fig. 10. Spectral statistics of the 35 SOM clusters in Fig 7. Mean spectra are displayed vertically offset for viewing convenience. The number at left is
the normalized reflectance value in the first channel. Standard deviation is shown by vertcial bars for all channels. The bare sections of the curves (without
standard deviation bars) between approximately 1.3–1.4 µm and 1.9–2.0 µm are windows of data fallout due to saturation of the atmospheric water bands.

Fig 10). It is the roof of the US Coast Guard’s building at
610 Philadelphia Ave, and it is very sharply delineated. By
informal inquiry with the Coast Guard this is a roof made of
a mix of steel and aluminum, painted blue. In the ISODATA
map this object is completely obscured by a mix of I,S,J,H
clusters, all of them with rather flat spectral signatures. The
next annotation marks a tiny object in the SOM map, cluster
’j’ in white circle. Again, the spctrum is unique, only found
here (about 6 pixels, and at one other location in the north
segment (left image in Fig 7) where it is also approximately
6-8 pixels. In both cases this turns out to be a water tower, one
of which can be seen in the aerial photo, circled in cherry in
Fig 6. In the ISODATA map the same pixels are clusterd with
M and I (mostly sand and road material). The long narrow
building indicated by the label E (light blue) on the left is

mapped by cluster M on the right (the same ISODATA cluster
that also covers the beach sand, and the red gravel roof).
The tiny, 3-pixel feature labeled U (lilac color) has the exact
same spectral signature as one other (larger) building in the
northern cutout and encircled in a lilac oval in the aerial photo.
It is sharply discriminated from the very different spectral
signatures of adjacent pixels, and spatially coincides with a
lookout tower of the Coast Guard, therefore we are confident
that this is not just noise. The SOM spectrum U is consistent
with “Light Red Composite Shingle” in Roberts et al., [32].
ISODATA does not map this building uniquely, and its R and C
clusters that show at this location are both quite different from
the actual spectra at this location, which look like the mean
spectrum of the SOM cluster U. Another small shape that
could be a building shows an SOM label T. The corresponding



N
or

m
al

iz
ed

 R
ef

le
ct

an
ce

Wavelength (µm)
0.8 1.2 1.6 2 2.4 2.8

  U  
0.042 

  T  

0.13 

  S  0.067 

  R  0.069 

  Q  0.058 

  P  
0.043 

  O  0.074 

  N  0.065 

  M  0.063 

N
or

m
al

iz
ed

 R
ef

le
ct

an
ce

Wavelength (µm)
0.8 1.2 1.6 2 2.4 2.8

  L  0.048 

  K  0.05 

  J  0.062 

  I  0.057 

  H  0.066 

  G  
0.063 

  F  0.054 

  E  0.023 

  D  0.048 

  C  0.053 

  B  

0.06 

  A  
0.052 

Fig. 11. Spectral statistics of the 21 ISODATA clusters in Fig 8. Mean spectra
are displayed vertically offset for viewing convenience. The number at left is
the normalized reflectance in the first channel. Standard deviation is shown by
vertcial bars for all channels. The sections of curves without standard deviation
bars between approximately 1.3–1.4 µm and 1.9–2.0 µm are windows of data
fallout due to saturation of the atmospheric water vapor bands.

spectrum is very similar to the “10 Year Red Composite Roof”
in Roberts et al., [32]. However, this cluster also shows up
as a thin border between town and sand beach in the north
segment, where the spectrum is slightly different. ISODATA
assigns its L and B clusters to this feature, out of which L
is similar to the actual spectra of this feature. One interesting
discovery is a small fountain in a landscaped area (in teal
colored circle in Fig 6). The few-pixel area belongs to cluster
X (water) and is in stark spectral contrast to the surrounding
pixels which have the flat signatures of concrete. The entire
fountain is embedded in a landscaped grass covered semicirle.

In Figures 10 and 11 the envelopes of clusters are not

shown to avoid crowding. While in Fig 10 each mean spectrum
is different enough from all others to warrant a separate
cluster notice also that the standard deviations suggest fairly
homogeneous clusters. The exceptions — somewhat more
variable clusters — are the water types (S, X, P), and the
vegetation groups (K, L, M). In contrast, a number of the
ISODATA mean spectra (Fig 11) are quite similar to one
another, and their standard deviations are generally larger
than those of the SOM clusters. Conspicuously, none of the
truly unique and interesting spectral types were discovered
by ISODATA. Interpretation of the spectra of some clusters
will take time. We mention a few possibilities in addition to
what we already suggested at the discussion of the selected
clusters in Fig 9. The SOM cluster ’l’ resembles the spectrum
of “Blue Street Paint” in [32]. It appears at the tip of piers in
small areas, the most prominent example is at the upper left
corner of the right image in Fig 7. ’g’ (deep purple) and G
typically occur together along boardwalks, but the two have
very different signatures. G could be wooden material while
’g’ has features similar to S and ’d’, so it may be a mixed
signature of water and underlying materials.

Similarly to the evaluations of the clustering of the Daedalus
image, Tables IV and V list validity index values for these
AVIRIS clusterings. As with the Daedalus case we have
another semi-manual SOM clustering based on ConnVis visu-
alization, which is too similar visually (on the scale of Fig 7)
to merit a separate figure, but we include it in the tables
of validity indices. Here (contrary to the Daedalus case), we
consider the mU-matrix clustering better than the ConnVis
clustering because of the discovery of several interesting but
very rare clusters by the mU-matrix approach. The number
of unclustered pixels is more similar in the two maps in
this case than it was for the Daedalus image. Table IV

TABLE IV

VALIDITY INDICES FOR CLUSTERINGS OF THE OCEAN CITY AVIRIS

IMAGE. INDICES ARE COMPUTED FROM DATA VECTORS. KEY TO

CLUSTERING METHODS: MU-MATRIX: SEMI-MANUAL CLUSTERING FROM

MODIFIED U-MATRIX VISUALIZATION OF THE SOM; CONNVIS:

SEMI-MANUAL CLUSTERING FROM CONN VISUALIZATION. FOR

ISODATA, THE ALLOWED NUMBER OF CLUSTERS IS SHOWN IN

PARETHESES. IN EACH CASE THE ACTUAL NUMBER OF RESULTING

CLUSTERS IS GIVEN AS k = xx. KEY TO VALIDITY INDICES: DBI:

DAVIES-BOULDIN INDEX, LOWER VALUE MEANS BETTER CLUSTERING;

GDI: GENERALIZED DUNN INDEX, HIGHER VALUE MEANS BETTER

CLUSTERING. THE BEST CLUSTERING BY EACH INDEX IS IN BOLD FACE.

mU-matrix ConnVis ISODATA ISODATA
clustering clustering (10–20) (20–30)

k = 35 k = 30 k = 10 k = 21
Index
DBI 1.92 1.63 5.32 5.50
GDI 0.20 0.17 0.15 0.10

shows that DBI strongly favors the SOM clusterings over
the ISODATA clusterings, with much larger differences in the



TABLE V

VALIDITY INDICES FOR CLUSTERINGS OF THE OCEAN CITY DAEDALUS

IMAGE. INDICES ARE COMPUTED FROM THE SOM PROTOTYPES LABELED

BY VARIOUS CLUSTERINGS. KEY TO CLUSTERING METHODS:

MU-MATRIX: SEMI-MANUAL CLUSTERING FROM MODIFIED U-MATRIX

VISUALIZATION OF THE SOM; CONNVIS: SEMI-MANUAL CLUSTERING

FROM CONN VISUALIZATION; ISODATA: SOM PROTOTYPES LABELED

BY ISODATA CLUSTERED DATA POINTS. FOR ISODATA, THE ALLOWED

NUMBER OF CLUSTERS IS IN PARETHESES. IN EACH CASE THE ACTUAL

NUMBER OF CLUSTERS IS GIVEN AS k = xx. KEY TO VALIDITY INDICES:

DBI: DAVIES-BOULDIN INDEX; GDI: GENERALIZED DUNN INDEX;

ITRAC: INTRA CONN, DENSITY BASED MEASURE OF CLUSTER

COMPACTNESS; INTRC: INTER CONN, DENSITY BASED MEASURE OF

CLUSTER SEPARATION; CNI: CONN INDEX, COMPOSED OF INTER CONN

AND INTRA CONN. FOR DBI AND INTER CONN, LOWER VALUE MEANS

BETTER CLUSTERING; FOR THE REST, HIGHER VALUES MEAN BETTER

CLUSTERING. THE WINNER BY EACH INDEX IS IN BOLD FACE.

mU-matrix ConnVis ISODATA ISODATA
clustering clustering (10–20) (20–30)

k = 35 k = 30 k = 10 k = 21
Index
DBI 1.49 1.26 5.09 5.50
GDI 0.19 0.19 0.16 0.10
CnI 0.63 0.65 0.28 0.02

ItraC 0.78 0.85 0.56 0.44
IntrC 0.19 0.23 0.51 0.94

index values than for the Daedalus image. We interpret this
to be the consequence of higher complexity in the natural
cluster structure of the AVIRIS data, which ISODATA can
match to a lesser degree. mU-matrix is deemed a little worse
than ConnVis by DBI, which may be the result of the presence
of several very small (low-scatter) but truly unique (well
separated) clusters in the mU-matrix clustering, compared
to the otherwise very similar ConnVis clustering. GDI is
more sensitive to the ratio of the maximum cluster scatter
to the minimum pairwise separation between clusters. The
maximum scatter may not be much affected by the addition
of several tiny clusters, but the minimum separation may
change by a perceptible amount. This can explain why GDI
favors the mU-matrix clustering over ConnVis. It is harder to
explain why GDI has such small difference for ConnVis and
ISODATA 10–20. It appears that these indices are not suitable
for comparing partitionings on the level of granularity that the
number of clusters, the variety of cluster shapes and sizes,
and the presence of rare clusters creates. In Table V, DBI and
GDI present a similar ranking, and all indices assign higher
grades to the SOM clusterings than to the ISODATA ones.
Conn Index and its “compactness” component, Intra Conn,
favor ConnVis clustering over the mU-matrix, even though
we know that the mU-matrix partitioning found more natural
clusters. Again, this probably has to do with the fact that
Intra Conn only considers densities, thus the addition of very
small clusters makes an imperceptible difference in its value.
The Inter Conn (separation) component, however, is more

responsive to the inclusion of rare clusters because it computes
the relative connectedness (similarity) of the protoypes that
are at cluster boundaries, to their own clusters versus to the
neighbor clusters, regardless of the number of all prototypes
within a cluster (and regardless of how similar those are).
These indices, although indicating some of the first order
relationships among the presented clusterings, do not seem
to capture the relative merits of finer structures.

III. DISCUSSION AND CONCLUSION

The presented studies illustrate an important point: the more
complex the data structure the more advantage SOM clustering
appears to have over ISODATA (and, from our experience with
other hyperspectral data sets, over conventional clustering and
classification methods, in general). Using SOM based tech-
niques the full dimensionality needs not be sacrificed because
this approach can handle the large number of dimensions
with relative ease. Consequently, the full discovery potential
afforded by the sensor is retained allowing the detection
of many interesting or suprising but spatially small surface
features. SOM segmentation and classification can also be
applied to stacked disparate data from different sensors.

An SOM is fully automatic in its first stage not requiring
a guess of the number of clusters, but semi-manual cluster
extraction is needed in its second stage. The discrimination
and discovery capability of SOM based clustering is high,
but computationally expensive. This can be alleviated by
massively parallel hardware implementation of proven SOM-
based algorithms. The semi-manual extraction of clusters
from the learned SOM is another bottleneck in a production
environment. Automation of this second stage on the level of
sophistication a human expert can interpret a learned SOM
has not been done yet. The knowledge representation we de-
veloped for ConnVis visualization captures more information
about the SOM than other representations we know of [12].
We are working on utilizing it for full automation.

Development of sophisticated clustering algorithms is in-
complete without equally powerful methods for the assessment
of the clustering quality. We illustrated some of the issues that
hinder such assessment with existing cluster validity indices
on a level of reliability that is needed for credible, detailed
delineation of urban cover types. We also presented a new
cluster validity index that shows promise for complicated data
structures, but needs more development based on feedback
from studies such as the ones in this paper.

The accuracy assessment of supervised classifications is,
in principle, more straightforward, backed by mature works
in statistics and sampling theories. Yet an insurmountable
problem is presented by data where the stacked data vectors
are of very high dimensionality. For such data, because of
its capacity to discriminate among many classes, the number
of test samples required for statistically significant accuracy
assessment can easily be in the thousands for a scene similar
to the AVIRIS image we analyzed here. Such requirement can
rarely be met, which leaves algorithm developments without



reliable evaluations. High quality synthetic spectral imagery
generated by principled simulations, such as the work by
Kerekes et al., (this volume) is key to addressing this problem,
as well as to supporting the development of intricate unsuper-
vised clustering algorithms.

In conclusion, we believe that the development of powerful
analysis techniques, namely advanced “precision” data mining
tools, for fused multisensor data sets can greatly contribute
toward the detailed mapping of urban environments, and that
investment in such developments can have high returns.

ACKNOWLEDGMENT

EM and KT are partially supported by grant NNG05GA94G
from the Applied Information Research Program of NASA,
Science Mission Directorate. All data were collected as part
of an International Society of Photogrammetry and Remote
Sensing (ISPRS) initiative to establish standard data sets [23].
We thank Grady Tuell for coordinating the data acquisition
campaign and for providing ground spectral measurements for
atmospheric correction of the AVIRIS image. Daedalus images
and aerial photographs were acquired by the National Geodetic
Survey. AVIRIS imagery were provided by NASA JPL. Aerial
photographs were digitized at the Digital Photogrammetry
Laboratory of the Ohio State University.

REFERENCES

[1] M. Herold, D. A. Roberts, M. E. Gardner, and P. Dennison, “Spectrom-
etry of urban areas for remote sensing – development and analysis of a
spectral library from 350 to 2400 nm,” Remote Sensing of Environment,
vol. 91, pp. 304–319, 2004.

[2] M. Dundar and D. Landgrebe, “Toward an optimal supervised classifier
for the analysis of hyperspectral data,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 42, no. 1, pp. 271–277, 2004.

[3] J. Benediktsson, J. Palmason, and J. Sveinsson, “Classification of
hyperspectral data from urban areas based on extended morphologi-
cal profiles,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 43, no. 3, pp. 480–491, 2005.

[4] F. Dell’Acqua, P. Gamba, A. Ferrari, J. Palmason, and J. Benediktsson,
“Exploiting spectral and spatial information in hyperspectral urban data
with high resolution,” IEEE Geoscience and Remote Sensing Letters,
vol. 1, no. 4, pp. 322–326, 2004.
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