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ABSTRACT. The near-infrared spectra of icy volatiles collected from planetary surfaces can be used to infer
surface parameters, which in turn may depend on the recent geologic history. The high dimensionality and complex-
ity of the spectral data, the subtle differences between the spectra, and the highly nonlinear interplay between surface
parameters make it often difficult to accurately derive these surface parameters. We use a neural machine, with a
Self-Organizing Map (SOM) as its hidden layer, to infer the latent physical parameters, temperature and grain size
from near-infrared spectra of crystalline H2O ice. The output layer of the SOM-hybrid machine is customarily
trained with only the output from the SOM winner. We show that this scheme prevents simultaneous achievement
of high prediction accuracies for both parameters. We propose an innovative neural architecture we call Conjoined
Twins that allows multiple (k) SOM winners to participate in the training of the output layer and in which the
customization of k can be limited automatically to a small range. With this novel machine we achieve scientifically
useful accuracies, 83:0� 2:7% and 100:0� 0:0%, for temperature and grain size, respectively, from simulated
noiseless spectra. We also show that the performance of the neural model is robust under various noisy conditions.
A primary application of this prediction capability is planned for spectra returned from the Pluto-Charon system by
New Horizons.

1. REMOTE EXPLORATION OF PLANETARY
SURFACES FROM SPECTRA—APPLICATION

TO THE NEW HORIZONS MISSION

Surface parameters, such as grain size and temperature, often
have a wide range of implications on the formation history of
landforms and atmospheres of solar system objects. For icy pla-
netary bodies (e.g., Kuiper Belt objects and major satellites
around giant planets), grain size can be tied to an object’s recent
volatile transport history and thermal processes of crystalliza-
tion or radiative disruption on its surface (Clark et al. 1983;
Hansen & McCord 2004). In the case of ice temperatures,
the vapor pressures of many ices are steep exponential functions
of their temperatures. Hence, temperature can be useful as a
constraint on an object’s atmospheric column abundance (Tryka
et al. 1993). However, the available knowledge of these surface
parameters is fairly limited. For example, the constraints on
Pluto’s surface pressure are indirect. Pluto’s N2 ice is in vapor
pressure equilibrium with the N2 atmosphere, buffered at a tem-
perature of 40� 2 K during the early 1990s, as estimated from
a weak spectral feature of N2 ice at 2.147 μm (Tryka et al.

1994). This N2 ice temperature is likely to change seasonally,
leading to large changes in atmospheric pressure (Elliot et al.
2003; Sicardy et al. 2003; Spencer et al. 1997).

NASA’s New Horizons space mission, which is a one-way
journey to the Kuiper Belt and beyond, is expected to investigate
the icy surfaces of remote planetary bodies such as Pluto, Char-
on, Nix, and Hydra (Young et al. 2008). The onboard infrared
imaging spectrometer (Reuter et al. 2008) will map the surfaces
of Pluto and Charon in 2015 at wavelengths from 1.25 to
2.5 μm. From these acquired near-infrared (NIR) ice spectra,
the physical parameters that influence the reflectance values
across all wavelengths can potentially be inferred (Grundy &
Schmitt1998; Grundy et al. 2002).

However, accurate inference of these parameters is nontri-
vial. The complicated manifestation of and interplay between
the physical parameters underlying the measured spectra, the
often subtle variation in the spectral shapes in response to sig-
nificant changes in parameters, and the high dimensionality of
the spectra pose considerable challenges. Previous efforts to in-
fer surface parameters have not yet produced satisfactory re-
sults. A simple and purely empirical method was proposed
by Fink & Larson (1975) for retrieving H2O ice temperatures
from reflectance spectra. They developed a calibration curve
of a feature at 6056 cm�1 (∼1:65 μm) and used it to determine
ice temperatures for the Galilean satellites Europa, Ganymede,
and the rings of Saturn. Their method was limited to objects that
display H2O ice absorptions. Another competing method to in-
fer H2O ice temperatures was discussed by Grundy et al. (1999),
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involving construction of a suite of models with various free
parameters, fitting them to the spectra and also fitting them
to different segments of the spectra separately, and comparing
the resulting collection of best-fit temperatures. If most of the
models and most of the spectral segments agreed on the tem-
perature, that temperature was accepted as likely correct. When
different models gave systematically different temperatures, the
results were taken as probably meaningless. Such techniques
worked well for some applications. However, when the surface
conditions were more complicated than the model could ad-
dress, such as in the presence of mixed phases or complex grain
size distribution, this method produced poorer results.

We approach the challenge of parameter inference with neur-
al learning, specifically with a hybrid supervised neural archi-
tecture containing a Self-Organizing Map (SOM) (§ 2.3). As we
will see, this approach yields high, scientifically useful accura-
cies. The work presented in this article has three necessary com-
ponents for the development of a comprehensive pattern
recognition system for inferring surface parameters from NIR
spectra:

1. Investigation of the approach with noiseless spectra of
crystalline H2O ice (§ 3);

2. Analysis of the robustness of the neural models to different
levels of noise (§ 4);

3. Classification of spectra of different ice species (§ 5).

We start with H2O ice because it is one of the most com-
monly found materials in the solar system, for which a great
deal of relevant data and experience have been accumulated.
We focus on crystalline (as opposed to amorphous) H2O ice
because observations of Charon are consistent with crystalline
ice (Brown & Calvin 2000) and because amorphous ice is a less
interesting problem, with virtually no sensitivity to temperature
in its spectrum. In follow-up work we will investigate the infer-
ence capability of the neural approach under increasing levels of
realism such as extension to other types of ices (CO2, CO, NH3)
and to mixtures of ices. These efforts can ultimately lead to the
capability of accurately inferring surface conditions from ice
spectra such as those returned by New Horizons.

2. NEURAL NETWORK MODELING FOR
INFERENCE OF SURFACE PARAMETERS

2.1. Methodology and Training Data

We need a large number of labeled spectra to train the neural
models. However, real spectra of Pluto and Charon with suffi-
cient resolution in spatial and other aspects are scarce. Training
with real data sets does not necessarily produce a model that
spans all plausible ranges of physical parameters. In such situa-
tions, and if available, realistic synthetic data or laboratory spec-
tra can be used for training. For example, Gilmore et al. (2004)
developed a carbonate identifier by training a back propagation
neural network with a large number of laboratory spectra of car-

bonate and noncarbonate minerals. The resulting autonomous
system was successful in various simulated Martian scenarios.
Ramsey et al. (2002) presented a Bayesian approach for mineral
identification from NIR reflectance spectra. The recognition rate
in the experiments with laboratory spectra of a variety of solid
and powdered rock samples exceeded that of human experts.
Similarly, we use synthetic spectra for the training of our neural
machines to fit models to the entire NIR spectral range (as op-
posed to piecewise models). We then validate the inference cap-
ability of the trained models with synthetic test spectra. Reliably
performing models will be deployed to infer unknown para-
meters from spectra taken from real planetary surfaces.

The synthetic spectra are generated on a parameter grid
through a radiative transfer code (Grundy 1995) based on the
Hapke model, which is the most common way to describe
the interaction of a solid particulate surface with incident sun-
light (Hapke 1993; Cruikshank et al. 1998). The ice optical con-
stants used in the Hapke model are also synthetically generated
with a model that fits to laboratory spectra with 17 temperature-
dependent Gaussians (Grundy & Schmitt 1998). The parameter
grid has 126 temperatures with 2 K spacing between 20 and
270 K, and 9 grain sizes logarithmically spaced from 0.0003
to 3.0 cm. This set of parameters covers a meaningful range
of surface conditions for the Pluto-Charon system, at sufficient
resolution for scientific study. The spectral resolution, 230 band
passes in the NIR range (1–2.5 μm), is close to the resolution of
the sensor used on the New Horizons spacecraft (Reuter
et al. 2008).

2.2. Challenges in Inferring Latent Variables

From a computational standpoint, temperature and grain size
can be called latent variables, because they are not directly ob-
served, but are rather inferred from directly measured observa-
ble variables (the reflectance values). They have a global
influence on the spectral shapes, as opposed to ions or molecu-
lar compounds, which cause local absorptions (limited to some
wavelengths) and therefore may be determined from individual
absorption bands. Temperature and grain size, however, are hard
to infer from piecewise spectral segments, because they have
complicated and intertwined effects on the reflectance values.
As seen from the sample spectra in Figure 1, both parameters
deepen the absorptions, e.g., at 1.3 μm and 1.65 μm, but the
change in the band depths is a nonmonotonic function of grain
size. Hence, we build models to infer the two parameters from
the entire NIR spectra, which potentially have more information
than single absorption bands. In addition, temperature has a
much smaller effect on the spectral brightness than grain size.
This results in many crossovers between spectra with different
temperatures (Fig. 1, top); the subtle changes in spectral shapes
caused by temperature makes the differentiation between tem-
peratures difficult. A sensitive classifier is needed to distinguish
between these spectra such that accurate inference can be made.
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2.3. The SOM-Hybrid Architecture for Supervised
Learning

The neural architecture we use is a two-layer fully connected
feedforward network, with a two-dimensional (2D) SOM as the
hidden layer (Fig. 2). The 230-neuron input buffer takes a 230-
band spectrum xð¼ ½x1; x2;…; x230�T Þ as an input vector in
each learning step. Each neuron i in the SOM lattice A, of
N neurons, is connected to all inputs via a 230-element weight
vector wi (the ith row vector in aN × 230weight matrixW that

connects the input buffer and the hidden layer). The output
layer, connected to the SOM by a 2 ×N weight matrix V,
has two neurons that compute yOUT1 and yOUT2 , the inferred
values of the physical parameters. This machine performs a
topologically ordered mapping of the input spectra on the
SOM lattice in a first, unsupervised learning phase, during
which the output layer is idle. The resulting map reflects the
similarity relationships of the high-dimensional input data, thus
clusters can be identified. For general background on SOMs we
refer to Kohonen (2001). We use a lesser-known variant, the
Conscience algorithm (DeSieno 1988), of which a brief sum-
mary is given later in this section. Upon convergence of this
phase, i.e., when the SOM weights W no longer change signif-
icantly, the output layer is turned on, to perform the second,
supervised, learning according to equations (1) and (2). The out-
puts of the output layer are computed as

yOUTp ¼
X
i∈A

vpiy
SOM
i p ¼ 1; 2: (1)

vpi is the element in the pth row and ith column of the weight
matrix V. Temperature and grain size are learned through ad-
justment of vpi to minimize the total squared error of the outputs
according to the so-called delta rule (Widrow & Smith 1964):

Δvpi ¼ αySOMi ðY OUT
p � yOUTp Þ (2)

where Y OUT
p is the desired output, α is a learning rate. During

the supervised training of the output layer, the SOM can con-
tinue its unsupervised learning with a small learning rate, for
fine-tuning of the SOM weights W.

This construction has been successful in a number of plane-
tary applications. Howell et al. (1994) revised asteroid taxon-
omy by analyzing the clusters identified from an SOM and
making the classification scheme more self-consistent. Another
example is the accurate classification of a large number of clay-
bearing soils with subtle spectral differences due to different
clay species, for landslide hazard study from AVIRIS imagery
(Rudd & Merényi 2005). The capability of this neural architec-
ture to finely discriminate spectral shapes is a result of using an
SOM in the hidden layer. We use the same architecture to target
the parameter inference problem in this study.

SOMs, in general, are adaptive vector quantizers that place
quantization prototypes (SOM weights wi, i∈A) in the data
space such that they best represent the manifold distribution.
(To distinguish the SOM weightsW and the weights of the out-
put layer V, we call the SOM weights prototypes.) At the same
time, the prototypes are organized (indexed) on the rigid low-
dimensional lattice A according to their similarities. This allows
capture of clusters in high-dimensional space from the 2D lat-
tice without reduction of dimensionality. We use the Conscience
variant (DeSieno 1988) of the original Kohonen SOM because
it can achieve maximum entropy mapping. This means that
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FIG. 1.—Sample synthetic spectra of crystalline H2O ice. Top: variation in the
spectral shape as a function of temperature (T), for one fixed grain size (GS),
0.003 cm. Bottom: variation in the spectral shape as a function of grain size, at
50 K.

FIG. 2.—SOM-hybrid neural architecture.
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approximately equal numbers of data samples (spectra) will be
represented by the SOM prototypes, providing the best possible
approximation of the data probability density function (pdf)
with the given number of prototypes. Maximum entropy map-
ping (encoding of input data by vector quantization prototypes)
is optimal for information transfer. The Kohonen SOM has been
shown suboptimal in this sense. The following describes the
Conscience algorithm. The prototypes wi (i∈A) are updated
through many iterations (learning steps) described through
equations (3)–(6). An input vector x is first randomly selected.
An SOM winner neuron (or best matching unit, BMU) c is
found such that

‖wc � x‖2 � bc ≤ ‖wj � x‖2 � bj ∀ j∈A (3)

with a bias bj applied to each neuron j. The bias bj is computed
from the winning frequency pj, of neuron j, as

bj ¼ γðtÞ × ððN × pjÞ � 1Þ: (4)

pj is updated as

pnewj ¼ poldj þ βðδjc � poldj Þ; (5)

where δjc is the Kronecker delta, β and γ are user-specified para-
meters. γ ¼ 0makes the Conscience algorithm equivalent to the
original Kohonen algorithm. After winner selection, prototypes
wj are updated as

wnew
j ¼ wold

j þ αðtÞhc;jðtÞðx� wold
j Þ (6)

where αðtÞ is a time-decreasing learning rate. hc;jðtÞ is a neigh-
borhood function that defines the activation of a SOM neuron j
by the BMU c to learn from the same input x. For the Kohonen
SOM, the neighborhood is commonly a Gaussian kernel cen-
tered over the BMU, which needs to be large at the beginning
and diminish with time, to help avoid distortions in the map.
The Conscience variant, however, enables the use of a fixed
and small neighborhood size, such as an 8-neighbor square con-
figuration in this case, which lightens the computational burden
compared to the Kohonen SOM.

In the supervised learning phase, the customary way to pass
information from the SOM to the output layer is the winner-
takes-all (WTA) mode, in which only the BMU c sends a non-
zero signal, 1, to the weighted sum in equation (1), all other
SOM neurons send 0. Hence, in the WTA mode, this weighted
sum is reduced to one term:

yOUTp ¼ vpc p ¼ 1; 2: (7)

In § 3.2 we will introduce an alternative way by which multiple
SOM winners can contribute to the training of the output layer.

3. LEARNING TEMPERATURE AND GRAIN SIZE
FROM NOISELESS SPECTRA

We assess the neural modeling for noiseless spectra. as a ne-
cessary initial step. The performance we achieve on noiseless
data will serve as a benchmark in the noise sensitivity analysis
we give in § 4.

In the unsupervised training phase of the SOM, we use all
1134 synthetic spectra (126 temperatures, 9 grain sizes) of crys-
talline H2O ice. In the supervised training phase, we conduct
tenfold jackknifing (cross-validation) to assess the performance
of the trained predictive models. In each jack-knife run, 1134
spectra are randomly split with a 1∶9 ratio into a test and a train-
ing set. The prediction results are averages of 10 jack-knife runs.

3.1. Relationship Between the Parameters as Expressed in
the SOM

Since the unsupervised learning phase is important for fine
discrimination of the spectral shapes in subsequent supervised
learning, it is useful to examine how the converged SOM re-
flects the manifold structure and, specifically, what can be seen
in terms of the influence by temperature and grain size. We
visualize the distance (in the data space) between the prototypes
that belong to two adjacent SOM neurons as a “fence” between
the respective cells (Fig. 3, left). The gray scale intensity of the
“fence” is proportional to the this distance. With this visualiza-
tion, we can find out how similar (or dissimilar) the SOM pro-
totypes are. We can see that the SOM is clearly separated into
grain size clusters, typically by double-fenced black corridors,
such as the diagonal one that separates the dark blue and the
magenta clusters from the light blue and the yellow clusters.
Since each prototype is the average of all spectra that map to
it, we can see the variation in the spectral shapes caused by dif-
ferent grain sizes across the grain size clusters (Fig. 4). The pro-
totypes within each grain size cluster are organized with respect
to temperature. The temperature-dependent features in the pro-
totypes change in an orderly fashion from one end of the cluster
to another (from top to bottom, left to right, and in other direc-
tions). Figure 3, right, illustrates this for the 0.003 cm (yellow)
grain size group. The prototypes learned from spectra with low
temperatures have a strong absorption at 1.65 μm (in red boxes).
This feature gradually disappears toward the right for high tem-
peratures (in red circles). The observed dominant effect of grain
size on the SOM clustering can be explained by the grain size
dominance on the reflectance spectra. The difference in the
spectral brightness is substantial between two grain size cate-
gories (Fig. 1, bottom). In contrast, the changes in temperature
cause negligible changes in brightness, but they cause band cen-
ters to shift, as well as significant changes in relative band depth
(Fig. 1, top). Therefore, the structure of this data manifold as
suggested by the clustering in the SOM agrees with the spectral
properties we know.
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Closer inspection of the SOM clustering reveals that, without
exception, all input spectra mapped to any prototype within a
grain size cluster have the same grain size label (not shown
in Fig. 3, left). Thus, perfect learning of grain size can be easily
achieved in the WTA mode, as in equation (7). In contrast, with
approximately 25–30 prototypes in a grain size cluster, for the
representation of 126 different temperatures, each prototype is
forced to form an average (a mixture) of spectra across different
temperatures. In the WTA mode, the output temperature value
for any input spectrum that maps to a prototype is trained to
approximate the average temperature represented by that proto-
type. This severely limits the resolution of the inferred tempera-
ture values. However, we can observe that, in general, each
spectrum with a specific temperature also contributes to the
spectral mixtures in several neighboring prototypes. This sug-
gests that the inclusion of neighboring prototypes of the BMU
in the weighted sum sent to the output layer may help better
reconstruct a specific temperature. The question is which and
how many neighbors to include. We propose a principled ap-
proach next, which also allows a natural customization for
the prediction of different parameters.

3.2. k-Winners-Take-All and Choices of k

By the SOM formula, the response of any SOM neuron
(SOM output) to an input vector is indicative of the similarity
between the respective prototype and the input vector. In the
most frequent implementations, the SOM output is either pro-
portional to the inner product of the input vector and the SOM
prototype (Kohonen 2001), or inversely proportional to the Eu-
clidean distance between them. In the WTA mode, binary

thresholding is applied to the SOM responses, assigning 1 to
the BMU c and 0 to the rest as

ySOMi ¼
�
1 i ¼ c
0 i ≠ c

: (8)

In this work, we allow k SOM winners, indexed as iq ðq ¼ 1;
…; kÞ in the SOM lattice, to be simultaneously active with non-
zero output values (k-winners-take-all or kWTA). ySOMi is inver-
sely proportional to the distance di between the prototype wi

and the input vector x:

ySOMi ¼
8<
:

1 i ¼ i1ð¼ cÞ
d1

d1þdi
i ¼ i2; i3;…; ik:

0 i ≠ i1; i2;…; ik:
(9)

Then these ySOMi are normalized as

ySOMiq
¼

ySOMiqP
k
q¼1 y

SOM
iq

: (10)

With k winners, the weighted sums in the output layer have k
terms:

yOUTp ¼
Xk
q¼1

vpiqy
SOM
iq

p ¼ 1; 2: (11)

Obviously WTA is a special case of kWTA with k ¼ 1. Neur-
alWare’s implementation in Neural Works Professional II/Plus
(NeuralWare 2003) is a special case of this, for k ¼ 3. In prac-
tice, k can be a much smaller number than N , because the out-
puts of most of the SOM neurons are insignificant for a given

FIG. 3.—Left: A 20 × 20 SOM trained with synthetic spectra of crystalline H2O ice. Grid cells represent SOM neurons. In the SOM, we only color the neurons that
represent spectra of H2O ice. The colors indicate the known grain sizes as keyed at right. The “fences” between adjacent cells have gray scale intensities proportional to
the Euclidean distances (in feature space) between the prototypes of the respective neurons. White is large distance. The unlabeled (black) cells, such as those between
the red and the green clusters, mostly indicate prototypes of spectra of other ices, N2, CH4 etc. This information is not shown here. Some black cells—typically in the
narrow corridors between grain size groups, e.g., between the blue and the yellow clusters—are prototypes with no data mapped to them. Whether a prototype has data
mapped to it is not shown in this representation. Right: An example of how spectra are organized within a grain size group according to temperatures. Here, part of the
yellow group is shown with prototypes plotted in the SOM cells. An orderly change in the prototype shapes from left to right can be observed in response to increasing
temperatures. The red boxes and circles exemplify differences in temperature-dependent absorption features at low and high temperatures, respectively. The light blue
and white boxes indicate the empty prototypes of this grain size group, inside and at the boundaries, respectively.
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input. We will use the term “interpolation off” or “noninterpo-
lating mode” for k ¼ 1 (or WTA), and use “interpolation on” or
“interpolating mode” for k > 1 (or kWTA).

In order to find the right k for the inference of temperature
and grain size, it is helpful to examine the neighboring relation-
ships of the Voronoi cells that result from the segmentation of
the data space (Voronoi tessellation) with respect to the SOM
prototypes. AVoronoi cell comprises the data points represented
by the prototype that serves as the Voronoi centroid. A deriva-
tive of the Voronoi tessellation is the Delaunay triangulation, in
which two Voronoi centroids are connected by an edge if their
cells share a boundary. Figure 5, left, provides an illustration of
a Delaunay triangulation, for an artificial 2D data set “exclama-
tion mark.” This data set consists of two disconnected parts, in

the shape of an ellipse and a circle, respectively. The gap be-
tween the two parts cannot be detected from the Delaunay tri-
angulation. For a better representation of discontinuities in data
manifolds, Martinetz & Schulten (1994) proposed the induced
Delaunay triangulation. They showed that under certain circum-
stances, the edges of the induced Delaunay triangulation could
be effectively constructed through so-called Hebbian learning
(Hebb 1949) one form of which is SOM learning. A connection
(an edge in the induced Delaunay triangulation) is defined be-
tween two Voronoi cells (as Voronoi neighbors) if their cen-
troids form a pair of BMU and second BMU for at least one
data point. In Figure 5, right, the induced Delaunay graph
for the “exclamation mark” data is constructed through their
method. The separation between the upper and lower parts of

FIG. 4.—Learned prototypes plotted in their respective cells in the same SOM as in Fig. 3, left. The “fences” between adjacent SOM cells are turned off for clarity. An
orderly change in the temperature-dependent features in the prototypes can be observed from one end of each grain size cluster to another. This can be seen in more detail
for the yellow grain size group in Fig. 3, right.
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the “exclamation mark” is made obvious by the disconnection
in the graph. In a similar manner, we now further define second-
tier connections between two Voronoi centroids that form a pair
of BMU and third BMU for at least one data point. We will call
the connections defined by Martinetz & Schulten (1994) first-
tier connections. Visualization of these first-tier and second-tier
connections, and possibly others, can help understand the con-
nectedness of the manifold structure. For data dimensionality
larger than 3, we cannot show the connections in the data space,
but we can visualize them on the SOM, as in Figure 6 for the
230-dimensional ice spectra. We find that almost all first-tier as
well as second-tier connections are between immediate lattice
neighbors, with connection length ¼ 1 (city block distance be-
tween the SOM cells at the two ends of a connection) (Villmann
et al. 1997). The small number of first-tier connections with
length > 1 are called violating connections, which indicate that
prototypes neighboring in the data space are not indexed as
neighbors in the SOM lattice. From an inspection of the ranks
of the first-tier connections, we can determine that all violating
connections for this data are local violations (Taşdemir & Mer-
ényi 2009), which reflect the smearing of temperature represen-
tation across neighboring prototypes, as discussed in § 3.1.

Having demonstrated the soundness of the map, we can
further elaborate on what information the connections in Fig-

ure 6 convey. All first-tier and second-tier connections are con-
fined within their respective grain size clusters. As a result, both
second and third BMUs either have the same grain size label as
the BMU, or have no label (with no spectra mapped to them).
This confirms that the Voronoi neighbors of the BMU (con-
nected in the SOM) cannot help the prediction of grain size be-
cause their inclusion in the weighted sums, equation (11),
merely brings in redundant information. However, as suggested
in § 3.1, the prediction of temperature can benefit from the Vor-
onoi neighbors. The question is how many neighbors are suffi-
cient. By definition, the number of first-tier connections of a
given prototype gives the number of Voronoi neighbors for that
prototype. The SOM prototypes representing spectra of H2O ice
have at most three Voronoi neighbors (Fig. 6, top), thus we may
use up to 3 Voronoi neighbors to help improve the prediction of
temperature. Further, we can quantify the importance of each
Voronoi neighbor with its connection strength, which is defined
as the number of data points that select this pair of prototypes as

FIG. 6.—Top: First-tier connections between SOM prototypes (edges of the
induced Delaunay triangulation) drawn as maroon line segments connecting
cells in the same SOM as in Fig. 3, left. Bottom: Second-tier connections.

FIG. 5.—Illustration of Voronoi tessellation, Delaunay triangulation and in-
duced Delaunay triangulation with a 2D “exclamation mark” data set, which has
uniformly distributed data points (gray dots) in two disconnected regions. Open
circles represent the 36 SOM prototypes that learned this data, and serve as Vor-
onoi centroids. Voronoi cells are delineated by dotted lines. Left: The Delaunay
triangulation (thin solid lines) does not help separate the two disconnected parts
in the data set. Right: The induced Delaunay triangulation (thick solid lines)
highlights the discontinuity.
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the BMU and the second BMU (Taşdemir & Merényi 2009).
The Voronoi neighbors of a given prototype can be ranked ac-
cording to their respective connection strengths, and average
connection strengths can be computed for each ranking across
all prototypes (Table 1). This statistics shows that there is no
connection to fourth-ranking neighbors (i.e., any prototype
has a maximum of three neighbors) and the third-ranking neigh-
bors have negligible connections. This justifies k ¼ 3 for the
prediction of temperature for this data set.

3.3. kWTA Versus WTA in Supervised Learning

In this study, we do the supervised training for temperature
and grain size in both the interpolating and the noninterpolating
modes. The results are shown as correlations between predicted
and true values, in Figure 7. Since both physical parameters
have large ranges, we quantify the prediction accuracy as the
percentage of test spectra for which the true parameter value
was predicted with less than 5% relative error. The accuracies
shown in Table 2, top left block, confirm that, as expected, the
interpolating mode with k ¼ 3 helps improve the prediction of
temperature significantly, from 76.4% to 83.0%. The relatively
poor results for the prediction of temperature occur mostly at the
extreme values, ∼20 K and ∼270 K (Fig. 7, left block), due to
limited availability of synthetic training spectra with optical
constants in these ranges. With this boundary effect excluded
from the calculation of the prediction accuracy, temperatures
are predicted with 91.8% accuracy (Table 3) for test spectra
within the [50 K, 240 K] range. In contrast, the prediction ac-
curacy of grain size decreases considerably in the interpolating
mode. Experiments that naturally come to mind for regaining
the high accuracy for grain size, such as increasing the grid re-
solution of the training data, increasing the SOM size, or in-
creasing both, are not helpful in this case, as seen from
Table 2. For details we refer to Zhang et al. (2009). Although
it is possible that with an SOM even larger than 40 × 40, or with
many more training steps, we may be able to achieve the same
accuracies as in Table 2, top left block, the extra computational
cost required makes that solution undesirable for practical
purposes. Discussion of the computational cost is given
in § 3.4.2.

3.4. Conjoined Twins–A Neural Architecture for
Inference of Two Latent Variables

3.4.1. Novel Architecture

From the results described in § 3.3, we find that the opposing
preferences of temperature and grain size for the interpolation
modes cannot be satisfied simultaneously. However, we can en-
code this duality in a novel way into a neural architecture we call
Conjoined Twins (Zhang et al. 2009). It has the same structure
as in Figure 2, but with “twin heads,” two copies of the output
layer (Fig. 8). Both “heads” share the same “body” of knowl-
edge in the SOM, but use it in customized ways. Head #1 pulls
the SOM output only from the BMU (noninterpolating mode)
for the training of the output layer (eq. [7]). This head becomes a
grain size specialist, achieving perfect prediction for grain size.
The prediction of temperature from its second output neuron is
discarded. Similarly, head #2 specializes in temperature by
drawing the outputs from the first three BMUs and forming
a three-term weighted sum according to equation (11) (interpo-
lating mode with k ¼ 3). The grain size prediction from this
head is discarded. Importantly, the customization of k for both
heads is determined from the statistics of the connections be-
tween the SOM prototypes by straightforward computation,
as discussed in § 3.2. With the customization of k in the Con-
joined Twins we obtain high prediction accuracies for both para-
meters.

3.4.2. Computational Cost

The increase in computational cost with an additional “head”
is relatively small compared to increasing the size of the SOM,
for two reasons. First, the training of the SOM is typically long-
er (takes more training steps) than the training of the output
layer. Second, the cost of each training step of the SOM is much
larger than the cost of a training step in the output layer. WithN
SOM prototypes and dimension D, it takes ð3Dþ 6ÞN opera-
tions for the SOM to calculate the distances between an in-
coming input vector and all the prototypes, for winner selection
(eqs. [3]–[5]), and 4DN operations for updating the SOM
prototypes wj (eq. [7]). For a 20 × 20 SOM (N ¼ 400) that
learns 230-dimensional data (D ¼ 230), it takes 646,400
(¼278;400þ 368;000) operations to learn from one input vec-
tor. For a 40 × 40 SOM (N ¼ 1600), the number of operations
is 2,585,600 (4 times larger) for one learning step. In contrast,
adding a “twin head” carries a small overhead. In the noninter-
polating mode (WTA), one training step has 5N operations: N
for setting SOM outputs (eq. [8]), 2N � 1 for calculating yOUTp

in the output layer (eq. [1]), and 2N þ 1 for updating vpi
(eq. [2]). In the interpolating mode (kWTA), one step costs 3kþ
5N � 2 operations, where k is the customized number of SOM
winners to be used by this “head.” This includes kþN � 1 op-
erations for setting the SOM outputs (eq. [9]), 2k� 1 operations
for normalizing the SOM outputs (eq. [10]), 2N � 1 operations

TABLE 1

STATISTICS OF CONNECTIONS TO VORONOI NEIGHBORS, FROM
THE HIGHEST TO THE LOWEST RANKING, ACROSS SOM

PROTOTYPES THAT REPRESENT H2O ICE SPECTRA

Rank of neighbors 1 2 3 4

Number of connections . . . . . . . . . . 209 184 7 0
Average connection strength . . . . . 7.6 3.7 1.1 0
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for calculating yOUTp in the output layer, and 2N þ 1 for updat-
ing vpi. As discussed in § 3.2, k is typically a small number
(≪N). For a 20 × 20 SOM, 2000 additional operations are
needed for WTA, or 2007 for kWTA (k ¼ 3). Hence, the extra

computational cost of adding a “twin head” is negligible, and
independent of the data dimensionality. This makes the Con-
joined Twins approach especially suitable for high-dimensional
data.
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FIG. 7.—Correlation of predicted and true values of temperature (left block) and grain size (right block) (Zhang et al. 2009). Data are shown as gray dots. Top: Results
obtained with the SOM in the noninterpolating mode. Bottom: Results obtained with the SOM in the interpolating mode. The dashed, dash-dotted, and dotted lines
indicate 5%, 10%, and 50% error envelopes, respectively. The prediction of temperature is better in interpolating mode, while the prediction of grain size is better in
noninterpolating mode (Table 2).

TABLE 2

PREDICTION ACCURACIES OF GRAIN SIZE (GS) AND TEMPERATURE (T) FOR TWO SEPARATE DATA SETS

Data with 9 Grain Sizes Data with 81 Grain Sizes

Interpolation mode Noninterpolating Interpolating Noninterpolating Interpolating

20 × 20 SOM . . . . . . . . . . . . . GS 100.0%±0.0% 76.4%±4.4% 74.1%±1.5% 78.8%±1.7%
T 76.2%±2.6% 83.0%±2.7% 31.9%±1.2% 52.5%±1.8%

40 × 40 SOM . . . . . . . . . . . . . GS - - 97.8%±0.4% 54.5±1.2%
T - - 60.3%±1.2% 77.9%±1.0%

NOTE.—The two data sets contain 9 and 81 grain sizes, respectively, with 20 × 20 and 40 × 40 SOMs, each in the interpolating (k ¼ 3)
and the noninterpolating modes (Zhang et al. 2009). Results are averages of 10 jack-knife runs.
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We can achieve 100% accuracy for the prediction of grain
size in the interpolating mode (k ¼ 3) by running the supervised
phase for ∼2 million steps, more than twice as long as with the
Conjoined Twins (750,000 steps). This means that the inclusion
of 3 SOM winners can produce good prediction for both para-
meters, but more computational time is required by this machine
with single interpolation mode to perform as well as the Con-
joined Twins for the inference of grain size. For a 20 × 20 SOM
(N ¼ 400) and 230-dimensional data (D ¼ 230), it takes a total
of ∼2:1 × 1011 (¼ð276;000þ 2000þ 2007Þ × 750;000) opera-
tions for the Conjoined Twins to learn both parameters well. The
machine with single interpolation mode, k ¼ 3, needs ∼5:6 ×
1011 operations (¼ð276;000þ 2007þ 2007Þ × 2;000;000) to
achieve similar results. Thus, the Conjoined Twins machine
is a more economical solution to this parameter inference
problem.

4. NOISE SENSITIVITY ANALYSIS

As our eventual goal is to infer surface parameters from real
spectra acquired in space missions under various noise condi-
tions, we conduct a noise sensitivity analysis to evaluate the ro-
bustness of our neural models. To address the noise conditions
that are common for spectral measurements, we add noise to the
noiseless data set used in the previous section (1134 spectra),
producing noisy versions of the data with seven different sig-
nal-to-noise ratio (S/N) levels, S=N ¼ 256, 128, 64, 32, 16,
8, and 4. Since, in general, noise can be additive (due to sky
background, dark current, and read noise, for example) and mul-
tiplicative (due to the Poisson shot noise of photons from the
object itself), our noise generation routine lets the user specify
two parameters: the amplitude of the generated noise vector
(specified as a target S/N) and the fraction of the noise that
is additive as opposed to multiplicative. Obviously, for bright
sources, the multiplicative noise will dominate, and vice versa
for faint sources. In all of the noise vectors generated for the
purposes of this study, we assume that the additive and multi-
plicative noise sources are roughly equal. The two noise sources

are assumed to be uncorrelated and are therefore added in quad-
rature by σtotal ¼ ðσ2

add þ σ2
multÞ1=2, where σ represents the stan-

dard deviation of the noise. Because multiplicative noise
depends on the spectral values themselves and additive noise
does not, we choose a typical spectral value (the median of
the spectrum, in fact) at which the multiplicative and additive
noise components have equal standard deviations. We generate
two batches of noisy data sets, one batch with 1 noisy version,
the other with 10 noisy versions for each noiseless spectrum. We
refer to these as NoisyData1 (7 × 1134 ¼ 7938 spectra) and
NoisyData10 (7 × 10 × 1134 ¼ 79; 380 spectra).

The noise sensitivity analysis consists of two parts. First, we
compare the models trained on the NoisyData10 data set with
five S/N levels (inf, 256, 128, 64, and 32), as shown in Table 4.
The inference capabilities of the resulting models are tested on
data with eight different S/N levels (inf, 256, 128, 64, 32, 16, 8,
and 4). For each case, we do 3 threefold jack-knife runs. The
training set for each case comprises 2

3 of the spectra with the
training S/N, selected randomly. The remaining 1

3 of the spectra,
together with the spectra with other SNR levels, make up the
corresponding test set. Second, we investigate the influence
of the size of the noisy training set on the prediction accuracy,
by comparing the models trained with the NoisyData1 and the
NoisyData10 data sets.

In both experiments, we reuse the SOM that learned with the
noiseless data and train the “twin heads” with the noisy data in
the supervised learning phase. A rationale for reusing the SOM
is that we expect to train the SOMs in our models mostly with
synthetic data, thus, we have no limitation in using noiseless
data. In addition, the use of the same SOM (trained with noise-
less spectra) across all cases helps separate the effect of training
the “twin heads” with different noisy data sets from the effect of
training the SOMwith noisy data. A follow-up task should be to
assess what noise levels make significant difference in training
the SOM.

TABLE 3

PREDICTION ACCURACIES OF GRAIN SIZE (GS) AND

TEMPERATURE (T) WITH THE DATA SET CONTAINING 9
GRAIN SIZES AND THE 20 × 20 SOM

T
(K)

Noninterpolating Interpolating
(k ¼ 3)

[20,270] . . . . . GS 100.0%±0.0% 76.4%±4.4%
T 76.2%±2.6% 83.0%±2.7%

[50,240] . . . . . GS 100.0%±0.0% 73.7%±4.7%
T 82.3%±3.7% 91.8%±1.2%

NOTE.—Prediction accuracies are calculated for the whole
data set with T∈½20 K; 270 K� and for the subset of data with
T∈½50 K; 240 K�, respectively. Results are averages of 10
jack-knife runs. FIG. 8.—Conjoined Twins architecture. One “head” of the Conjoined Twins

works in noninterpolating mode, using the output from the BMU (black neuron
in the SOM) to predict grain size. The other “head,” working in interpolating
mode, uses the first, second, and third BMUs (black, dark, and light gray neu-
rons) to predict temperature.
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The best results in Table 4 show that the difference between
the S/N levels of the training and the test data is important for
the prediction of temperature. The training set with the highest
S/N, namely the noiseless set, does not always generate the best
predictions. For instance, from the noisy data with S=N ¼ 64,
temperature is best inferred with the model trained on data with
S=N ¼ 128. This makes sense because training with noisy data
is similar to training with a larger variety of noiseless training
samples that have the same variance as the noisy data. This
helps the prediction from noisier samples which have an even
larger variance than the training data. Table 4 suggests that the
training sets with S/N 2–8 times as high as the S/N of the test
data produce the highest accuracies. In contrast, for grain size,
the noiseless training set produces the best prediction accuracy
for all test sets with S=N ≥ 16. The markedly lower accuracies
produced by the models resulting from noisy training data can
be explained by noise-induced blurring of the boundaries be-
tween grain size groups. Two noisy spectra with different grain
sizes can map to the same SOM prototype at the boundary of
two clusters (such as the ones in the white boxes in Fig. 3, right).
This causes confusion during the training of the grain size spe-
cialist “head”. For the test sets with SNR levels 4 and 8, the best
results are produced with the models with S=N ¼ 64 of the
training data. However, for these two test sets, the advantage
of the best models over others is small (≤2:0% increase in ac-
curacy), thus may not be conclusive.

Tables 5 and 6 show the prediction accuracies achieved with
the NoisyData10 and the NoisyData1 data sets, respectively.
Their difference, in Table 7, indicates the improvements in pre-
diction accuracies caused by the larger sizes of the training sets.
For the prediction of temperature, the improvement in accuracy
is prominent when the test data set has an S/N level at least twice
as high as the S/N level of the training data. When the S/N level
of the training set is 8 times as large as the S/N level of the test
data, the advantage of using 10 noisy versions for training

vanishes. For the prediction of grain size, however, the tendency
is consistent. The results with NoisyData10 are always better
than with NoisyData1. One general conclusion from Table 7,
for both parameters, is that, in most cases the noisier the training
set the greater improvement in accuracy can be achieved with
more (in this case 10 times more) noisy training spectra.

The results described here demonstrate good consistency in
the performance of the neural models under a wide range of
noisy conditions. The statistics in Tables 4–7 will help choose
the most suitable model for inference of temperature and grain
size from real spectra when noise estimate for real data is
available.

5. CLASSIFICATION OF ICE SPECIES

In addition to crystalline H2O ice, a variety of ice types occur
in the Pluto-Charon system. In this section we show the capa-
bility of the SOM-hybrid neural machine for distinguishing

TABLE 4

PREDICTION ACCURACIES FOR TEMPERATURE (T) AND GRAIN SIZE (GS) TABULATED FOR DIFFERENT S/N LEVELS OF THE TRAINING
AND TEST DATA (INFINITY, INF)

T Prediction Accuracy
(%)

GS Prediction Accuracy
(%)

Training S/N inf 256 128 64 32 inf 256 128 64 32

Test S/N . . . . . . . . . 4 45.5 46.0 46.1a 46.0 46.1a 87.4 87.7 88.5 89.2a 87.8
8 55.6 56.0 56.3 56.4a 55.9 94.5 94.7 95.3 95.9a 93.9
16 64.7 65.8 66.0a 65.9 65.6 97.4a 97.4a 97.1 97.4a 93.9
32 72.7 73.7 74.0a 73.0 71.5 98.8a 98.5 97.9 97.5 93.6
64 78.4 79.3a 79.3a 77.0 74.3 99.3a 98.8 98.2 97.5 93.3

128 82.0 82.4a 81.7 78.1 74.9 99.8a 99.0 97.9 97.2 93.1
256 83.5a 83.3 81.8 78.2 74.6 99.9a 99.0 97.9 97.2 92.8
inf 83.0a 82.5 80.8 76.1 72.3 100.0a 99.0 97.8 97.1 93.0

NOTE.—Each prediction accuracy is an average of 3 jack-knife runs. Variances of all prediction accuracies are less than 0.6 for T,
and less than 0.3 for GS (not shown here).

a Maximum prediction accuracies for test sets with different S/N levels.

TABLE 5

PREDICTION ACCURACIES PRODUCED WITH THE NOISYDATA10
DATA SET, CONTAINING 10 NOISY VERSIONS FOR EACH

NOISELESS SPECTRUM

T Accuracy
(%)

GS Accuracy
(%)

Training S/N 128 64 32 128 64 32

Test S/N . . . . . 4 46.1 46.0 46.1 88.5 89.2 87.8
8 56.3 56.4 55.9 95.3 95.9 93.9
16 66.0 65.9 65.6 97.1 97.4 93.9
32 74.0 73.0 71.5 97.9 97.5 93.6
64 79.3 77.0 74.3 98.2 97.5 93.3

128 81.7 78.1 74.9 97.9 97.2 93.1
256 81.8 78.2 74.6 97.9 97.2 92.8
inf 80.8 76.1 72.3 97.8 97.1 93.0

NOTE.—This table shows a subset of the results in Table 4, for easy
comparison with Table 6.
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between N2, CH4, H2O, CO2, NH3, and CH3OH ices. We use
the same neural architecture as shown in Figure 2, but this time
we perform classification with it, instead of regression. For this,
we encode the class labels of the 6 ice types as six-dimensional
unit vectors at the output layer, which now has 6 neurons. The
target output vector for an input spectrum of ice type i ði ¼ 1;
2;…; 6Þ is written as ½e1; e2; e3; e4; e5; e6�T ðej ¼ δij; j ¼
1; 2;…; 6Þ, where δij is the Kronecker delta. The class (ice type)
of a spectrum is predicted by the component with the largest
value in the output vector, produced by the trained model.

In this experiment, we use a relatively small data set that was
not systematically generated on a regular grid with respect to
temperature and grain size. The number of spectra available
for each ice type is shown in parenthesis in Table 8. The resolu-
tion of temperature for the first three ice types is ∼10 K, but
within different temperature ranges due to the availability of
the related optical constants. The spectra of these three ice types
have nine different grain sizes in the 0.0001–3.0 cm range. The

spectra of the remaining three ice types in Table 8 have only one
temperature but 12 different grain sizes in the 0.0001–0.4 cm
range. This mixed availability of parameter resolutions might
be the case in reality, therefore assessment of classification per-
formance with these data is of value.

Similarly to the regression of parameters, training of this
classifier consists of the unsupervised and supervised learning
phases. In the unsupervised phase, we use all 396 spectra to
train the SOM. After the SOM converged, we perform 6 sixfold
jack-knife runs for the supervised learning. The data are split in
a 1∶5 stratified random sampling for each jack-knife run, to en-
sure samples from all classes in every fold.

As seen from Table 8, the neural model trained in the inter-
polating mode outperforms the model trained in the noninterpo-
lating mode. The significantly lower accuracies obtained with
the noninterpolating mode is not a result of obscurity in the
boundaries between different ice clusters in the SOM, but a re-
sult of the small training data set. In this SOM (not shown here),
clusters representing 6 different ice types separate cleanly, simi-
larly to the separation between grain size clusters shown in Fig-
ure 3, left. However, due to the small number of the spectra used
in the supervised training, only a portion of the SOM neurons
fire during the training of the output layer. Many weights that
connect the output layer and the SOM do not have a chance to
be trained in the noninterpolating mode. Whenever a test spec-
trum activates an SOM neuron that never won in the supervised
training phase, the model produces a meaningless result. To re-
medy this, we switch to the interpolating mode with k ¼ 3 so
that each incoming spectrum stimulates 3 SOM winners. This
potentially involves the updating of more weights in the training
of the output layer. The 100% classification accuracies, in Ta-
ble 8, show that the discrimination of pure ice species from NIR
spectra will not be problematic. This encourages us to pursue

TABLE 7

DIFFERENCE OF TABLE 5 AND TABLE 6, SHOWING THE IMPROVEMENT

IN PREDICTION ACCURACIES WITH NOISYDATA10 COMPARED TO

NOISYDATA1

Improvement in
T Accuracy

(%)

Improvement in
GS Accuracy

(%)

Training S/N 128 64 32 128 64 32

Test S/N . . . . . 4 −0.5 −0.3 0.1 0 1.4 0.8
8 −0.4 −0.6 −1.0 0.9 3.5 3.0
16 −0.7 0.6 1.3 2.3 3.8 4.5
32 0.8 1.3 - 0.6 1.0 -
64 0.4 - 4.0 0.7 - 2.9
128 - 1.9 4.4 - 2.3 4.1
256 2.5 2.5 4.1 1.1 1.5 3.4
inf 3.7 4.2 4.9 1.2 1.8 3.6

TABLE 6

PREDICTION ACCURACIES PRODUCED WITH THE NOISYDATA1 DATA SET,
CONTAINING ONE NOISY VERSION FOR EACH NOISELESS SPECTRUM

T Accuracy
(%)

GS Accuracy
(%)

Training S/N 128 64 32 128 64 32

Test S/N . . . . . . . 4 46.6 46.3 46.0 88.5 87.8 87.0
8 56.7 57.0 56.9 94.4 92.4 90.9

16 66.7 65.3 64.3 94.8 93.6 89.4
32 73.2 71.7 - 97.3 96.5 -
64 78.9 - 70.3 97.5 - 90.4

128 - 76.2 70.5 - 94.9 89.0
256 79.3 75.7 70.5 96.8 95.7 89.4
inf 77.1 71.9 67.4 96.6 95.3 89.4

NOTE.—Entries are missing when the test and the training S/N levels coin-
cide, because in those cases the sole noisy version is pulled into the training set
and the test set is empty.

TABLE 8

CLASSIFICATION ACCURACIES FOR 6 ICE TYPES ACHIEVED BY THE

SOM-HYBRID CLASSIFIER IN THE INTERPOLATING AND THE

NONINTERPOLATING MODES

Ice Type
(number of spectra available)

Classification Accuracy
(%)

Noninterpolating Interpolating

N2 (63) . . . . . . . . . . . . . . . . . . . . . 98.3±4.1 100.0±0.0
CH4 (63) . . . . . . . . . . . . . . . . . . . . 91.7±9.8 100.0±0.0
H2O (234) . . . . . . . . . . . . . . . . . . 93.1±4.5 100.0±0.0
CO2 (12) . . . . . . . . . . . . . . . . . . . . 83.3±25.8 100.0±0.0
NH3 (12) . . . . . . . . . . . . . . . . . . . 75.0±27.4 100.0±0.0
CH3OH (12) . . . . . . . . . . . . . . . . 91.7±20.4 100.0±0.0

Overall Accuracy (%) . . . . . . 92.8±2.5 100.0±0.0
Average Accuracy (%) . . . . . 88.9±6.0 100.0±0.0

NOTE.—Classification results are averages of 6 jack-knife runs.
The overall and average accuracies are the correctly classified test
spectra, and the average of class accuracies, respectively.
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this approach for more complicated surface composition con-
ditions.

6. DISCUSSION AND CONCLUSION

This article proposes an innovative neural learning architec-
ture, Conjoined Twins, that enables effective inference of two
latent physical parameters, temperature and grain size, from
NIR synthetic spectra. We achieve perfect, 100:0%� 0:0% pre-
diction accuracy for grain size and 83:0%� 2:7% for tempera-
ture. If we exclude the problematic end regions of the
temperatures where adequate training data are unavailable,
the prediction accuracy for temperature in the remaining 50–
240 K range is 91:8%� 1:2% (Table 3). For Charon, and
for N2-ice–free regions of Pluto, diurnal and latitudinal tempera-
ture variations of tens of K are expected, with temperatures in
the 40–70 K range. Our neural model needs to be able to retrieve
temperatures with less than ∼3 K error in order to be able to
resolve these temperature differences and map the thermal in-
ertia across these surfaces. Since 3 K represents ∼5% error in
this temperature range, it is reasonable to assume such perfor-
mance for 80%–86% of the measured spectra according to Ta-
ble 2, top left block. The obtained knowledge can in turn assist
in unraveling the processes undergoing in the interiors and in
the atmospheres of these planetary bodies. Our neural model
also shows robustness under various noise conditions. The real
spectral measurements returned by New Horizons are expected
to have an S/N of ∼50. From the noise sensitivity analysis re-
ported in Table 4, we see that the prediction accuracies for grain
size from spectra with S=N ¼ 32 and S=N ¼ 64 are nearly per-
fect (∼99%), and temperature predictions within <5% error are
produced for 74%–79% of the spectra, which is still useful for
science.

In this study, the observed interplay between the two para-
meters and the neighboring relationships between the Voronoi
cells of SOM prototypes help us justify the choices of k, the
number of SOM winners to use in the supervised learning. k
has been determined as 1 for the prediction of grain size,
and 3 for the prediction of temperature, for this particular data

set and with this 20 × 20 SOM. For other data, or for a different
size of the SOM, examination of the SOM’s knowledge prior to
the supervised learning phase is necessary for correct customi-
zation of k. An upper limit of k can be found fully automatically
from the statistics of the data distribution and the SOM’s knowl-
edge, such as in Table 1. However, determination of the opti-
mum k for the individual latent variables needs interactive
examination of the SOM. For example, the use of less than 3
SOM winners for temperature prediction was ruled out as it
yielded poorer results than those obtained with k ¼ 3. One de-
sirable follow-up task is to replace this interactive finding of the
best k value below the upper limit with a principled automated
approach.

The sampling of training data plays an important role for the
development of inference capability. One possibility to improve
the prediction of temperature is to generate training spectra on a
nonlinear temperature grid with higher resolution at the bound-
ary temperature ranges where poor predictions are observed in
this study with linear temperature grid (Fig. 7, left block).

In follow-up work we plan to test our approach for the in-
ference of temperature and grain size from spectra of other ices.
If we can achieve similar success as with crystalline H2O ice, we
will attempt to gradually incorporate more realistic factors, such
as viewing and illumination geometry, macroscopic roughness
of the surface, crystallinity, abundances of various ice types in
areal mixtures and, further, in intimate mixtures. The gradually
increasing level of realism will present escalating levels of dif-
ficulty in the neural modeling, which may require additional
innovations. Step-by-step extensions to the Conjoined Twins
presented in this article may help lead to models suitable for
inference of surface conditions from real NIR planetary spectra
returned by space missions.
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