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Abstract. Near-Infrared reflectance spectra of planets can be used to
infer surface parameters, sometimes with relevance to recent geologic
history. Accurate prediction of parameters (such as composition, tem-
perature, grain size, crystalline state, and dilution of one species within
another) is often difficult because parameters manifest subtle but sig-
nificant details in noisy spectral observations, because diverse parame-
ters may produce similar spectral signatures, and because of the high
dimensionality of the feature vectors (spectra). These challenges are of-
ten unmet by traditional inference methods. We retrieve two underly-
ing causes of the spectral shapes, temperature and grain size, with an
SOM-hybrid supervised neural prediction model. We achieve 83.0±2.7%
and 100.0±0.0% prediction accuracy for temperature and grain size, re-
spectively. The key to these high accuracies is the exploitation of an
interesting antagonistic relationship between the nature of the physical
parameters, and the learning mode of the SOM in the neural model.

Keywords: Self-Organizing Map, parameter prediction, Near-Infrared
spectra, New Horizons Space Mission, Pluto-Charon system.

1 Machine Learning for Parameter Prediction from
Spectra, Motivated by the New Horizons Space Mission

1.1 Investigation of Surface Conditions from Near-Infrared Spectra

Near-infrared reflectance spectroscopy offers an extremely powerful remote probe
of planetary surfaces. Numerous physical parameters, such as composition,
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texture, and thermal state of surface materials, influence the observable re-
flectance, from which the parameters can potentially be retrieved. Icy outer
Solar System surfaces present a natural application for such retrieval algorithms,
since cryogenic ices such as H2O, N2, and CH4 possess distinctive spectral con-
trasts which change in known ways as a function of temperature [1,2]. NASA’s
New Horizons spacecraft, which is en route to the Pluto system [3], will map
the surfaces of Pluto, Charon, Nix, and Hydra at wavelengths from 1.25 to 2.5
microns with its infrared imaging spectrometer [4] in 2015. By extracting the
surface parameters from these spectral maps, it will be possible to determine
what processes are at work sculpting the exotic landforms New Horizons will
discover.

However, the complexity of the measured spectra, their shapes, the often
subtle changes in the spectral curves in response to relevant changes in the
underlying causes (the implicit physical parameters of the surface), the interplay
between the underlying causes, and the high dimensionality of the feature vectors
(spectra), poses significant challenges for accurate retrieval of the parameters.
Traditional approaches, based on iteratively inverting spectral mixing models
[5] do not give entirely satisfactory results in real world applications [6]. Such
techniques work very well for the relatively simple version of the problem posed
here, but with the machine learning approach we propose we expect to be able
to infer parameters also from complicated noisy real spectra. Specifically, we
approach this challenge with a hybrid supervised neural architecture, which has
a Self-Organizing Map (SOM) as its hidden layer. In this paper we focus on the
inference of two surface parameters, grain size and temperature. We investigate
inference capabilities of the neural model for a single material, crystalline water
ice, which is common on Solar System surfaces. Results gained will be used
in follow-up work to infer parameters from other types of ices (SO2, CO, CO2,
NH3) possibly occurring in the Pluto system and elsewhere in the Solar System.

1.2 Forward Training with Synthetic Spectra and Reverse
Engineering from Real Spectra

The training of the neural machine requires a great number of spectra, which
should span the meaningful ranges of the physical parameters with appropri-
ate resolutions. However, real spectra collected from icy planetary surfaces are
scarce, and not representative of the desired granularity of the prediction. To
help this, synthetic or laboratory data have been used for model development
in several areas, where real data are hard to obtain [7,8,9]. In our study the
SOM-hybrid neural prediction model is trained with synthetic spectra, which
are generated through radiative transfer code described in [10] based on the
Hapke model, the most common way to represent the interaction of a solid sur-
face with incident sunlight [5,11]. The synthetic spectra are generated on a grid
of temperatures and grain sizes where the temperature ranges from 20 to 270
K with 2 K spacing, and the grain size takes 9 values logarithmically spaced
from 0.0003 to 3.0 cm. This set of parameters encompasses the range of possible
surface conditions of the icy Solar System bodies of our interest, at sufficient
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resolution for scientific study. The spectral resolution, 230 band passes from 1
to 2.5 μm, is close to the resolution of the sensor used on the New Horizons
spacecraft.

1.3 The SOM-Hybrid Supervised Architecture

The supervised neural architecture we use in this study is a fully connected
feed-forward network with an SOM as the middle layer and an output layer con-
nected to the SOM by the Widrow-Hoff rule [12]. A 230-band spectrum is taken
as an input vector at every learning step. The learning consists of two stages.
The first stage is unsupervised, in which the SOM layer captures the structure
of the data manifold. The knowledge represented in the SOM is then utilized
in the second stage, which is supervised training of the output layer. This con-
struction generally helps achieve good prediction accuracy [13,14]. Its additional
merits include ease and economy of training and handling of high-dimensional
data, compared to other, more frequently used neural approaches. We use the
Conscience variant [15] of the original Kohonen SOM [16]. It introduces a bias to
achieve equal winning probabilities across all neural units thus producing more
faithful pdf matching than the Kohonen SOM. Briefly, the weight vector wi of
neural unit i in the SOM lattice A of N neural units, is updated iteratively
through a two-step procedure. First, a winner (or best matching unit, BMU) wi

is selected for a given input vector x such that with the bias bj for neural unit j

‖ wi − x ‖2 −bi ≤‖ wj − x ‖2 −bj, ∀j ∈ A. (1)

The bias bj is computed from the winning frequency pj , of neural unit j, as

bj = γ(t) × ((N × pj) − 1), (2)

where γ is a parameter. Second, all weight vectors wj are updated:

wnew
j = wold

j + α(t)hi,j(t)(x − wold
j ). (3)

Here, hi,j(t) is a neighborhood function, α is the learning rate. With the Con-
science algorithm hi,j(t) can be fixed and of small size (e.g., the immediate
neighbors in a diamond or square configuration), instead of a large neighbor-
hood (e.g., Gaussian) that has to decrease with time.

2 Relationship of the Underlying Causes of Spectra as
Seen from the SOM

The two physical parameters have different influences on the spectral shapes.
As shown through two representative examples in Fig. 1, there is a substantial
difference in the reflectance values of the spectra between two neighboring grain
sizes, deepening of the absorption bands as well as shifting to lower values, in
a linear fashion without crossing over. The increase in temperature from 30
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R
ef

le
ct

an
ce

Wavelength (μm)
0

0.2

0.4

0.6

1 1.5 2 2.5

GS (cm)T = 50 K

Wavelength (μm)
0

0.2

0.4

0.6

1 1.5 2 2.5
  '  '  '  0.1-3.0

  0.03

  0.01

  0.003

  0.001

  0.0003

Fig. 1. Sample synthetic spectra of crystalline water ice. Left: variation in the spectral
shape as a function of temperature, for one fixed grain size, 0.003 cm. Right: variation
of the spectral shape as a function of grain size, at 50 K.
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Fig. 2. Left: A 20×20 SOM trained with synthetic spectra of crystalline water ice.
The colors represent the known grain size labels as keyed at right. The “fences” drawn
between cells have grey scale intensities proportional to the Euclidean distance of the
respective weights. White is large distance (dissimilarity). Black cells within double
fences separating grain size groups indicate empty weights (no data mapped to them).
Other black areas indicate weights representing spectra of other ices (N2, CH4 etc.).
Right: An example of how spectra are organized within a grain size group, according
to temperatures. Shown here are the learned weight vectors in the respective SOM cells,
for the 0.003 cm (yellow) group. We can observe a continuous change in the spectral
shapes from left to right, caused by increasing temperature. The red boxes and circles
exemplify differences in absorption features at low and high temperatures, respectively.

to 270 K causes much smaller changes in reflectance but the direction of the
change varies with wavelength. For example, the absorption at 1.65 μm gradually
weakens with increasing temperature, while in the neighboring window of 1.7
– 1.9 μm the reflectances decrease with increasing temperature, resulting in
crossovers. Fig. 1 suggests that the (Euclidean) distance between two grain size
groups is larger at most wavelengths than the variations caused by temperature
within that group. This dominance is reflected in the SOM after unsupervised
learning by clearly separated clusters with respect to grain size (Fig. 2, left).
Within each grain size cluster, the weight vectors show the continuous change in
the spectral shapes caused by temperature, seen in Fig. 1. Fig. 2, right, illustrates
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this for the 0.003 cm grain size (yellow) group. The weight vectors learned from
spectra with low temperatures have a strong absorption at 1.65 μm (in red
boxes). This feature gradually disappears for high temperatures (in red circles).

3 Conjoined Twin Machines

3.1 Two Modes of the SOM during Supervised Learning

The SOM can be used in two modes during supervised training. One is the
widely used winner-take-all (WTA) mode, in which one SOM neuron fires (has
an output signal of 1) in response to a given input vector, the rest send 0 to
the weighted sums formed at the output layer. The other possibility is to divide
the winning credit among k SOM nodes by assigning each an output value that
is inversely proportional to the distance between its associated weight vector
and the input vector (such that the credits add up to 1). This can be called
“interpolating mode”. For practical purposes k can be a number much lower than
the number of neurons in the SOM, based on the assumption that the winner
weight’s Voronoi cell has a relatively low number of neighbor Voronoi cells in
data space. For k > 1 we will use the term “interpolation on” or “interpolating
mode”, and use “interpolation off” or “non-interpolating mode” for k = 1.

For this data set, the Voronoi cells of all weight vectors of the SOM in Fig. 2,
left, except for one, have at most 3 neighbors. We see this from the numbers
of connections to Voronoi neighbors (pairs of BMUs and second BMUs formed
by weights and their Voronoi neighbors) [17], shown in the order of the most
to least connected, in Table 1. The connection strength (the number of data
samples selecting a weight and its Voronoi neighbor as a pair of BMU and second
BMU) between the one weight that has a fourth neighbor, and that fourth most
connected neighbor is 1 (negligible). This justifies k = 3 for interpolating mode.

Table 1. Number of connections to Voronoi neighbors, from the most connected to
the least connected, summed across all SOM weights

Most Second most Third most Fourth most
connected connected connected connected

Number of connections 280 214 13 1

3.2 The Effect of SOM Modes on the Prediction Accuracies of
Temperature and Grain Size

As observed in Section 2 the grain size dominance on the reflectance spectra
causes clustering primarily by grain size in the SOM. Closer inspection reveals
that, without exception, all spectra mapped to any weight vector within a grain
size cluster have the same grain size label. This provides a good basis for perfect
learning of grain size in non-interpolating mode, where only the BMU fires. In
interpolating mode, each input spectrum stimulates the second and the third
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Fig. 3. The learned weight vectors shown in the respective SOM cells. The white boxes
highlight weight vectors on the boundary between the yellow and orange groups, which
represent 0.003 and 0.0001 cm grain sizes, respectively. The light blue box indicates an
empty weight vector inside the yellow group.

BMUs, too, which may belong to the boundary area like the empty weight vec-
tors in white boxes in Fig. 3. Their shapes are similar to both neighbors, which
makes them candidates to be the second or third BMU for an input vector from
either group. This introduces possible confusions in the supervised training. In
contrast, the second and third BMUs may help refine the prediction of tem-
perature. Since 126 spectra with different temperature parameters are forced
to share approximately 25 – 30 SOM weights in a grain size cluster (Fig. 3,
left), each weight forms an average (a mixture) of spectra, and each spectrum
is likely to contribute to the mixture in several neighboring weights (smearing
across neighbor weights) during training. None of these mixtures will match any
specific temperature exactly, but a specific temperature may be reconstructed
from several neighboring weight vectors by training the output weights to form
their appropriate mixture. This includes empty weight vectors within any grain
size group too, such as the one in the light blue box in Fig. 3.

The above discussion suggests conflicting preferences for SOM modes in the
prediction of the two parameters. Supervised training results shown as corre-
lations between predicted and true values in Fig. 4 confirm this. Since both
physical parameters have large ranges, we quantify the prediction accuracies as

Table 2. The prediction accuracies of grain size (GS) and temperature (T) for two
separate data sets, containing 9 and 81 grain sizes, respectively, with 20×20 and 40×40
SOMs, each in interpolating and non-interpolating modes. Results for the data with
9 GS are averages of 10 jack-knife runs. Results for the data with 81 GS are from a
single run for reasons of time limitations. Further jack-knife runs are in progress.

Data with 9 grain sizes Data with 81 grain sizes

SOM mode Non-interpolating Interpolating Non-interpolating Interpolating

20×20 GS 100.0±0.0% 76.4±4.4% 73.0% 77.9%
SOM T 76.2±2.6% 83.0±2.7% 32.9% 53.7%

40×40 GS - - 97.7% 54.3%
SOM T - - 61.2% 77.3%
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Fig. 4. Correlation of predicted (retrieved) and true values of temperature (left block)
and grain size (right block). Data are shown as orange dots. Top: results obtained
with the SOM in non-interpolating mode. Bottom: results obtained with the SOM
in interpolating mode. The blue, red and green dashed lines indicate 5%, 10% and
50% error envelopes, respectively. Temperature has a smaller prediction error with
interpolating mode. The prediction of grain size is better with non-interpolating mode.

the percentages of test data samples with less than 5% relative error. We achieve
100.0± 0.0% accuracy for grain size in non-interpolating mode, and 83.0± 2.7%
for temperature in interpolating mode (Table 2, left block). Contrary to expecta-
tion, increasing the grid resolution of the grain size in generating training spectra
does not help improve the prediction accuracy in interpolating mode, as shown
in Table 2, right block. In fact, with a 20×20 SOM, the predictions of both
temperature and grain size are significantly worse (or at best comparable), in
both SOM modes, than results produced with 9 grain sizes. This is likely a result
of the softening of boundaries between grain size groups due to an additional
eight spectral curves between each two in Fig. 1, right. For this comparison we
use an augmented training set generated with 81 grain sizes, equally spaced on
a logarithmic scale in the same 0.0003 – 3.0 cm range as, and including, the
training set with 9 grain sizes. Increasing the size of the SOM to 40×40 still
does not improve the prediction of either parameter in interpolating mode. In



An SOM-Hybrid Supervised Model for the Prediction 369

Fig. 5. Conceptual diagram of the Conjoined Twin Machines. One head of the Con-
joined Twins works in non-interpolating mode, using the output from the BMU (red
neuron in the SOM) to predict grain size. The other head, working in interpolating
mode, uses, in addition, the second and third BMUs (pink) to predict temperature.

non-interpolating mode grain size prediction recovers to 97.9% because the space
in the larger SOM allows the boundaries to become better defined again. How-
ever, it is unable to recover to 100% accuracy, because some of the boundary
weight vectors still represent spectra with inhomogeneous grain size labels. On
average, the 40×40 SOM allocates ∼ 19 weight vectors to each grain size group,
which is ∼ 2/3 of the number allocated by the 20×20 SOM for 9 grain size
groups. This is likely to be the cause of the unresolved boundaries.

We can conclude from the above that larger SOM size and more grain size
samples do not get us closer to better overall prediction with a uniform interpo-
lation scheme. While it is possible that with an even larger SOM we may be able
to achieve the same accuracies as in Table 2, left block, the extra resources and
time required make that solution undesirable for practical purposes. Instead, we
can exploit the knowledge that the two parameters have opposing preferences
for interpolation, and encode this duality into the learning machine to combine
the advantages of the two SOM modes. This is the concept of the Conjoined
Twin Machines (Fig. 5), which includes a shared SOM, containing the learned
view of the manifold topology. Two identical “heads” both pull information from
this shared SOM but each interprets it somewhat differently. One uses only the
output of the BMU, and treats the rest of the SOM outputs as zeros thus not
allowing them to influence the learning. This corresponds to non-interpolating
mode and therefore will help best predict the grain size. While this grain size
specialist head has a second output node identical to its twins’, the prediction
resulting from that node is discarded. Similarly, the second “head” specializes on
temperature, by pulling the outputs of the first three BMUs into the weighted
sums for training the output layer. This corresponds to interpolating mode with
k = 3 and helps predict the temperature accurately while the grain size predic-
tion is discarded. The final output of this machine is the grain size prediction
from the first, and the temperature prediction from the second “head”.
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4 Conclusions and Future Work

This paper proposes an effective approach to predict two underlying physical
parameters from near-infrared synthetic spectra with high accuracies. The ar-
chitecture of the learning machine is in the form of Conjoined Twin SOM-hybrid
supervised networks. We achieve 100.0±0.0% and 83.0±2.7% prediction accura-
cies for grain size and temperature, respectively. This means that for Charon,
where temperatures in illuminated regions are likely to range up to 65 K, the
neural model should be able predict temperatures with less than ∼ 3 K error, for
80 – 86% of the measured spectra. This is valuable in resolving diurnal tempera-
ture changes on Charon, which provides the boundary condition to discover the
processes in Charon’s interior and in its atmosphere. To prepare for the real data
returned by New Horizons, a noise sensitivity analysis is in progress to gauge
the predictive power of learned models (learned with clean as well as noisy data)
from spectra obtained in real circumstances.

Because of the observed interplay of the two parameters, in this study we could
justify the choices of 1 and 3 for the interpolation granularity k for grain size and
temperature, respectively. These choices are obviously data dependent, therefore
cannot be automatically applied to other data without prior exploration of the
data properties. Future work will include more — potentially interdependent
— underlying parameters, in which case the Conjoined Twins can be extended
to Conjoined Triplets, Quadruplets, or possibly to other tuplets, each with a
different value of k. This will in turn motivate looking for automated ways to
determine the optimal value of k for each machine, perhaps with meta-learning.
Moving from a conceptual prototype to an integrated piece of software in the
implementation of the “Conjoined Twins” is a short-term task, that will help
with such future extensions.
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