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Abstract. Topology preservation of Self-Organizing Maps (SOMs) is an advantageous 
property for correct clustering. Among several existing measures of topology violation, 
this paper studies the Topographic Function (TF) [1]. We find that this measuring 
method, demonstrated for low-dimensional data in [1], has a reliable foundation in its 
distance metric for the interpretation of the neighborhood relationship in the input 
space, for high-dimensional data. Based on the TF, we present a Differential 
Topographic Function (DTF) to reveal the topology violation more clearly and 
informatively. In addition, a Weighted Differential Topographic Function (WDTF) has 
been developed. For real world data, the DTF and WDTF unravel more details than the 
original TF, and help us estimate the topology preservation quality more accurately. 

1 Introduction 

Kohonen’s Self-Organizing Map (SOM) algorithm has successfully been applied to 
many areas of science. One important property of the map AAA → ),( MMM →= ψψ  
formed by an SOM is topology preservation, i.e., both the mapping AM →ψ  from 
M  to A  as well as the inverse mapping MA→ψ  from A  to M  are neighborhood 
preserving. M  represents the input data manifold, and A  represents the output 
SOM lattice. Topology preservation is needed for correct detection of the input data 
structure. However, this property may be lost if a dimensional mismatch occurs or 
the learning process is not properly parameterized. Therefore, we need a diagnostic 
tool to help monitor the topology violation during SOM learning, and remedy it in a 
timely manner. 
 The differences between various topology violation measures consist of two 
factors. One is the distance metric adopted to describe the neighborhood 
relationship; the other is the form of the cost function, i.e., the penalty for violation. 
The former is an embedded fundamental concept, while the latter is a matter of 
clear representation. As for the former factor, the most easily used metric is the 
Euclidean norm 

E
. One example is the Topographic Product (TP) [2] proposed 

by Bauer and Pawelzik, which is an evaluation based on the agreement of the near-
neighbor rankings in both the input and the output spaces. This measure is fast to 
compute, but it fails for nonlinear data manifolds. Villmann et al. proposed a more 
advanced measure, Topographic Function (TF) [1], which is based on the induced 
Delaunay triangulation D [3]. Compared with the TP, the TF is a better 
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representation, in that it is an informative function showing the severity of violation 
for different folding lengths, rather than a single summary value. 
 Since the TF has only been demonstrated for low-dimensional data, we aim to 
find out if it is valid and helpful when dealing with high-dimensional data. We also 
propose a clearer representation, the Differential Topographic Function, derived 
from the TF, and another useful representation, the Weighted Differential 
Topographic Function, which provides advantageous views of topology violation by 
adding the connection strength (see in Section 2.3) as a weighting factor. 

2 Measuring Approaches 

2.1 Topographic Function (TF) 

The definition of the TF is restated as the foundation, from which DTF and WDTF 
are developed. For a commonly used 2-d square SOM lattice, [1] defined for each 
processing element (PE, also called lattice node or neuron elsewhere) i  
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The maximum-norm is defined as
j1max =

, where A  denotes the 
dimensionality of the SOM lattice, and 

MDd indicates the graph distance in the 
induced Delaunay triangulation MD [3]. (The definitions of the induced Delaunay 
triangulation and the corresponding graph distance metric are explained in [3].) The 
TF is then expressed as 
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Positive  and negative represent the foldings in the input and output spaces 
respectively. The largest k , which holds a nonvanishing value of the TF indicates 
the largest range of topology violation. In order to compare the TF between two 
different output lattice structures,  can be normalized to [-1, 1].  
 In the original definition of the TF, no distinction was made between active and 
dead PEs. Nevertheless, dead PEs are inegligible sources of topology violation. For 
example, in case of dimensional mismatch or highly structured data, dead PEs 
usually take the role of gaps to make a better topology match between the input and 
output spaces. Since we use 2-d SOMs, dimensional mismatch is not a rarity, so the 
question arises whether the violation induced by the dead PEs should be counted in 
the TF. We think it is reasonable to exclude them because of the following two 
points. 1. Dead PEs do not represent data; 2. Dead PEs that died during learning 
record their weights right at the moment of death. These weights might remain 
unchanged afterwards, hence can be a source of topology violation. 
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2.2 Differential Topographic Function (DTF) 

Essentially, the TF is an integral function. To show the range of topology violation 
more clearly, a supplementary differential form can be calculated. We name it as 
the Differential Topographic Function. From the similar formulae 
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It shows us the severity of the folds for each folding length k . 

2.3 Weighted Differential Topographic Function (WDTF) 

Due to outliers and noise in high-dimensional real world data and the limitation of 
our commonly used 2-d SOM, it is not surprising to have more violating 
connections than in low-dimensional data. However, if looked into closely, many 
long-range violating connections are very weak. Let us define the connection 
strength, denoted by CONN , between prototypes i  and  as the number of 
data points for which either i  or  is the best matching unit and the other is the 
second best matching unit [4].  obviously form an N  matrix 

, where N  is the number of all SOM PEs or prototypes. Both TF and DTF 
count the number of violating connections regardless of their strengths. In order to 
show the relative importance of each connection, we incorporate the connection 
strength as a weighting factor into the DTF. For each PE i  define 
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1)(Then the WDTF will be WDTF , where P  is the total number of 

data points. WDTF is only defined for positive , since the connectivity strength 
matrix CONN  is defined in the input space and used to describe the severity of 
violation in the SOM lattice. Fortunately, the SOM algorithm tends to eliminate the 
topology violation in the input space, i.e., TF often vanishes for negative k . 

k

3 Experiments and Results 

3.1 8-class synthetic data 

This is a synthetic 6-element spectral image, where each of 128x128 pixels is 
represented by a 6-element vector. The image contains 8 spectral classes, created by 
adding ~10% Gaussian noise to class prototypes. For complete description, see [5]. 
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Fig. 1: SOM of the 8-class synthetic data with known class labels (colors) 
superimposed. The clustering learned by the SOM is perfect. Left: The 567 violating 
connections are visualized in the cluster map and all remain within clusters. Middle: 
The TF. Right: The DTFs are the same with and without counting the dead PEs. 

 
 All violating connections shown in Fig. 1 (left) are drawn on the SOM grid, 
according to the neighborhood relationship described by the induced Delaunay 
triangulation. The gaps formed by the empty PEs delineate the clusters learned by 
the SOM. None of the violating connections extend outside the clusters. Since the 
classes were assigned by construction, they represent the ground truth, and it is 
clear that the cluster structure formed by the SOM is a perfect match. In this sense, 
the TF is constructed on a reliable distance metric. The TF or the DTF in Fig. 1 
show the same: all violating connections are local. No connection has a size greater 
than 8, the ‘diameter’ of the largest cluster. One might conclude that, for the 
purpose of cluster capture, this level of topology violation is inconsequential. 

3.2 Lunar Crater Volcanic Field (LCVF) data 

This is a noisy real world spectral image comprising ~250,000 194-d data points 
(image pixels). We have a credible manual clustering, shown in Fig. 2, to serve as 
ground truth [6]. The SOM was produced after 300K learning steps. 
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Fig. 2: 40 40×  SOM of the LCVF data. Left: The DTF. Middle: Visualized in the 
cluster map are all 521 violating connections with strengths above 15. Right: 
Visualized are the 165 inter-cluster violating connections with strengths above 15. 

 
 As seen in Fig. 2, violating connections exist for every folding length. A 
threshold for the connection strength is necessary in Fig. 2 (middle) to enable us to 
see connecting lines rather than black clouds. The connections in the bottom 
annular area interestingly profile the shapes of the four adjacent clusters. In the 
upper right area, almost all connections follow the same direction, showing the 
close relationship along the line. The reason is that the spectra of these clusters 



In Proc. 14th European Symposium on Artificial Neural Networks (ESANN 2006) 
Bruges, Belgium, April 26-28, 2006, pp. 7 – 12. 

along this direction form a series of slightly varying signatures. Due to the 
limitation of SOM dimension, their intertwined relationship is represented by 
topology violations. Since within-cluster violations are not important for cluster 
capture, Fig. 2 (right) gives the view of all inter-cluster violations above strength 15 
(≈  mean + one standard deviation). On the whole, the visualization of the violating 
connections reproduces what the credible clustering result tells us, though there are 
some long range connections which could be brought about by boundary effects. 
 A longer continued run to 8M steps was also done for this data. To compare its 
topology preservation quality with that of 300K steps, we plot the DTFs and some 
connection properties in Fig. 3. The two DTFs differ slightly, and there are even 
more long range violating connections (size 36-39) as we have more learning steps. 
Based solely on the DTF, one might say: 8M is worse than 300K. Although not 
shown here, the TF, an integral form of the DTF, indicates the same. However, the 
details of the connection strength for each folding length provide a different view. 

  
Fig. 3: Comparison of the DTF, the means and the standard deviations of the strengths 
of violating connections for each folding length, after 300K (Left) and 8M (Right) 
learning steps. The red lines indicate the total average strength of all violating 
connections, and the vertical bars indicate the standard deviations. 

 
 Fig. 3 shows the plots of the DTF and the properties of the connection strengths. 
The average strength of violating connections for folding length  is calculated as k
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As we see, the average strengths tend to get closer in a longer learning run. After 
8M learning steps, most of the standard deviations shrink. Many high maximum 
peaks of the connection strengths are significantly lowered too (not shown here). 
 Fig. 4 (left) is a plot of two normalized DTFs, denoted by NDTF, and calculated 
as 

C
kDTFNkNDTF

2
)()( ×

= , 

where C  is the total number of connections. It shows the distribution (percentage) 
of the number of connections across folding lengths. Likewise, the meaning of the 
WDTF in Fig. 4 (right) is the percentage of connection strength for each k . The 
WDTF shows more clearly that the 8M learning steps quench many high peaks, 
especially the local ones, compared with the 300K case. It tells us that even though 
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the number of the violating connections does not change much (Fig. 4 left), many 
violating connections become weaker (Fig. 4 right). By this graph, we would 
conclude that the 8M steps result is better. If calculated, the ratio of the violating 
connections to the total connections also decreases from 73.6% to 70.9%, and the 
percentage of the number of the data points involved in the non-violating 
connections increases from 80.3% to 83.7%. These data support our conclusion. 

  
Fig. 4: Comparisons between the results after 300K and 8M learning steps, 
superimposed. The NDTFs (Left) and the WDTFs (Right) represent the percentage of 
connections and the percentage of connection strength for each folding length, 
respectively. 

4 Conclusion 

From our experiments, we conclude that the distance metric embedded in the 
definition of the TF is reasonable and reliable. Therefore, with the help of the DTF, 
the TF provides a clear overview of the severity and range of topology violation. 
However, we should be careful before stamping an SOM “good” or “bad” in 
topology preservation simply based on the TF result. The statistics of the 
connection strengths, as seen in the LCVF example, show more detailed change, not 
discovered by the TF. WDTF, a novel measure, can provide more accurate 
interpretation of the severity of violation, by adding the connection strength as a 
weighting factor. 
 The authors thank Dr. Thomas Villmann for valuable discussions. 
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