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ABSTRACT 
 
Remotely sensed hyperspectral images provide the fine details needed to delineate many diverse material classes. 
However, the richness of the data comes at the expense of large volume. A natural question is whether one can 
select specific spectral channels, while discarding the rest, without adversely affecting the discovery or classification 
potential of the imagery. In a supervised classification scenario, the classes of interest are known ahead of time, and 
the opportunity for feature extraction arises. We must demand that classification accuracy go uncompromised as a 
result of the feature extraction process – a difficult task given the highly correlated nature of hyperspectral data, and 
the potentially large number of classes. Well established analytical tools based on PCA and wavelets give 
information regarding signal content. However, feature extraction models based on these methods often judge 
feature importance by the magnitude of their coefficients, rarely leading to an appropriate set of features for 
classification. We investigate an improved version of the recent neural paradigm Generalized Relevance Learning 
Vector Quantization (GRLVQ) (Hammer, 2002). GRLVQ extends Learning Vector Quantization (LVQ) (Kohonen, 
2001) to optimally select input dimensions relevant for classification. Our improvements to GRLVQ (GRLVQI) 
stabilize it for high-dimensional data and increase classification accuracy and convergence rate (Mendenhall, 2006). 
We couple the power of GRLVQI with wavelet analysis to produce as good or higher classification accuracy as with 
GRLVQI alone applied in the spectral domain, while significantly reducing the required number of features. We 
demonstrate this by classifying 224-band AVIRIS spectra into 23 material classes. 

 
Disclaimer: The views expressed in this article are those of the author and do not reflect the official policy or 
position of the United States Air Force, Department of Defense, or the U.S. Government. 

 
 

INTRODUCTION 
 

Remotely sensed hyperspectral images, by virtue of instrument design, have hundreds of spectral bands that 
provide the fine spectral resolution needed to discriminate among a vast variety of surface materials. This poses a 
challenge for many-class classifications with high accuracy demand. Hundreds of spectral bands, many of which are 
often highly correlated, make it difficult to produce high-quality classification for a large number of surface covers. 
In addition, the compositional detail is at the cost of high data volume: hyperspectral images are often greater than 
100 Mbytes in size. For supervised classification where classes are predetermined (as opposed to the discovery of 
clusters in a data mining situation), extraction of an appropriate feature set brings with it the potential of improving 
classification accuracy if important signal information is preserved. Other possible advantages of feature extraction 
can be processing efficiency, reduced storage requirements, and better utilization of bandwidth for image 
transmission.  

Several previous works address feature extraction and classification performance utilizing wavelets as a feature 
space. Some methods select features based on the largest magnitude wavelet coefficients, a method that minimizes 
the distortion of the reconstructed signal often seen in wavelet-based image compression. Moon and Merényi 
(Moon, 1995) use this form of wavelet feature extraction for remotely sensed hyperspectral images where the 
features are in turn used as the input to a hybrid neural network classifier. In the real-world 13-class AVIRIS 
(Airborne Visible/Infrared Imaging Spectrometer, NASA/JPL) (Green, 1996)) image they evaluate, they find no 
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consistent relationship between the number of retained wavelet coefficients and the achieved classification accuracy. 
A reasonable question to ask is whether or not these results were due to the classifier or the inappropriateness of the 
feature set for classification. Presumably it is the feature set since the hybrid neural architecture performs well with 
all available (158) spectral channels for the above image (Moon, 1995), and for other hyperspectral classifications 
(Merényi, 2000; Merényi, 1996). 

Zhang et al. (Zhang, 2005) use wavelet sub-band energy to characterize hyperspectral signatures. They cascade 
the energy features to a maximum likelihood classifier for a 3- and 12-class soil texture problem. This combination 
of feature extraction and classification is successful for classifying the easier 3-class problem of major soil texture 
types, but has a difficult time with the 12-class problem, where each major soil texture type has four subclasses. 
Degradation of classification performance likely indicates that sub-band energy as a feature set is inadequate to 
distinguish the subclass structure found in their 12-class problem.  

There are numerous methods for feature extraction and classification. However, many of them (including those 
described thus far) suffer from the same problem: feature extraction is not optimized for classification. Oehler and 
Gray (Oehler, 1995) use Learning Vector Quantization (LVQ) to find the optimal tradeoff between a Bayes risk and 
a squared error term. This method requires a parametric model for the posterior class probabilities. Since parametric 
models for remotely sensed hyperspectral images are not readily available, we must look elsewhere. Hammer and 
Villmann use an adaptive diagonal metric in their Generalized Relevance Learning Vector Quantization (GRLVQ) 
to learn which input dimensions are most important for classification (Hammer, 2002). We improve the 
classification accuracy and convergence rate of GRLVQ with our GRLVQ-Improved (GRLVQI) in an earlier work 
(Mendenhall, 2006). GRLVQ, and consequently GRLVQI too, offers the power of an adaptive diagonal metric that 
indicates which dimensions are important for classification combined with the robustness an LVQ classifier has 
towards noisy and incomplete data. 

 
 

LEARNING VECTOR QUANTIZATION 
 

Kohonen’s Learning Vector Quantization (LVQ) (Kohonen 2001) is a supervised neural learning paradigm that 
iteratively adjusts the quantization prototypes to define class boundaries. Variants of LVQ based on LVQ2.1 
differentially shift a best matching prototype with the same label as the input sample, and a best matching prototype 
with a different label than the input sample, to define classification boundaries while minimizing the Bayes risk. 

Generalized Learning Vector Quantization (GLVQ) developed by Sato and Yamada (Sato, 1996) tackles a 
serious divergence problem with LVQ2.1. Specifically, the LVQ2.1 formulation allows prototype vectors to migrate 
to, and then drift from, their optimal locations with subsequent training. Sato and Yamada solve this issue by 
incorporating classification accuracy in the cost function which is minimized via gradient decent. 

Hammer and Villmann (Hammer, 2002) expand further upon GLVQ by incorporating an adaptive diagonal 
metric which learns an importance weighting of each input dimension. This importance weighting is the so-called 
relevance. One may describe GRLVQ as a classification-driven feature extraction algorithm. Two constraints are 
placed on the relevance factors: they must be non-negative and they must sum to one. These constraints may allow 
relevance to have a nice interpretation as a probability.  

Our analysis of GRLVQ reveals two critical issues. The first is the single winning prototype problem. The 
second is the potential for diverging prototype vectors. We address the first issue by incorporating an 
equiprobablistic winner selection strategy ensuring that all prototype vectors are utilized in the learning process. In 
the closing remarks of (Hammer, 2002) Hammer and Villmann suggest that such an equiprobabilistic (or maximum 
entropy) approach could bring improvements to GRLVQ. We address the second issue by an intuitive modification 
to the prototype update rule. Our changes improve the generalization capability as well as the convergence rate of 
the classifier. We dub our improved form of GRLVQ as GRLVQ-Improved (GRLVQI). The interested reader is 
referred to (Mendenhall, 2006) for further algorithmic details and experimental results. In (Mendenhall, 2006) we 
point out that although GRLVQI shows superior classification performance for real-world hyperspectral imagery, 
the highly correlated spectral bands appear to limit the achievable dimensionality reduction. 

 
 

CONSIDERING A TRANSFORM DOMAIN 
 

Given that the highly correlated nature of the spectral bands may be a limiting factor for further feature 
reduction using GRLVQI, one might consider a transformation of the data. The goal is not to extract features prior to 
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GRLVQI processing, but rather to transform the spectral data into a different feature space and do GRLVQI 
processing in that feature space. There are several good transforms, each with special properties. When considering 
a transform, we should choose one that decorrelates the transform coefficients. A sparse transform may also be 
desirable given that GRLVQI chooses specific coefficients for classification. Further, an efficient transform is 
desired so as not to hinder the potential near real-time uses of GRLVQI processing. An obvious choice, given these 
requirements, is the wavelet transform. The wavelet transform decorrelates transform coefficients, provides a sparse 
representation of the data, and it is computable in linear time. What is unclear at this time, based on the limited 
success of earlier works, is the quality of the wavelet feature space for classification.  

The remainder of this publication studies the feasibility of using GRLVQI to select important wavelet 
coefficients, rather than the coefficients with the largest magnitude, for the task of classification. The unique aspect 
of this wavelet feature extraction method is that wavelet coefficient selection is linear. More typical wavelet 
processing algorithms select as features the largest magnitude wavelet coefficients which is a non-linear process.  
 
 

APPLYING GRLVQI IN THE SPECTRAL AND WAVELET DOMAINS 
 
We compare the selection of spectral features and wavelet coefficients using GRLVQI on real-world 

hyperspectral data obtained by AVIRIS). We demonstrate the quality of the reduced feature set by comparing 
classification accuracy, produced by an independent classifier, using only those features discovered by GRLVQI 
versus using all available spectral features. 

 
Data 

We use carefully verified selected spectra from the Lunar Crater Volcanic Field (LCVF) scene acquired by 
AVIRIS in 1994 (Figure 1). These samples, which served as a training set in an earlier classification study (Merényi, 
2000) are divided into training and test sets for this work as described in the “Design of Experiments” section below. 
After atmospheric correction and elimination of the saturated water bands containing irrecoverable data, our 
hyperspectral data has 194 spectral bands. Each spectrum (194-dimensional vector) is then normalized to unit length 
by dividing the vector elements by the Euclidean vector norm. This cancels linear effects such as shading resulting 
from viewing geometry, making the spectral classes much more uniform while retaining the differences in spectral 
characteristics. It also eliminates the differences in geometric albedo for materials that have the same spectral 
signature and only differ in their albedo (Merényi, 1996), which is an undesirable effect. Fortunately this is rarely 
the case, but one should be aware of the possibility and, if necessary, do post-classification processing to separate 
such materials. 

These data contain 23 surface cover classes, a description of which is provided in Table 1, along with the class 
labels and the number of training samples per class. Figure 1 shows sample locations for each surface material. 
Mean spectra of the 23 classes under evaluation are shown in Figure 2. Further details of this 23-class data set can 
be found in (Merényi, 2000).  
 
Design of Experiments 

Three splits of the data shown in Table 1 are generated using two-thirds for training (621 samples) and one-third 
for testing (310 samples). Each split is a random selection of the known training samples. Results are reported as the 
average of the classification accuracies on the test set from each of three jack-knife runs. In each run, classification 
accuracies are calculated as the mean of the individual class accuracies. Table 2 lists the learning parameters 
including the conscience parameters we used in these GRLVQI experiments. 

Initial prototypes are drawn randomly from a uniform distribution on [0.4,0.6], data are scaled to the interval 
[0,1] and each class is assigned five prototypes.  

In our experiments, we use Daubechies 4-tap orthogonal filters. We iterate the wavelet transform three times 
generating a three-level wavelet decomposition of the spectral data. The goal of this paper is to prove a concept. As 
such, we do not set out to determine the optimum set of filters (orthogonal or bi-orthogonal, even-length or odd-
length, long filters or short filters) nor do we attempt to find the optimum number of decomposition levels for 
classification. Filter selection and the number of decomposition levels of the wavelet transform are both important 
considerations which can potentially have an effect on our ability to classify the data, and should be explored in 
follow up work.  
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Figure 1: A natural color composite of the Lunar Crater Volcanic Field (LCVF), NV obtained in 1994 by the 
NASA/JPL AVIRIS imaging spectrometer. Labels indicate locations of various surface cover types described in 
Table 1. Further details and previous analysis of this image are given in (Merényi, 2000). 

 
 

Table 1: Class labels, descriptions, and the number of training samples (#tr) for the 23classes of the  LCVF data set. 

Class Cover type description # tr Class Cover type description #tr. 
A Hematite-rich cinders 72 M Alluvium #3 (iron rich) 14 
B Rhyolite of Big Sand Spring Valley 22 N Dry wash #1 15 
C Alluvium #1 50 O Dry wash #2 54 
D Dry playa 160 P Dry wash #3 45 
E Wet playa #1 115 Q Wet playa #2 15 
F Young basalt 21 R Wet playa #3 14 
G Shingle Pass tuff 7 S Wet playa #4 15 
H Alluvium #2 (with mixed scrub 50 T Wet playa #5 18 
 Brush, rocks, and soil)     
I Old basalt 36 U Alluvium #4 (also rich iron) 36 
J Dense scrub brush stands 12 V Wet playa #6 12 
K Basalt cobbles on playa 37 W Ejaecta blakets#2 (primarily 33 
    unoxidized cinders with smaller  
    Percentage of hematite-rich cinders  

L Ejecta blankets #1 (mixed hematite- 78    
 Rich and unoxidized cinders)     
    Total number of training samples 931 
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Figure 2: Means of training spectra corresponding to the classes listed in Table 1. Spectra are offset vertically for 
viewing convenience. Dashed vertical lines indicate data fallout due to saturation of the water bands.  
 

 
 

Schedule of GRLVQI Learn Parameters 
Learn Parameters Conscience Parameters Training Steps 

�
� �

J �
K � � 

0 < TS � 311K  0.005  0.025  0.025 2    0.35 
311K < TS � 621K  0.0025  0.0025   0.0025 2    0.3 
621K < TS � 932K  0.001  0.001  0.001 2    0.225 

932K < TS � 1,242K  0.0005  0.0025  0.0025 2    0.125 
Table 2: A list of the learn rates and conscience parameters for the 23-class problem. 
The number of training steps is rounded to the nearest thousand. The parameters ��, 
�

J, and �K are related to the rate of adjustment for relevance factors, in-class 
prototype vectors, and out-of-class prototype vectors respectively, as described in 
(Hammer, 2002). The parameters � and � control the “conscience” in the selection of 
the winning in-class prototype vector as described in (DeSieno, 1988). 
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Experiments were designed with two goals in mind. First, we want to evaluate the quality of the spectral and 
wavelet feature spaces (processes E and F in Table 3) for the purpose of classification. Second, we want to evaluate 
the quality of the extracted features which we accomplish using the Minimum Euclidean distance (MED) (processes 
A, B, and D in Table 3). The MED also allows us to impartially compare more typical largest magnitude wavelet 
coefficient selection as a feature set (process C in Table 3) to GRLVQI selected spectral features and GRLVQI 
selected wavelet coefficients (processes B and D respectively).  

 
Description of experiment processes 

A – Benchmark MED classification with all available spectral features 
B – MED classification of the GRLVQI extracted spectral features  
C – MED classification of largest magnitude wavelet coefficients  
D – MED classification of the GRLVQI extracted wavelet coefficients 
E – Classification in the wavelet domain using GRLVQI as the classifier 
F – Classification of the spectral features using GRLVQI as the classifier 

Table 3: List of simulations run to compare features discovered by GRLVQI 
from the spectral data and from the wavelet coefficients. 

 
 
Results 

To facilitate the discussion of our results, we will refer to the relevance factors obtained by GRLVQI processing 
in the spectral domain as “spectral relevance factors.” Similarly, we will refer to the relevance factors obtained by 
GRLVQI processing in the wavelet domain as “wavelet relevance factors.” 

Table 4 shows that although GRLVQI in the wavelet feature space (process E) yields only slightly better 
classification accuracy than GRLVQI in the spectral feature space (process F), executing GRLVQI in the wavelet 
domain requires significantly fewer features than GRLVQI in the spectral domain. This matches our expectation, 
due to wavelet transform properties (namely decorrelation and sparseness). 

The number of spectral features required to achieve the classification accuracy reported in process B (Table 4) 
is determined by progressively adding GRLVQI selected spectral features and tabulating the MED classification 
accuracy on the test sample set. We start by selecting the single spectral feature corresponding to the largest spectral 
relevance factor, and classifying the test sample set with the MED classifier using this single spectral feature and 
tabulating the result. Then we add to the first spectral feature the spectral feature that corresponds to the second 
largest spectral relevance factor. We classify the test sample set using these two spectral features and tabulate the 
results. This process continues by adding spectral features one at a time in descending order of spectral relevance 
factors and report the number spectral features that gives the maximum classification accuracy with the MED 
classifier. The number of wavelet features required to achieve the classification reported for process D in Table 4 is 
obtained in the same manner using wavelet relevance factors to select the wavelet coefficients. We take the inverse 
wavelet transform on the retained wavelet coefficients prior to MED classification. 

The number of largest magnitude wavelet coefficients required to achieve the classification accuracy reported in 
Table 4 for process C is determined in a manner similar to the relevance selection of spectral and wavelet features 
described in the previous paragraph. We start by selecting a single wavelet coefficient that has the largest 
magnitude, take the inverse wavelet transform of the test sample set using this single wavelet coefficient, and then 
classify the reconstructed spectral signature using the MED classifier and tabulate the result. Next we add, to the 
first wavelet coefficient, the wavelet coefficient with the second largest magnitude. We perform the inverse wavelet 
transform of the test sample set using these two wavelet coefficients, classify the reconstructed spectral signatures 
using the MED classifier and tabulate the result. This process continues by adding wavelet coefficients one at a time 
in descending order of their magnitudes. For process C in Table 4, we report the number of wavelet coefficients that 
corresponds to the maximum classification accuracy using the MED classifier. 

Our validation using an independent classifier shows that we can achieve more than 3% improvement in 
classification accuracy using the 76 relevance selected spectral features (process B) discovered with GRLVQI over 
the benchmark using all (194) spectral features (process A). 

Selection of the largest magnitude wavelet coefficients as features (process C) may have an advantage over 
GRLVQI on the original spectral data (process E) if the application can tolerate a small degradation in classification 
accuracy. Classification accuracy is slightly worse (less than 2%), but achieved with less than half of the features!  

Using GRLVQI selected wavelet coefficients produces the best results (process D). Classification accuracy is 
only slightly better than when using the GRLVQI selected spectral features (process B), but with less than 19% of 
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the coefficients. The story is similar with largest magnitude wavelet coefficient selection (process C). We boast an 
increase in classification accuracy of 2.7% with nearly 60% fewer coefficients. These results clearly demonstrate the 
potential of our relevance wavelet feature extraction and classification model. 
 

Summary of Classification Results 
 A B C D E F 

Classification Accuracy 91.9% 95.3% 93.1% 95.8% 97.3% 97.0% 
Retained Features 194 76 37 15 36 81 

Table 4: Classification accuracy and the corresponding number of significant relevance 
factors or wavelet coefficients for the six simulations listed in Table 3. The accuracies 
shown are computed as the average of three jack-knife runs. In each run, the overall 
accuracy is calculated as the average of the individual class accuracies on the test data. 

 
In Figure 3 we show representative spectra and spectral relevance factors for the 23 classes we evaluate. Three 

primary regions are discovered as relevant for classification by GRLVQI. The first cluster of spectral relevance 
factors appears in the range of 0.45 �m to 0.68 �m. A second significant cluster appears between 0.7 �m and  
1.1 �m, and a third cluster shows from 1.4 �m to 1.7 �m, although sparse around 1.5 �m. Two major regions, 1.1 
�m to 1.4 �m and 1.7 �m to 2.5 �m, receive little attention from GRLVQI indicating that these regions do not 
provide significant information for the correct classification of the samples in our 23-class problem. 

 

 
Figure 3: Average spectra of representative classes A (red), G (green), H (orange), L (magenta), O (purple), Q 
(black), and R (blue) and spectral relevance factors (black stem plot.) Relevance factors are the averages of three 
jack-knife runs. Classes were selected to show largest diversity. The dotted vertical lines indicate data fallout due to 
saturation of the water bands. 

 
In Figure 4, we show a breakdown of the wavelet transformed spectra indicating the order in which the wavelet 

filters are applied (read left to right). Here H indicates that highpass filtering was performed on the data and L 
indicates lowpass filtering. As an example, LH means that first a lowpass filter was applied, then a highpass filter. 
The process is to extend the length of the original vector such that it is divisible the 2L where L is the number of 
times the signal will be decomposed using the wavelet transform. We chose to perform a three level decomposition, 
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so our spectral dimension needs to be divisible by 23 = 8. We extend the length of our 196-dimensional spectra to 
200 dimensional vectors using zero padding. A highpass filter (H) is applied to the 200-dimensional vector and the 
result is downsampled by a factor of two yielding detailed signal information. Similarly, a lowpass filter (L) is 
applied to the 200-dimensional vector and the result is downsampled by a factor of two yielding coarse signal 
information. We iterate on the lowpass filtered region. This process is performed two more times to yield the three 
level wavelet decomposition. 

 

 
Figure 4: Illustration of the application of the highpass (H) and lowpass (L) filters (top) and the range of wavelet 
coefficients that apply to the specific filtering sequence (bottom) for a three level wavelet decomposition. 

 
Figure 5 shows representative wavelet curves and the wavelet relevance factors GRLVQI assigns to the wavelet 

coefficients. We see that GRLVQI discovers that coarse signal information is most important for classifying our 23-
class data set. Referencing Figure 4, we see that coarse signal information is contained in those wavelet coefficients 
which have been lowpass filtered only (coefficient indices 1-25). GRLVQI further discovers that some detailed 
coefficients are also necessary for classifying the 23-class data set. The detailed information comes from the LLH 
sub-band in Figure 4 (coefficients 26 through 50). We note that a group of large magnitude wavelet coefficients 
exists in the index range of 90-105, however, no large wavelet relevance factors are associated with this range. The 
lack of wavelet relevance factors in this region indicates that it is not important for classifying our data set and 
demonstrates that GRLVQI does not follow the largest magnitude wavelet selection method commonly associated 
with wavelet-based image processing. 

 

 
Figure 5: Wavelet transform of class means for classes A (red), G (green), H (orange), L (magenta), O (purple), Q 
(black), and R (blue) with wavelet relevance factors obtained by GRLVQI (black stem plot) in the wavelet domain. 
Relevance factors are the averages from three jack-knife runs. Classes were selected to show largest diversity.  

 
In order to compare spectral relevance factors and wavelet relevance factors, we apply the inverse wavelet 

transform to the wavelet relevance factors. We rescale the inverted wavelet relevance factors using the L1-norm. 
Three observations from Figure 6 are worth noting. First, the highly correlated nature of the inverted wavelet 
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relevance factors indicate how well the wavelet transform decorrelates the data. Second, GRLVQI in the wavelet 
domain places greater emphasis in the 1.4 �m to 1.5 �m and the 2.2 �m to 2.3 �m regions than GRLVQI does when 
processing on the reflectance features. Third, there are some negative values in the inverted wavelet relevance 
factors. It is unclear at this time how one should interpret the negative relevances. 

One might expect GRLVQI to discover that the wavelet indices corresponding to the largest magnitudes or the 
largest variances over the entire training set are the most important for classification. To dispel the idea that 
GRLVQI selects coefficients based on largest magnitude or largest variance, we compare them both with the largest 
wavelet relevance factors in Figure 7. We choose to compare 15 wavelet coefficients because this corresponds to the 
best classification achieved by the MED classifier (process D) when wavelet coefficients are selected using the 
largest wavelet relevance factors. In Figure 7 (top), the mean of all wavelet signatures is shown as the black curve. 
The 15 largest magnitude wavelet coefficients are indicated by the red stem plot. The wavelet coefficients 
corresponding to the 15 largest wavelet relevance factors are indicated by the blue stem plot. The wavelet 
coefficients that are among both the largest magnitudes and the largest wavelet relevance factors are indicated by the 
black stem plot. Similarly, the standard deviation of all wavelet signatures is shown as the black curve in Figure 7 
(bottom). The 15 largest standard deviations of the wavelet coefficients are indicated by the red stem plot. The 
wavelet coefficients corresponding to the 15 largest wavelet relevance factors are indicated by the blue stem plot, 
and the wavelet coefficients included in both the set of largest standard deviations and the set of largest wavelet 
relevance factors are indicated by the black stem plot. Clearly, although there is overlap in both plots, the largest 
relevances assigned by GRLVQI to wavelet coefficients are not the same as the wavelets with largest magnitudes or 
largest variances. 

 

 
Figure 6: Relevances obtained by GRLVQI in the spectral domain (red) compared to the inverse wavelet transform 
of the relevances obtained by GRLVQI in the wavelet domain (black). The dotted vertical lines indicate data fallout 
due to saturation of the water bands. 
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A Parseval's theorem holds for orthonormal wavelets (Burrus, 1998), therefore we can compare the energy of 

the relevant spectral features, relevant wavelet coefficients, and largest magnitude wavelet coefficients (Table 4). 
Total energy is calculated as average pixel energy of the test sample set. For relevance weighted energy, we use the 
following: 

 
 

where i is the dimension index, m the training sample index, M the total number of training samples, and �i the 
relevance factor associated with dimension i. Energy calculations for non-weighted coefficients is accomplished by 
setting �i = 1 for all i. 
 

 
Figure 7: Top) Comparison of the 15 largest magnitude wavelet coefficients (red stem plot) with the 15 wavelet 
coefficients corresponding to the 15 largest wavelet relevance factors (blue stem plot.) The black curve is the mean 
wavelet representation for all training samples. The black stem plot shows the indices for which the corresponding 
wavelet belongs to both red and blue sets. Bottom) Comparison of the 15 largest standard deviations of the wavelet 
coefficients (red stem plot) with the 15 wavelet coefficients corresponding to the 15 largest wavelet relevance 
factors (blue stem plot.) The black curve is the standard deviation of the wavelet representation of all training 
samples. The black stem plot shows the indices for which the corresponding wavelet belongs to both red and blue 
sets. 
 

We discuss the energy of the retained features to show that there is not a consistent relationship between 
retained energy and achieved classification accuracy. Table 4 shows that keeping all available spectral channels has 
the most energy yet has the weakest MED classification performance (process A). Keeping the spectral features 
associated with the 76 largest spectral relevance factors (process B) has the smallest energy yet is outperformed by 
keeping the 15 wavelet coefficients associated with the 15 largest wavelet relevance factors (process D). Keeping 
the 37 largest magnitude wavelet coefficients (process C) has the second largest energy yet is outperformed by the 
76 SF and 15 WF cases.  
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Average Retained Energy per Pixel for MED Classification 
 w/o relevance w/o relevance Accuracy 

76 SF 4.99*105 7.99*103 95.3% 
15 WF 5.88*105 4.62*104 95.8% 
37 WC 9.45*105 NA 93.1% 
194 SF 2.49*107 NA 91.9% 

Table 4: The retained energy for the 76 spectral features (76 SF) corresponding to the 76 
largest spectral relevance factors, the 15 wavelet features (15 WF) corresponding to the 15 
largest wavelet relevance factors, the 37 largest magnitude wavelet coefficients (37 WC) 
retained using more typical wavelet processing, and  for all spectral features (194 SF). 

 
 

SUMMARY & DISCUSSION  
 
The wavelet transform is a powerful tool used in data analysis for a broad range of applications. We introduced 

a new method of wavelet coefficient selection that couples the power of the recently introduced neural paradigm 
called relevance learning with wavelet analysis. Our new approach results in exceptional classification performance 
with a significantly reduced feature set.  

Following we note several issues that remain open questions as a result of this study, and should be examined in 
subsequent work.  

We do not exclude the possibility that better wavelet representation (e.g., different orthogonal wavelets, odd or 
even length bi-orthogonal wavelets, or adaptive wavelets) using more typical largest magnitude wavelet coefficient 
selection could yield as good as, or better classification than the spectral features discovered by GRLVQI. This has 
not been investigated. 

We addressed wavelet feature extraction for classification in this paper. One may view feature extraction as a 
form of compression. We realize, however, that there may be a desire to code the remaining transform coefficients. 
Our wavelet feature extraction method potentially allows one to very efficiently code the coefficients selected by 
GRLVQI for the purposes of classification. Our model inherently saves bit resources by significantly reducing the 
number of coefficients that one needs to code. The problem of coding 200 potential wavelet coefficients and indices 
is reduced to coding a single 200-dimensional vector and 15 retained features and indices. We surmise that bit-plan 
coding would offer an efficient method of coding the retained coefficients with little overhead. 

Our feature selection algorithm using GRLVQI in the wavelet domain is very successful. However, we feel it 
necessary to consider some aspects related to remotely sensed hyperspectral data if we are to leverage the full power 
of the wavelet transform. We are currently researching ways to address two specific issues. The first issue is how to 
treat the deletion of the spectral channels corresponding to data fallout (e.g., due to saturation of the water bands). 
The discontinuities created by gluing separate regions together manifest in the wavelet coefficients of the 
transformed data and can produce false features. Such false features are a concern because they can potentially cause 
GRLVQI to waste relevance resources learning features that are an artifact of the transform. The second issue is that 
the wavelet transform assumes uniformly distributed band centers. However, spacing of the band centers in remotely 
sensed hyperspectral images is typically non-uniform. We are currently investigating the impact of these issues on 
the wavelet transform and the effect on the classification accuracy and feature reduction potential of GRLVQI in the 
wavelet feature space. 
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