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Abstract 

 
A comprehensive mapping of spectral variations is 

presented for one octant of the Imager for Mars 
Pathfinder SuperPan data set. Both left eye and right 
eye images are analyzed, and for each, all respective 
spectral bands are utilized simultaneously. We use a 
Self-Organizing Map to achieve fine discrimination of 
over 20 surface units including previously published 
classes. Agreement with earlier analyses are very good 
where data are available for comparison. In spite of 
the separate analysis of the left and right eye data, 
which cover different spectral windows with little 
overlap, many classes show very similar spatial 
distribution in the left and right eye images.  The SOM 
clustering produced refinements within the unit 
formerly labeled as “black rock”, discovered  
previously undiscussed units that may be various 
coatings on rocks, and presented some disagreements 
with existing units. The clustering tools are part of 
HYPEREYE, a dedicated research software developed 
with NASA/OSSA AISRP support. 
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1. Introduction 
 

Self-Organizing Maps (SOMs) have long been 
recognized as powerful unsupervised clustering 
algorithms. Invented in its original form by Teuvo 
Kohonen [1], the Kohonen SOM (KSOM) has matured 
to spawn many significant applications. We have been 
using SOMs successfully to improve extraction of 
scientific information from a number of space science 
data sets, for example [2,3,4], as well as for terrestrial 
studies. The past successes inspired more serious 
theoretical studies and software development, which 

are incorporated in our research environment, 
HYPEREYE, described in section 4. Beyond the 
original KSOM, we have become very interested in 
new theoretical augmentations that lend various 
advantageous properties to the basic KSOM. One such 
aspect is the so-called map magnification, described in 
detail in [5], which controls the density of the SOM 
weight vectors in the input data space and thus effects 
the designation of larger or smaller number of 
prototypes to represent certain subsets of the input 
space. It can force, in principle, several different types 
of quantization on the reference (weight) vectors of the 
SOM. Such quantizations are, for example, minimum 
distortion or maximum entropy quantization.  Negative 
magnification enlarges the representation of small 
clusters in the neural map (the SOM) ⎯ a 
phenomenon observed in the cerebral cortex ⎯ thus 
can facilitate discoveries of rare events. Control over 
the magnification of the neural map is one important 
contribution toward precise clustering. A desired 
magnification can be achieved by explicit forcing [6], 
guaranteed by theory for restricted cases of data and 
SOM dimensions. Of particular interest to us in this 
work is the magnification which forces maximum 
entropy quantization and thus the most faithful 
representation of the unknown probability density of 
the input data space. Luckily, for this special case the 
desired maximum entropy quantization can be 
achieved without explicit forcing of the magnification, 
using the so-called conscience algorithm [7] instead of 
[6]. While this algorithm is heuristic, there is 
experimental evidence that faithful density matching is 
produced even for hyperspectral images [8]. More 
details on this particular SOM variant and its 
applications are found in [8,9,2-4]. We applied this 
approach to the present study. 

Background on SOMs, as noted above, is given, for 
example, in [5,8,9], all downloadable from URL 
http://www.ece.rice.edu/~erzsebet/publications.html. 
Here we provide a short summary. An SOM, in 
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general, is a neighborhood preserving, adaptive vector 
quantizer that maps a high-D space non-linearly onto a 
2-D lattice of artificial neurons such that the similarity 
relationships of the input data are reflected in the 
proximity relationships of the neurons representing the 
data. (2-D SOM lattice is most popular because high-D 
clusters will be visualized in 2-D. 1-D lattices are 
obviously more limited, and 3-D is more complicated 
to render.)  Each neuron in the (usually) rectangular 
lattice has a weight vector of the same dimensionality 
as the input data, say n. The SOM learns the structure 
of the n-D data space by cycling through the following 
steps many times: 1) Competition. Pick an n-D input 
pattern, x, randomly, find a “winner” neuron with 
index c such that c = argmax ||x – wi || over all neuron 
indices i in the lattice. (The neuron whose weight 
vector is most similar to the input pattern wins the 
representation of that pattern.) 2) Cooperation. The 
winning neuron activates its neighbors. The 
neighborhood is defined by a neighborhood function, 
h(c(x),i) which can be different in different SOM 
paradigms. In the conscience algorithm [7], the 
immediate adjacent neurons form the neighborhood. In 
the Kohonen SOM (KSOM), the neighborhood is 
defined by a Gaussian function and is decreased over 
time. 3) Synaptic adaptation. All neurons in the 
neighborhood, including the winner, adjust their 
weight vectors to become more similar to the input 
pattern. The winner typically moves its weight toward 
the input pattern to the greatest extent, while the 
neighbors adjust according to their distance to the 
winner (which is expressed in the neighborhood 
function). wj 

new  = wj 
old + a* h(c(x),i) (x – wj 

old), 
where a is a learning rate decreasing in time, and j ∈ 
h(c(x),i). The difference between  the weight vectors 
of adjacent neurons in the converged SOM lattice is 
indicative of the similarity of the data points mapped to 
those neurons. Presetting of desired or maximum 
number of clusters is not needed for SOM formation. 
Cluster boundary detection is based on the analysis of 
the converged weights. See [3,4,5,8,9] for examples of 
real planetary cases.  
 
2. Previous analyses of Mars Pathfinder 
IMP spectral images 
 

The highly successful 1997 Mars Pathfinder 
mission landed on the Ares Vallis floodplain.  The pre-
landing expectation was that Mars Pathfinder would 
encounter a variety of rock types carried from the 
southern highlands by outflow channel floods.  
Instead, the initial interpretation of data from the Alpha 
Proton X-Ray Spectrometer (APXS) instrument and 

the multispectral Imager for Mars Pathfinder (IMP) 
indicated that there was only a single rock type with 
various levels or types of coatings [10].  The fine 
grained materials making up the immobile and mobile 
surface layer (indurated soil and wind-blown dust) 
were also characterized on the basis of spectral 
characteristics [11].  Murchie et al. [12,13] and Bell et 
al. [14] recognized at least one other primary rock type 
besides the previously recognized “gray rock” spectral 
class.  Where the “gray rock” spectral class had a 
shallow absorption at or beyond 1000 nm (the end of 
the IMP spectral coverage), this second rock spectral 
class, “black rock” was initially described by [12] as 
having a deep absorption centered on 930 nm.  [14] 
noted some variability in the position of the band 
minimum for different occurrences of “black rock”.  
Murchie et al. in [13] suggest that the IMP data 
indicate a greater abundance of this “black rock” class 
in the far field, especially in the vicinity of the distant 
Twin Peaks and Big Crater that lie on the horizon.   

The IMP consisted of two cameras that were 
physically separated in order to return stereo imagery.  
The spectral coverage of the system ranged from 440 
to 1000 nm with FWHM (Full Width at Half 
Maximum) band widths ranging from 19 to 40 nm.  
The IMP collected 15 channels from the two cameras 
(with overlap in the 440 and 670 nm bands).  Recent 
studies of IMP data have primarily made use of the 
“SuperPan” dataset.  The Super Pan was acquired in 
eight separate image mosaics (“octants” labeled S0181 
through S0188), with each mosaic consisting of many 
separate but contiguous camera azimuth and elevation 
pointing positions.  The segments making up each 
octant were collected at disparate times leading to 
subtle differences between the segments in terms of 
lighting geometry and, potentially, calibration.  [14] 
analyzed a version of the SuperPan calibrated by the 
U.S. Geological Survey in Flagstaff [15].   Residual 
differences between the image segments making up 
each octant were empirically corrected as described by 
[13] and it is this latest version of the SuperPan that 
was used in this study. 

Previous analyses of the IMP SuperPan dataset 
have focused on spectral parameterization of the data 
[10], [11], [13], spectral mixture analysis of the data 
[14], and analysis of rock morphology in association 
with spectral parameters [13].  The SuperPan data set 
has not been subjected to a comprehensive 
classification.  In the present work, we are seeking to 
classify the SuperPan data set through the use of a Self 
Organizing Map Artificial Neural Network 
architecture.  In so doing we hope to address 
outstanding questions related to how much variability 
there is of primary rock spectral classes, and to classify 
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rock coatings and soils and see if there is any link to 
past climate regimes. 
 
3. Spectral analyses of IMP images with 
Self-Organizing Neural Maps 
 

The starting point of our analyses was the calibrated 
left and right eye SuperPan images described above. 
This study was done on octant S0184 [13]. The last, 
967 nm, band of the right eye image of his particular 
octant had to be removed because of its poor quality. A 
brightness normalization (dividing each spectrum by 
its Euclidean vector norm, see, for example, [2] for 
more explanation) was performed prior to clustering in 
order to eliminate linear illumination geometry effects. 
While this also removes the geometric albedo, the 
relative spectral relations among the bands are 
preserved, resulting in much more uniform spectral 
patterns within each spectral unit. We also applied a 
mask of “no data” pixels to eliminate unnecessary 
processing of useless data. The S0184 images each 
contain in the order of half million multidimensional 
pixels. The wavelength suite for the left eye data is 
(443, 671, 802, 858, 898, 931, 968, 1003) nm, and 
(443, 480, 531, 600, 671, 752, 967) nm for the right 
eye image, (967 removed for the octant analyzed here). 

 
3.1. Self-Organizing Neural Maps in this study 
 

For the specific analyses presented in this paper, a 
40 x 40 SOM was used for each of the left and right 
eye clustering. An SOM does not require an estimated 
number of clusters, however, the combination of its 
size and the complexity of the data determines whether 
all possible clusters can be resolved, therefore we 
allowed generous space for the clusters to evolve.  We 
chose the “conscience algorithm” SOM variant [7] 
because of its maximum entropy quantization property. 
A neighborhood of half-width 1 works well with this 
paradigm, and although it is more prone to partial 
organization (thus topology violations) than the 
KSOM, the size of the images as well as the size of the 
SOM is small enough that we can catch errors fairly 
easily with our tools. In return, the small constant 
neighborhood, speeds up the processing considerably. 
This algorithm is realized by the ann-SOMconsc 
module of HYPEREYE, and it can be run in a highly 
interactive mode with many visualization controls, or 
in batch mode. Approximately 7 million learning steps 
were performed for each image. After SOM 
convergence the remap semi-automated HYPEREYE 
module is used for cluster boundary extraction and 
color coating the clusters draped over a reference 

image, for example a grey-scale band of the original 
image cube. (The reference image can also be a simple 
blank image.) The cluster map then serves as a mask to 
collect statistics such as mean, standard deviation, 
band extremes, etc. for each cluster, to examine the 
spectral characteristics of each unit.  
 
3.2. Results and Discussion 
 

At the most basic level, the martian landscape 
observed by Pathfinder consisted of rocks and soils.  
As noted above, the current interpretation of the data 
recognizes two basic lithologies: gray rock and black 
rock.  Gray rock's spectral (as measured by IMP) and 
chemical characteristics (as measured by the 
Pathfinder's APXS instrument) are consistent with an 
andesite or basaltic andesite [10].  The spectral 
characteristics of black rock are consistent with a more 
mafic basalt [11,13].  Rocks in the scene are also 
coated to varying extents and the soils consist of 
mobile, fine grained, soils ("bright red soil"); indurated 
soils ("brown soil") and soils that appear to have some 
admixture of more mafic components ("dark soil") 
including some that appear to contain mechanically 
weathered debris from rocks ("rock soil"). The maps 
produced in this work consist of a number of spectral 
classes which can be related to previously recognized 
classes, others which can be interepreted as spectral 
mixtures of some classes, and a few classes of special 
interest which are tentatively identified as previously 
unrecognized spectral classes.  In both the right eye 
and left eye class maps, bright red dust is accurately 
mapped out as class H (orange).  The "dark soil" class 
[11] is also well mapped in the left eye as class “b” 
(cyan).  The rock soil class is well mapped in the right 
eye data by class Y (maroon) and generally well 
mapped in the left eye data by the same class.  The 
gray rock class is very well mapped in the right eye 
data as class D, E and Z (yellow, pale yellow and 
green-yellow), mapping of gray rock in the left eye 
data is complicated by data dropouts and subtle 
calibration differences between component segments 
of the octant.  An interesting class apparent in both 
maps is class M (purple) which, in the left eye data has 
its most apparent expression on the flanks of the west 
Twin Peak (on the horizon, upper right).  This class 
was interpreted by Murchie et al. [13] as part of the 
black rock class, but the spectra in Figure 3 indicate 
that while both classes have an absorption near 930 nm 
the band depth of the black rock class is significantly 
deeper than that of class M (purple).  The black rock 
class itself is mapped here as two classes.  The first, 
class O, corresponds most closely to the original 
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description of black rock with an absorption centered 
on 930 nm which could be consistent with a 
predominantly orthopyroxene mineral assemblage.  
The second, class R, is different from the original 
description of the black rock class in that it has a deep 
absorption at or beyond 1000 nm which would be 
more consistent with a predominantly clinopyroxene,  
or with a mixed clinopyroxene and olivine mineral 
assemblage.  These black rocks with a longer band 
center were also noted in Bell et al. [11]. 

The two extremely small clusters, O and R, contain 
some spurious pixels that contaminate the  average 
class characteristics (more so for O than for R). This 
may be due to insufficient size of the SOM that can be 
helped in follow-up processing. However, we note that 
several contiguous patches highlighted as O are indeed 
close spectral matches to the prototype. It is also 
noteworthy that the class R black rock is also well 
mapped in the right eye data. 
 
4. HYPEREYE, the supporting software 
 

The HYPEREYE data management and 
programming system for analysis of hyperspectral 
imagery with Self-Organizing Maps and SOM-hybrid 
neural nets is the specialized tool our group has 
developed for both algorithm research and data 
analysis.  The system has three different facets.  It is 
first a collection of analysis tools for viewing and 
reducing hyperspectral imagery and the corresponding 
SOM products. The tools are both modular, and 
designed to allow easy transition to platform 
independence, planned for the near future. It is also a 
data organization system for storing the imagery and 
neural networks and tracing the history of their 
analysis.  Lastly, it is also a programming environment 
for algorithm research by our group. 

The analysis tools comprise a variety of home-
grown applications and commercial software libraries.  
The Khoros data storage, manipulation, and 
visualization libraries manage the large (multi-
megabyte) dataset reading, writing, and display 
interaction.  The NeuralWorks Designer Pack libraries 
store, manipulate, and perform learning on the SOM 
neural networks we construct.  Both libraries are 
available on a variety of UNIX and PC platforms.  
HYPEREYE adds its own set of libraries for creating 
graphical displays of the SOM networks and for 
creating and using worksheet files that keep the history 
of each tool's manipulation of the data.  Together, the 
system is a data-analyst-friendly graphical window 
environment that receives raw spectral data and 
delivers statistical results and map and plot-based data. 

The data organization design uses a "project" 
metaphor with database-like rules on top of the UNIX 
file system's permissions rules.  The initiation and 
signing-in to a "project" creates a directory structure, 
file naming convention, and access rules that allow one 
user consistent control over the “project's” data 
analysis.  Working in the "project" produces worksheet 
files and data products (which are reproducible from 
the worksheets).  Data, worksheet, and output files can 
all be accessed by the user with conventional methods 
(i.e. text editor or graphic viewer) as well.  But while 
access to the "database elements" directly (by-passing 
the "project") through the file system is allowed, built-
in safeguards ensure that it is not detrimental to the 
“project's” integrity. 

Neural network algorithm design is an important 
facet of our research pursuits and the HYPEREYE 
application and library environment facilitates this 
development among students, staff, and faculty.  Each 
part of the network analysis system has hooks for 
standard C (or Fortran) functions which isolate the 
researcher from the mundane data handling and 
graphics presentation.  For instance, the SOM learn 
algorithm by [6] was recently implemented for two-
dimensional SOM's by one graduate student.  The code 
is three functions and less than 120 lines due, in part, 
to the use of NeuralWorks' library network-handling.  
Another example is the easy implementation of cluster 
boundary functions for helping the analyst identify 
clusters in the SOM.  A future goal is to make these 
development additions separate plug-ins to further 
simplify the maintenance of the HYPEREYE 
environment versus expanding its functionality 
through various research efforts. 
 
5. Conclusion and Next Steps 
 

We have presented a comprehensive spectral 
classification of the S0184 octant of the Imager for 
Mars Pathfinder SuperPan data, for both the left and 
the right eye images, using unsupervised neural 
clustering technique. The results are generally 
consistent with earlier analyses, and also produced 
refinements that may be variations in mineralogy or 
rock coatings.  

This data set appears extremely varied, possibly in 
part due to noise and calibration issues. A larger size 
SOM could be used to accommodate more of the 
spurious spectra instead of being forced to assigning 
them to neurons that map valid clusters. Specifcally, 
for clusters O and R we will repeat the analysis with a 
larger SOM, and also with forced negative 
magnification, to make the detection of these rare 
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classes cleaner. We also plan to look more closely at 
class M in order to examine its relation to class M 
pixels in the near field and, potentially, to other classes 
with similar spectra.  The effect of atmospheric 
scattering on the observed reflectance of these far field 
regions also needs to be considered more fully. 

Lastly, mosaic segments with imperfect calibration 
in the left eye octant become highlighted because the 
same soil type appears as spectrally different across 
those mosaics. The statistics on these spectral 
anomalies  may help track down the nature of the 
calibration problem. Additional octants in the 
SuperPan will also be analyzed. 
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Figure 1. Spectral clusters identified with a Self-Organizing Map in IMP SuperPan octant S0184, left eye image. The 
color-coded clusters are draped over a grey-scale reference image. The unmapped grey scale patches (such as the 
rectangle spanning vertically in the center and the black fringes framing the image) are areas where data fallout occurs 
in one or more of the eight left-eye spectral bands. Some of the mosaics (most notably the two center bottom mosaics)  
show calibration problems. The most interesting clusters, M, Y, D, O, and R are discussed in the text. Clusters H and b 
generally map the known distribution of bright red dust (H) and dark soil (b).  E, D  and Z correspond to rock surfaces 
and may indicate variations in the coatings of the rocks. An occurrence of each of the black rock classes O and R is 
highlighted by the small white circle and the white rectangle, respectively. The inset contains both areas with the O 
black rock showing at the bottom, center, the R patch showing close to the  upper right on the diagonal. The large oval 
and the black rectangle point out an example of  the “rock soil”, and the class M soil , mostly covering Twin Peaks. 
(Color copy downloadable at www.ece.rice.edu/~erzsebet  Publications, or request one in email.) 
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Figure 2. Spectral clusters identified with a Self-Organizing Neural Map in IMP SuperPan octant S0184, right eye image. 
The unmapped frame indicates no-data regions. The spatial distribution of clusters  in this right-eye map is remarkably 
similar to the left eye map in Figure 1 in spite of the fact that the left and right eye wavelength sets have only two points 
(443 and 671 nm) in common, and that most left eye bandpasses are between 671 – 1003 nm while most right eye  
bandpasses fall in  the 443 – 671 nm range. This indicates that a number of characteristic mineralogies manifest in both 
the VIS and the NIR wavelength regions. Ovals and rectanglaes highlight the same surface types as in Figure 1. The 
inset likewise is an enlargement of the area that contains an occurrence of each of the black rock units O and R.   
(Color copy downloadable at www.ece.rice.edu/~erzsebet  Publications, or request one in email.) 
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Figure 3. Average spectral characteristics of several of the clusters identified with a Self-Organizing Neural Map in 
SuperPan octant S0184 and displayed in Figures 1 and 2. The left frame here shows the left eye spectra and the right 
frame shows the spectra of corresponding spatial units in right eye image. The standard deviation of each cluster is 
indicated by the vertical bars. The spectra are offset for clarity and plotted on an arbitrary but consistent vertical scale. 
Left and right eye data were roughly scaled together for this viewing. Precise scaling for the entire data set is not 
possible presently because of calibration uncertainties. Class O contained some spurious pixels that may be due to 
insufficient SOM space, therefore we show only the average of the successfully identified  “O” type black rock spectra.  
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