ELEC 694 COMP 694

Topics Not Chosen

Scott Cutler cutler@rice.edu 4/10/2013

Current Roster

Ryan Artecona

Jianbo Chen

Rob Bauer

Ahmed Haque

Enoch Chang

Zhiyong Tan

Schedule for Spring 2013

- 01/09/13 Introduction and Accelerating Technology(Cutler)
- 01/16/13 Disruptive Technologies (Cutler)
- 01/23/13 Creating and Delivering Great Presentations (Volz)
- 01/30/13 Consumer Medical Electronics (Ahmed Haque)
- 02/06/13 Identity Theft / Phishing (Enoch Chang)
- 02/13/13 Internet of Things (Ryan Artecona)
- 02/20/13 No Class family emergency
- 02/27/13 No Class Rice midterm recess
- **03/06/13 Storage** (*Jianbo Chen*)
- 03/13/13 No Class family emergency
- **03/20/13 HTML 5** (*Zhiyong Tan*)
- 03/27/13 Ecosystem Group Discussion (A//)
- **04/03/13** Internet Video (Rob Bauer)
- 04/10/13 Topics Not Chosen (Cutler) Prep for Final Projects (All)
- 04/17/13 Final Projects Final Papers Due (All)
- 04/21/13? Possible Optional Off-site (a.k.a. end of semester party)

Next Week's Mini-Discussion

- Some weeks, we will have a short group discussion on a topic rather than Events of the Week.
- Purpose is an exercise in thinking beyond the top level issues of a topic.
- I expect roughly 30 minutes of research and thought
- Our final mini-discussion is this week. Next week we have:

Events of the Week Presented by All

Final Paper

- Everyone has to submit a paper on any of the topic from the list
 - 99% chose same topic as presentation!
- Roughly 20 pages; but can be more or less
- Covers same material as presentations with a stronger emphasis on the future and what other technologies impact or are impacted by chosen topic.
- Submit electronically save trees
- Can be started and submitted at ANY time
 - Due April 17

Final Projects

- At the April 3rd class, you will be assigned to one of two teams.
- You will be given a topic covering a technology with a 10 year horizon.
- The April 10th class will start with a discussion on Topics Not Chosen (I will present) followed by prep time for final project.
- April 17th class will consist of two 15-20 minute group presentations on final topic.

Final Projects

■ Topic:

Automobile Electronics in the year 2020

Team A

- Ahmed Haque
- Ryan Artecona
- Zhiyong Tan

Team B

- Enoch Chang
- Jianbo Chen
- Rob Bauer

Seminar #12

- Final projects— Teams A and B
 - Logistics
 - Wednesday, April 17, 9:30 11:00, DH-2014
- Mini-Discussion Final Events of the Week
- One-on-One meetings:
 - None!

Topics Not Chosen

Scott Cutler 4/10/2013

Candidate Topics – Spring 2013

- Advanced Computer Inputs Kinect, Touch Screens
- ARM vs. x86 for mainstream usage and/or Intel vs. NVIDIA
- Automotive Electronics beyond the engine including GPS, XM audio, XM data, cellular data
- Cloud Computing
- Consumer Medical Devices / Electronic Medical Records (consumer)
- Digital Living Room AirPlay and dLNA, networked receivers
- HTML 5
- Identity theft / phishing
- Intellectual Property, patent trolls, law suits, DRM for movies / TV ad revenue model
- Internet of things, Embedded cellular data modems, Ultra low powered computing
- Internet Video / Netflix / Google TV, Apple TV, repurposed game machines
- Main Stream Processors and Chipsets / Parallel, multi-core technology for consumer uses
- NFC and Mobile Payments
- Shared Metered 4G LTE Data Plans
- Social Media specifically Facebook long term or quick rise/fall or Twitter business model
- Storage SATA, Solid State Drives, Flash, RAID, Backup, disk in the clouds
- Voice Recognition Assistants
- Windows 8 / 8RT

Advanced Computer Inputs

ARM vs. x86 for mainstream usage and/or Intel vs. NVIDIA

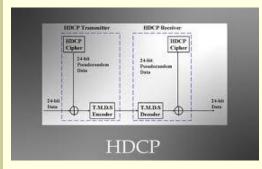
Cloud Computing

Digital Living Room - AirPlay and dLNA, networked receivers

VSX-1123-K

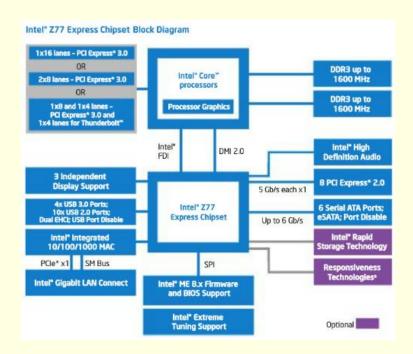
- WiFi Ready with AirPlay, dLNA, HTC Connect & Pandora Music Streaming
- 7.2 Channels with Advanced Audio & 1080p Video Processing
- FREE Advanced Remote Control App for Apple & Select Android Devices, "iControlAV2012"
- Ultra HD (4K) Upscaling and Pass-Through

Digital Living Room - AirPlay and dLNA, networked receivers - 2

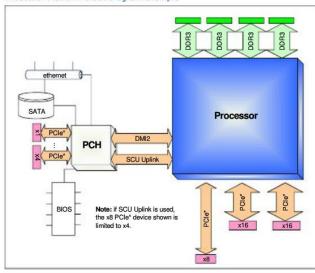


AirPlay Broadcast live to your HDTV and speakers.

Intellectual Property, patent trolls, law suits, DRM for movies / TV ad revenue model



Main Stream Processors and Chipsets


- 64 bit computing
- Parallel, multi-core technology for consumer uses

Introduction

Figure 1-1. Processor Platform Block Diagram Example

1.1 Processor Feature Details

- . Up to 6 Execution Cores
- Each core supports two threads (Intel[®] Hyper-Threading Technology) for up to 12 threads
- . A 32-KB instruction and 32-KB data first-level cache (L1) for each core
- . A 256-KB shared instruction/data mid-level (L2) cache for each core
- Up to 15 MB last level cache (LLC): up to 2.5 MB per core instruction/data last level cache (LLC), shared among all cores

1.1.1 Supported Technologies

- Intel[®] Virtualization Technology (Intel[®] VT)
- Intel[®] Virtualization Technology for Directed I/O (Intel[®] VT-d)
- Intel[®] Virtualization Technology Intel[®] Core[™] i7 processor family for the LGA-2011 socket Extensions
- Intel[®] 64 Architecture
- Intel[®] Streaming SIMD Extensions 4.1 (Intel[®] SSE4.1)
- Intel[®] Streaming SIMD Extensions 4.2 (Intel[®] SSE4.2)
- Intel[®] Advanced Vector Extensions (Intel[®] AVX)
- Intel® Hyper-Threading Technology
- Execute Disable Bit
- Intel[®] Turbo Boost Technology
- Enhanced Intel® SpeedStep® Technology

COMP / ELEC 694, Se

NFC and Mobile Payments

Shared Metered 4G LTE Data Plans

WE DID THE MATH. DATA CAPS = HEADACHES.

Unlimited data from Sprint means you don't have to do the math. Look how fast you hit your data cap with Verizon or AT&T. Some things should be monitored. Like your 4-month-old baby. Or your bank account. But not your data.

The above numbers are estimates and data transfer amounts may vary. Our math works like this:1024 kb=1MB. 1024 MB=1 GB. We used these estimates to do our calculations on each type of data transfer: music streaming: 60MB/hr; video streaming: 250MB/hr; picture: 300KB/ea.; 28.4MB/downloads.

Social Media – specifically Facebook long term or quick rise/fall or Twitter business model

Voice Recognition Assistants

Windows 8 / 8RT

Automotive Electronics

I would not want to spoil all of your fun!

So Many Technologies

Life is good!

