Toward Network Coding for Interference Networks

Piyush Gupta
Mathematical & Algorithmic Sciences Center
Bell Labs, Lucent Technologies
Murray Hill, NJ

Joint work with Sandeep Bhadra and Sanjay Shakkottai, UT-Austin
Outline

• Introduction
 – Network coding
 – Wireless models – broadcast erasure networks

• Our system model
 – Finite-field operations
 – Both broadcast and interference constraints

• Upper bound

• Network coding strategy
 – Achieves rates asymptotically close to u.b.

• Capacity gains due to fading
Network Coding – Wireline Networks

- All links at rate 1
- Single-source multicast
Network Coding – Wireline Networks

- All links at rate 1
- Single-source multicast
- Upper bound on rate R for each destination is 2
 - Same as min-cut
Network Coding – Wireline Networks

- All links at rate 1
- Single-source multicast
- Upper bound on rate R for each destination is 2
 - Same as min-cut
- Routing cannot achieve this
 - If \(? = b \), \(D_2 \) only receives \(b \)
Network Coding – Wireline Networks

• All links at rate 1
• Single-source multicast
• Upper bound on rate R for each destination is 2
 – Same as min-cut
• Routing cannot achieve this
 – If $? = b$, D_2 only receives b
• Network coding can
 – By coding at intermediate node

![Diagram of network coding](image)
Network Coding – General Wireline Networks

Theorem [AhCaLiYe00]: Multicast capacity $= \min_i \{ \text{min-cut for } D_i \}$

- **Upper bound**
 - Min-cut bound for each D_i

- **Achievability** [Ho et al 03]
 - Source sends messages from F_q
 - Nodes perform Random Linear Coding (RLC) over received messages:
 $$ C = \alpha_1 a + \alpha_2 b, \quad \alpha_i \in F_q $$
 - D_1 decodes source messages from received vectors: $Y_1=(Y_{11}=a, Y_{12}=C)$
 - Achieves rates arbitrarily close to min-cut bound for sufficiently large q
Broadcast Erasure Networks (BEN)

- Directed graph $G=(V,E)$
- Each link $e \in E$ is independent erasure channel
 - $P(Y_{14} \mid X_1, X_2) = P(Y_{14} \mid X_1)$
Broadcast Erasure Networks (BEN)

- Directed graph $G=(V,E)$
- Each link $e \in E$ is independent erasure channel
 - $P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
Broadcast Erasure Networks (BEN)

- Directed graph $G = (V, E)$
- Each link $e \in E$ is independent erasure channel
 - $P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Coding at each node
 - $X_4 = f(Y_{14}, Y_{24})$
Broadcast Erasure Networks (BEN)

- Directed graph $G=(V,E)$
- Each link $e \in E$ is independent erasure channel
 - $P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1,v_4)
- Coding at each node
 - $X_4 = f(Y_{14}, Y_{24})$

Does not model interference
Broadcast Erasure Networks -- Capacity

- Results for directed acyclic graphs
- **Theorem** [DanGow04, LunMed04]:
 \[\text{Capacity} = \min_i \{ \text{generalized min-cut for } D_i \} \]
 - e.g., \((1 - \varepsilon_{13}\varepsilon_{14}) + (1 - \varepsilon_{24})\)
- **Upper bound**
 - Follows from min-cut bound
 \[\min_{\text{cut}} I(X_{\text{cut-l}}; Y_{\text{cut-r}} | X_{\text{cut-r}}) \]
- **Achievability**
 - [DanGow04] Random coding at nodes
 - need to keep track of erasure patterns
 - [LunMed04] model as Hypergraph, RLC at nodes
 - track flow of innovative packets
 - generalized to arbitrary arrival processes and correlated erasure patterns
Wireless Broadcast and Interference Networks (WBAIN)

• Above and other results model broadcast but not interference
• Interference is challenging to analyze
• Capacity region not known for even simple network configurations

− Single-relay channel

− Interference channel

− …
WBAIN – A Finite-Field Model

- Directed acyclic graph $G=(V,E)$
- **Broadcast** constraint
 - v_1 must send **same** X_1 along both (v_1, v_3) and (v_1, v_4)
WBAIN – A Finite-Field Model

- Directed acyclic graph \(G = (V,E) \)
- Broadcast constraint
 - \(v_1 \) must send same \(X_1 \) along both \((v_1, v_3)\) and \((v_1, v_4)\)
- Model power constraint by rate
 - \(v_i \) can send at rate \(\leq R_i \)
WBAIN – A Finite-Field Model

- Directed acyclic graph $G = (V, E)$
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Model power constraint by rate
 - v_i can send at rate $\leq R_i$
- All operations over finite field F_q
 - Each node transmits vectors from F_q
 - $\log q \geq \max_i R_i$
WBAIN – A Finite-Field Model

- Directed acyclic graph G
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Model power constraint by rate
 - v_i can send at rate $\leq R_i$
- All operations over finite field F_q
 - Each node transmits vectors from F_q
 - $\log q \geq \max_i R_i$
- Two reception models
 - With or without fading
WBAIN – A Finite-Field Model (contd.)

- **Non-fading model:**
 \[v_4 \text{ receives } Y_4, \text{ where } Y_4 \]
 - \[= X_1 + X_2 \in F_q \text{ with prob. } 1 - \varepsilon_4 \]
 - \[= \phi \text{ (erasure) with prob. } \varepsilon_4 \]
 - Erasures are independent across receivers

- **Fading model:**
 As above, except when no erasure
 - \[Y_4 = h_{14} X_1 + h_{24} X_2 \]
 - \[h_{ij} \text{ uniform i.i.d. over } F_q \]
Upper Bound on WBAIN with Fading

• Bound on capacity of finite-field MAC

\[
C_3(q) = \max_{\{H(X_j) \leq R_j\}} I(Y_3; X_1, X_2 | h_{13}, h_{23})
\]

\[
= \max_{\{H(X_j) \leq R_j\}} H(Y_3 | h_{13}, h_{23}) - H(Y_3 | X_1, X_2, h_{13}, h_{23})
\]

\[
= \max_{\{H(X_j) \leq R_j\}} H(h_{13}X_1 + h_{23}X_2 | h_{13}, h_{23}) - 0
\]

\[
= q^{-2}((q-1)(R_1 + R_2) + (q-1)^2 \min \{R_1+R_2, \log q\})
\]

\[
\leq \min \{(1-q^{-1})(R_1 + R_2), (1-q^{-2}) \log q\}
\]
Upper Bound on WBAIN with Fading

- Bound on capacity of finite-field MAC
 \[C_3(q) = \max_{\{H(X_j) \leq R_j\}} I(Y_3; X_1, X_2 | h_{13}, h_{23}) \]
 \[= \max_{\{H(X_j) \leq R_j\}} H(Y_3 | h_{13}, h_{23}) - H(Y_3 | X_1, X_2, h_{13}, h_{23}) \]
 \[= \max_{\{H(X_j) \leq R_j\}} H(h_{13}X_1 + h_{23}X_2 | h_{13}, h_{23}) - 0 \]
 \[= q^{-2}((q-1)(R_1 + R_2) + (q-1)^2 \min \{R_1+R_2, \log q\}) \]
 \[\leq \min \{(1-q^{-1})(R_1 + R_2), (1-q^{-2}) \log q\} \]

- Node i receives transmissions from nodes in J
 \[C_i(q) \leq \min \{(1-q^{-1})(\sum_{j \in J} R_j), (1-q^{-\delta_i}) \log q\} \]
Upper Bound on WBAIN with Fading

• Bound on capacity of finite-field MAC

\[C_3(q) = \max \{H(X_j) \leq R_j\} I(Y_3; X_1, X_2 | h_{13}, h_{23}) \]

\[= \max \{H(X_j) \leq R_j\} H(Y_3 | h_{13}, h_{23}) - H(Y_3 | X_1, X_2, h_{13}, h_{23}) \]

\[= \max \{H(X_j) \leq R_j\} H(h_{13}X_1 + h_{23}X_2 | h_{13}, h_{23}) - 0 \]

\[= q^{-2}((q-1)(R_1 + R_2) + (q-1)^2 \min \{R_1+R_2, \log q\}) \]

\[\leq \min \{(1-q^{-1})(R_1 + R_2), (1-q^{-2}) \log q\} \]

• Node i receives transmissions from nodes in J

\[C_i(q) \leq \min \{(1-q^{-1})\sum_{j \in J} R_j, (1-q^{-\delta(i)}) \log q\} \]

• More generally, total rate across cut U bounded by

\[C_U(q) \leq \max \{H(X_j) \leq R_j\} I(Y_3, Y_4; X_1, X_2 | H_{1,2;3,4}) \]

\[\leq \min \{\sum_j (1-q^{-\delta_0(j)}) R_j, \log q \sum_i 1-q^{-\delta(i)}\} \]
Upper Bound (contd.)

- Consider Broadcast Erasure Network $T(G)$ having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1, X_2)
Upper Bound (contd.)

- Consider Broadcast Erasure Network $T(G)$ having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1, X_2)
 - each broadcast link has independent erasures with probability q^{-1}, e.g., (1,3), (1,4), (2,4)
Upper Bound (contd.)

- Consider Broadcast Erasure Network $T(G)$ having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1, X_2)
 - each broadcast link has independent erasures with probability q^{-1}, e.g., (1,3), (1,4), (2,4)
 - each receiving node erasures are mapped to auxiliary edge erasures
Upper Bound (contd.)

- Consider Broadcast Erasure Network $T(G)$ having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1, X_2)
 - each broadcast link has independent erasures with probability q^{-1}, e.g., (1,3), (1,4), (2,4)
 - each receiving node erasures are mapped to auxiliary edge erasures
 - MAC sum-rate constraint through aux. edge rate constraint, $R_i = (1-q^{-\delta_l(i)})\log q$
Upper Bound (contd.)

- Consider Broadcast Erasure Network $T(G)$ having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1, X_2)
 - each broadcast link has independent erasures with probability q^{-1}, e.g., $(1,3), (1,4), (2,4)$
 - each receiving node erasures are mapped to auxiliary edge erasures
 - MAC sum-rate constraint through aux. edge rate constraint, $R_i = (1-q^{-\delta_i})\log q$

- **Theorem:** Capacity of WBAIN G over \mathbb{F}_q, C_q
 \[\leq \text{Capacity of BEN, } T(G), C_s(q) \]
 \[= \min_i \{\text{generalized min-cut for } D_i\} \]
Coding Strategy for WBAIN with Fading

- For any $\delta > 0$, there exists a flow vector $\{f_p\}$ for all paths $\{p\}$ between s-d in BEN T(G) such that
 - $\sum_p f_p = C_s \cdot (1 - \delta)$
 - $\sum_{p: v_i \in p} \frac{f_p}{(1 - \varepsilon_h(v_i, p))} \leq R_i \cdot (1 - \delta)$
 - $h(v_i, p)$ is the next hop from i on path p
Coding Strategy for WBAIN with Fading

- For any $\delta > 0$, there exists flow vector $\{f_p\}$ for all paths $\{p\}$ between s-d in BEN $T(G)$ such that
 - $\sum_p f_p = C_s \cdot (1-\delta)$
 - $\sum_{p: v_i \in p} f_p / (1 - \varepsilon_{h(v_i,p)}) \leq R_i \cdot (1-\delta)$
 - $h(v_i,p)$ is the next hop from i on path p
- Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1-\delta)$
Coding Strategy for WBAIN with Fading

- For any $\delta > 0$, there exists flow vector $\{f_p\}$ for all paths $\{p\}$ between s-d in BEN $T(G)$ such that
 - $\sum_p f_p = C_s \cdot (1 - \delta)$
 - $\sum_{p: v_i \in p} f_p / (1 - \epsilon_{h(v_i,p)}) \leq R_i \cdot (1 - \delta)$
 - $h(v_i,p)$ is next hop from i on path p

- Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1 - \delta)$
 - s injects RLC of received messages at rate $\sum_p f_p / (1 - \epsilon_{h(s,p)})$
Coding Strategy for WBAIN with Fading

- For any $\delta>0$, there exists flow vector $\{f_p\}$ for all paths $\{p\}$ between s-d in BEN T(G) such that
 - $\sum_p f_p = C_s \cdot (1-\delta)$
 - $\sum_{p: v_i \in p} f_p / (1-\epsilon_{h(v_i,p)}) \leq R_i \cdot (1-\delta)$
 - $h(v_i,p)$ is next hop from i on path p

- Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1-\delta)$
 - s injects RLC of received messages at rate $\sum_p f_p / (1-\epsilon_{h(s,p)})$
 - Node v_i injects RLC of received messages at rate $\sum_{p: v_i \in p} f_p / (1-\epsilon_{h(v_i,p)})$
Coding Strategy for WBAIN with Fading

• For any $\delta > 0$, there exists flow vector \(\{f_p\} \) for all paths \(\{p\} \) between s-d in BEN T(G) such that
 - $\sum_p f_p = C_s \cdot (1-\delta)$
 - $\sum_{p: v_i \in p} f_p \cdot (1-\epsilon_{h(v_i,p)}) \leq R_i \cdot (1-\delta)$
 • $h(v_i,p)$ is next hop from i on path p

• Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1-\delta)$
 - s injects RLC of received messages at rate $\sum_p f_p \cdot (1-\epsilon_{h(s,p)})$
 - Node v_i injects RLC of received messages at rate $\sum_{p: v_i \in p} f_p \cdot (1-\epsilon_{h(v_i,p)})$

• Theorem: $C_s \cdot (1-O(1/q)) \cdot (1-\delta)$ is achievable in G with uniform i.i.d. fading
Coding Strategy for WBAIN with Fading (contd)

Main steps in achievability proof:

- Track the flow of innovative packets
- Fading helps to maintain innovation rates over different links in a cut
 - in spite of broadcast and interference
- “Bad” fading at node v_j -- $h_j = (h_{ij})_{i} = 0$ or dependent on $\{h_k\}$ -- reduces rate of innovation by at most $(1-O(1/q))$
- At each hop of path p the rate of innovation is at least $g_p = f_p \cdot (1-O(N_o/q))$
 - $N_o = $ diameter of G
- Achieved rate $= \sum_p g_p = C_s \cdot (1-O(N_o/q)) \cdot (1-\delta)$
Tight bounds on Capacity of WBAIN with fading

Theorem: \(C_s \cdot (1 - O(1/q)) \leq C_q \leq C_s \)

- Also holds for heterogenous networks having both wireless and wireline links:
 - Each node can have both types of incoming and outgoing links
 - Node receives weighted sum of vectors sent over incident wireless links, \(Y_4 = h_{14}X_1 + h_{24}X_2 \)
 - Node receives separate information over incoming wireline links, \(Y_7 = (X_5, X_6) \)
 - Similarly, when node transmits
Capacity Gains due to Fading – An Example

- Heterogenous network: wireless at cut U, wireline otherwise
- R_1 and q s.t. U is bottleneck cut
 - e.g., $R_1 = \log q$
- Upper bound:
 \[C_s \approx \sum_{i=1}^{5} R_1 (1-\varepsilon_i) = R_1 (5-\sum_i \varepsilon_i) \]
- Fading: our strategy achieves
 \[C_s \cdot (1-O(1/q))(1-\delta) \]
- No fading: capacity is bounded by
 \[R_1 (1-\prod_i \varepsilon_i) \]
- \(~5\)-fold increase in capacity with fading
 - Higher for graphs with larger bottleneck cut
Summary and Future Work

• Finite-field model of interference networks
 – All operations over a finite field
 – Incorporates both broadcast and interference constraints
 – Allows for fading

• Asymptotically tight bounds on capacity for uniform iid fading
 – Upper bound based on results for Broadcast Erasure Networks
 – Achievability through network coding

Some Interesting Issues

• Non-uniform fading?

• Achievable rates under no fading?

• What can we infer about Gaussian channels?
 – Limit of finite-field channels under appropriate distribution remapping?