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ABSTRACT

The problem of allpass filter design for phase approxima-
tion and equalization in the Chebyshev sense is solved by
using a generalized Remez algorithm. Convergence to the
unique optimum is guaranteed and is achieved rapidly in the
actual implementation. The well-known numerical prob-
lems for higher degree filters are analyzed and solved by a
simple approach. Possible applications are: design of filters
with a desired phase response (e.g., a delay element), the
design of phase equalizers, or the design of recursive filters
with magnitude prescriptions using parallel allpass filters.
For the latter the algorithm can be modified to allow arbi-
trary tolerance schemes for the magnitude response.

1. INTRODUCTION

Phase approximation might be considered a somewhat aca-
demic problem but can be used in a variety of scenarios.
Obviously it is applicable for any recursive allpass filter de-
sign problem. It might also be used for allpole filter de-
sign or FIR filter design if one is only interested in a phase
prescription. Some of the numerous allpass filter applica-
tions are: approximation of a prescribed phase, e.g., a linear
phase (fractional delay element), equalization of the phase
of a given system, design of a Hilbert transformer, or de-
sign of recursive filters with a desired magnitude response
using a parallel allpass structure. The latter application is
very appealing since 1) it facilitates the implementation of a
degree n recursive (e.g., low pass) filter with only n multipli-
cations, 2) it permits the realization of the complementary
(e.g., high pass) filter with no extra multiplications, and 3)
it exhibits small sensitivity to coefficient quantization.

The most common approaches for the phase approxima-
tion problem are 1) maximally flat (mostly at zero fre-
quency) approximation, 2) L approximation, or 3) Lu
approximation. For the first problem there exist straight-
forward analytic solutions (see [8] for references). Since
there are only pointwise prescriptions, one has limited con-
trol over the approximation quality in the interval of inter-
est. This does not hold for an L2 or an L approximation.
There an iterative procedure is required.

In the recent literature the Lo approach seems to have
been dominated [2, 9, 10, 6]. However, there are severe
problems. It is not clear whether the solution is unique
or how the optimal solution is characterized. Consequently
none of the proposed algorithms is shown to converge to the

L2 solution. These difficulties arise because the approxima-
tion problem is nonlinear.

On the contrary, it can be shown [3, 7, 8] that for the
Lo problem the solution is uniquely characterized by the
alternation theorem. Furthermore, there exists an efficient
Remez type algorithm which is guaranteed to converge. It is
worthwhile mentioning that most publications dealing with
the Lo problem do not utilize these results. Consequently
they either propose ad hoc generalizations of the standard
Remez algorithm for linear approximation problems to the
nonlinear case with possible convergence problems [4, 11,
12] or they use iterative least squares approaches [2, 6] that
are inefficient compared to the approach in this paper.

In the following section we pose the problem mathemat-
ically and relate it to some important applications men-
tioned above. In Sec. 3. we give a Remez type algorithm
which is guaranteed to converge to the L., solution in con-
trast to all alternative approaches in the literature. An
analysis of the numerical problems and their resolution are
presented in Sec. 4. for the first time. Another novelty is
the possibility of designing recursive filters with an arbitrary
magnitude tolerance scheme on the basis of the parallel all-
pass structure, as described in Sec. 5.

2. THE PROBLEM

The problem under consideration is the design of a real
valued allpass filter with the transfer function
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approximates a prescribed phase bpr.(2) in the Chebyshev
sense. More generally we want to minimize the L., norm
or Chebyshev norm of the weighted phase error

eo(€2) = Go(Q) [ba(€) — 70Q + bo — bpre(2)] 3)

with respect to the coefficients p, and the parameters 7o,
bo. These two additional parameters may be used for the
equalization problem [7, 8, 9] and the adaptation of a phase
offset for bandpass filters, respectively. If not needed they
are simply set to zero in Eq. (3). Note that the approxima-
tion problem is nonlinear since the parameters p, appear
nonlinearly in the error function.



9 o -
(b) e
! 1/2 Y(z) =
X(z) — Hy2(2)X(2)
HAQ(Z)

Figure 1. Two important applications of phase approximation.
(a) Phase equalization of a given system. (b) Recursive filter
design using a parallel allpass structure.

Applications: Fig. 1 shows two important applications
of an allpass filter design. In the case of phase equaliza-
tion (Fig. 1(a)) of a low pass filter one is interested in
determining a stable H4(z) such that —arg{H(ejﬂ)} =
by () +54(Q) = 7002 (2 in pass band of Hg(em)) holds.
be(€2) denotes the phase of Hy(¢') and 7o is some unspec-
ified slope used to improve the approximation. If one iden-
tifies by(2) and byre(Q2), sets by = 0, and Gp(§2) = 1, this
equalization problem is equivalent to minimizing e5(€2) in
Eq. (3).

A second interesting application, depicted in Fig. 1(b), is
the parallel allpass structure 3, 4, 7, 8, 11] with the overall
transfer function

Haa(2) = [Has(2) & Hao(2)] /2. (4)
The corresponding magnitude response
Q1() = [Hi ()] = |cos(Ab(2)/2)], (5)

is completely determined by Ab(€2), the phase difference
between allpass 2 and allpass 1. I.e., in order to describe a
low pass frequency response Q1(2), Ab(£2) has to approxi-
mate 0 in the pass band and 7 in the stop band. Moreover,
Q1(9) completely determines

Q2(Q) = [Ha(e)| = /1 - Q3(Q) (6)

Thus it is possible to design recursive digital filters with
magnitude prescriptions by solving a phase approximation
problem.

3. THE SOLUTION

In [1] Barrar and Loeb present a generalized Remez algo-
rithm which converges to the optimal solution if the ap-
proximating function possesses certain properties. It can
be shown that the allpass phase function belongs to this
class [3, 7, 8]. The algorithm consists of two basic steps 1)
determination of m 41 (m = number of approximation pa-
rameters) extremal frequencies §2; of e3(§2) with alternating
signs and 2) interpolation and adaptation (increase) of the
actual error level §. After convergence, § corresponds to
the Chebyshev error. In most cases the Remez algorithm
converges within 6 iteration steps.

Since step 1) is easily performed it need not be discussed
in more detail. The interpolation step 2), however, requires
the solution of
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Figure 2. Example 1, phase equalization. (a) Phase error
of Chebyshev (dotted) and approximate L, (dashed) solution.
(b) Group delay of Hgy(z) (dashed) and the overall system
H(z) (solid).
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for po ...pn—1, 7o, bo, and & [7, 8]. In contrast to the clas-
sical Remez algorithm this is a nonlinear system of equa-
tions. It is efficiently solved with Newton’s method. There
are typically less than 5 Newton steps required. Each step
corresponds to the solution of an m + 1 by m + 1 system of
linear equations.

Initialization: Similar to the classical Remez algorithm
one has to find an initial solution with the alternation prop-
erty of the error function e(€2). This corresponds to de-
manding é§ = 0 in Eq. (7) (for m frequencies only). In the
special case of fixed mp and bo, Eq. (7) becomes a system of
linear equations and is thus easily solved. Otherwise (o or
bo variable) one has to solve a system of nonlinear equations
which is solved similarly to the interpolation step 2) in the
Remez algorithm. The same initialization for 7o, 6o as in [9]
can be used. In contrast to the initialization in [7] this ap-
proach explicitly includes the required alternation property
of €5(€2). Furthermore, it yields a considerable improvement
of the computation time compared to [7].

Example 1: The phase of an elliptic low pass filter with
pass band frequency €, = 0.17 and degree 7 is equalized
by an allpass filter of degree n = 9. Fig. 2 shows the re-
sulting phase error and the overall group delay response
(corresponding to H(&l?) in Fig. 1(a)). For comparison,
the results of an approximate L» solution according to [9] is
included in Fig. 1(b), exhibiting a larger Chebyshev error.
The design takes about 2s on a SPARC10 workstation.

4. NUMERICAL PROBLEMS

It is well-known [5, 7, 8] that the maximal usable allpass
degree is limited by numerical problems. Jing [5] observes
this problem especially in the context of phase equalization.
He gives a heuristic (yet incorrect) explanation for this be-
haviour and suggests the design of a filter of larger degree
where one additionally prescribes zeros of P(z) on the unit
circle. According to his experience the “best number” of
these additional zeros can be determined by minimizing a
certain function. Although the proposed method improves
the numerical behaviour it is important to note that the nu-
merical problems are not analyzed in [5]. Also, the function
he proposes to minimize is given without justification.

In contrast to this approach the numerical problems are
analyzed here and resolved by a similar but well-founded,
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Figure 3. Phase error resulting from the phase equalization of
a degree 7 low pass filter with Q, = 0.17. (a) Intermediate
result of the original initialization algorithm with allpass degree
n = 12. (b) Final result of the modified Remez algorithm with
allpass degree n = 20.

more powerful and more effective method without the need
of minimizing any function.

Analysis: It is possible to find a way to considerably
reduce the numerical problems by analyzing the problem
described in the following. The phase of the filter in ex-
ample 1 shall be equalized with an allpass filter of degree
n = 12. In Fig. 3(a) the phase error function resulting at
some step of the initialization algorithm is depicted. As is
clearly seen in the figure the computed phase error shows
a noisy behaviour. It is obvious that one can not properly
perform the first step of the Remez algorithm (determina-
tion of m 4 1 extrema with alternating sign).

This problem occurs because the phase of the actual all-
pass filter can not be computed with sufficient numerical
accuracy. Since the allpass filter transfer function is com-
pletely determined by the denominator polynomial P(z),
the problems in computing the phase must emanate from
numerical inaccuracies in the course of evaluating the poly-
nomial P(z).

For the subsequent analysis it is assumed that the poly-
nomial P(z) has the roots

7 = rej“p’, 1=1...n (8)
Q, (=142 =1 =1 (9)

T — , 1=1...m,

® P n—1

i.e., they are equally distributed on an arc of radius r and
angle 2Q,. This is a good approximation to the actual
distribution for large allpass degrees (lowpass equalization).

The chain of causes for the numerical problems consists
of the following three elements:

1. The numerical evaluation of the polynomial P(z) in the
points z = ¢ has to be performed within the given com-
puting accuracy €. The resulting error may be interpreted
as follows: a polynomial P(z) with coefficients perturbed
by values in the order of ¢ is evaluated ezxactly for each z.
The perturbation randomly varies with the actual value of
z.
2. A perturbation of the coefficients p, in the order of ep,
results in a perturbation of the roots of the polynomial. In
the worst case this perturbation is amplified by the condi-
tion number [8]

x(P(e) = A T

PEA

: (10)

where A = int ((n + 1)/2) (int(z) = integer portion of z).
3. The perturbation of the root locations results in a per-
turbation of the phase response, which can be observed in
Fig. 3(a).

A more detailed analysis shows that the by far dominat-
ing effect is the one described under 2. (cf. [8]). To ver-
ify the usefulness and correctness of the results above con-
sider the case corresponding to the Fig. 3(a) where n = 12,
Q, = 0.1w, and r = 0.94. The resulting condition number
according to Eq. (10) is 4.6 - 10''. Thus a maximum error
of the order of

k(P(z))e=4.6-10"".2.204-107'% ~ 107* 11
(P(2))

is to be expected which nicely coincides with the observed
noise level in Fig. 3(a).

The discussion above leads to the conclusion that the
cause of the numerical problems lies in the high concentra-
tion of roots on a small arc. This coincides with the well-
known fact that among all polynomials those with equally
distributed roots on a circle have the smallest condition
number. To improve the conditioning of the problem, the
polynomial P(z) arising in the course of the algorithm has
to be substituted by another polynomial C(z) such that 1)
the original polynomial P(z) is a factor of C(z) and 2) the
roots of C(z) approximately lie on a circle. This is done
(in a suboptimal manner) by prescribing the additional ze-
ros of C(z) on the unit circle, outside the passband of the
filter to be equalized. This works because these additional
zeros do not change the phase response. The required num-
ber and location of these zeros can be explicitly computed
from €2, and n. Note that the additional zeros are main-
tained throughout the algorithm. Consequently, Eq. (7) has
to be formulated in terms of C(z), instead of P(z). Upon
convergence, the desired polynomial P(z) can be found by
factoring C(z).

Example 2: The approach described above allows the
usage of considerably increased allpass degrees. The maxi-
mum possible n for the example 1 without the modifications
is 10 with Chebyshev error 6§ = 4.09-107*. By applying the
proposed method it is possible to use a degree n = 20 which
results in § = 2.77 - 1077, The corresponding phase error
is depicted in Fig. 3. For some cases the improvement is
considerably higher. The maximum degree for equalizing
the lowpass filter with the (incomplete) specifications in [5]
is 150 with & = 1.06 - 10~* (compared to 25 without modi-
fications).

5. ARBITRARY MAGNITUDE TOLERANCES

The design of recursive filters with arbitrary tolerance pre-
scriptions for the magnitude response is based on the par-
allel allpass structure depicted in Fig. 1(b). The method is
shown for a low pass filter described by Hi(z).

The desired magnitude tolerance function 6dH(Q) can be
related to a desired magnitude weighting function

Gar(Q) = 6au(Q)/6au(R2), Q€ B, (12)

where €2, denotes some arbitrary reference frequency and B
the set of interest. Based on the Eqgs. (4, 5) the relationship

sin?(6 o /4
GH(Q) = Ssir — Si“?(gb&))/‘l))’ Qe Bp, (13)
) sy, Q€B,
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Figure 4. Example 3, parallel allpass structure. (a) Magnitude
responses. (b) Magnitude error of | H;(e!?})|.

between the magnitude weighting function Gy (), the
magnitude tolerance §z(§2), and the phase tolerance 6,(2)
can be derived [8]. B, and B, denote the pass and the stop
band interval and 8y = 65(2), 6mr = 6u(£2,). Note that
GH(Q), 6H(Q), and 6b(ﬂ) are the weighting and tolerance
functions corresponding to some actual filter response (and
not to the desired ones, mentioned above).

A Taylor series expansion of the right hand side of Eq.
(13) yields [8]

Gu(Q2) (1 + %) , Qe B,
(8= + 2@ _52), aes,

4 96

GH(Q) = Gy(Q)- (14)

where Gu(2) = 85,-/65(22). The relation (14) can be used to
construct an iterative update of the phase weighting func-
tion G(€2). This is done by solving (14) for G(2), replac-
ing G () by the desired weighting Gax () and introduc-
ing an iteration index. That is

48GaH(Q2)
Gy (@) = \/48+<5£”m>>2—<6£?>2’ b (15)
b - 192G 5(2) QcB..

80 [as+2(s{M) (2))2-(s0F))2]”

The algorithm for designing a filter with a desired mag-
nitude weighting function G'dH(Q) can be summarized as
follows:

1. Determine a Chebyshev solution for Ab(€) using
G2 Q) =1.

2. k—k41.

3. Determine the actual phase tolerance 6gk_1)(ﬂ)
5(;_1)/6}'?_1)(9) and compute the new weighting function
ng)(ﬂ) according to Eq. (15).

4. Compute a Chebyshev solution using the new weighting
function and the allpass coefficients of the previous itera-
tion step as an initial solution.

5. Stop if the algorithm has converged, repeat at 2. other-
wise.

Example 3: A recursive filter is designed based on the
structure depicted in Fig. 1 with Hai(z) = P (leading to
a linear phase of Hi (ejﬂ)) and H 42(z) of degree 13. The
pass band and stop band frequencies are €2, = 0.47 and
Qs = 0.57, respectively. Fig. 4(a) shows the overall mag-
nitude responses |Hi(e?)| (solid, low pass) and |Hs(e!?)]
(dotted, high pass). Fig. 4(b) depicts the resulting mag-
nitude error of |Hi(e'?)| which keeps exactly the desired
tolerance scheme (dotted line). The dashed line indicates
the magnitude error resulting from a constant tolerance pre-
scription in both bands.

6. SUMMARY

This paper describes a more general approach to phase ap-
proximation than known in the literature (inclusion of phase
offset). It is shown by examples that this general formula-
tion facilitates the solution of many problems related to
phase approximation. A generalized Remez algorithm is
used to achieve a Chebyshev solution. Convergence and op-
timality are guaranteed. The initialization is considerably
improved compared to [7] (the only paper dealing with this
problem). An analysis of the numerical problems is per-
formed for the first time. It facilitates the construction of
an algorithm which allows the design of allpass filters with
a considerably increased degree. Furthermore there is an
algorithm presented for the design of recursive filters with
arbitrary prescriptions for the magnitude error based on
the parallel allpass structure. Well-known filter types such
as the elliptic filters are obtained as special cases. A jour-
nal paperwith a more detailed discussion is in preparation.
MATLARB files are available from the author or from the
World Wide Web: http://jazz.rice.edu.
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