Finite Alphabet Beamforming Codebooks in MIMO-OFDM Systems

Melissa Duarte and Ashutosh Sabharwal
(mdarte, ashu)@rice.edu

Goal

Efficient implementation of a real-time beamforming MIMO-OFDM system.

Motivation

- OFDM
 - Convert wideband channel into parallel narrowband channels
 - Simplified receiver complexity
 - Allows use of narrowband techniques per subcarrier
- MIMO
 - More throughput
 - Better reliability
 - In every standard (WiMax, WiFi, 3GPP)

- Few feedback bits are useful
 - Example: 3x3 MIMO, 2 MIMO OFDM
- Beamforming
 - Better reliability
 - More throughput
 - Convert wideband channel into parallel narrowband
 - Power

Contributions

- Design of a low complexity Quantizer using Finite Alphabet Codebooks
- Construction of Finite Alphabet Codebooks
 - For low complexity Quantizer
 - With good performance
- Mixed Codebook scheme: A WiMax compliant scheme using Finite Alphabet Codebooks to simplify the implementation of the Quantizer

Future work

Integrate beamforming into Rice Wireless Open Access Research Platform (WARP) and perform experiments over real wireless channels.

Beamforming MIMO OFDM

- Beamform each subcarrier
- Example: 3x3 MIMO, 2 subcarriers

Quantizer Complexity

- Pipeline processing \(b_k = \arg \max |H_k w_k|^2 \)
- Complexity of Q and Qn blocks
 - WiMax example: T=R=4 and N=64
 - Q block: 4096 Multipliers and 3584 Adders
 - Qn block: 512 Multipliers and 448 Adders
- Quantizer not appropriate for mobile station
 - High complexity
 - Tight timing constraints in FDD mode
 - Cost
 - Power

New approach

- Use a Finite Alphabet Codebook (FAC)
- Each beamforming vector in the FAC can be decomposed as
 \(w_j = c_j / ||c_j|| \)
- Entries of \(c_j \) belong to finite set \(\mu \)
- Set \(\mu \) is the finite codebook alphabet
- The codebook alphabet \(\mu \) determines the performance of the codebook and the complexity of the Quantizer

Quantizer simplification using Finite Alphabet Codebooks (FAC)

- Consider \(\mu = \{1, -1, j, -j\} \)
- Quantizer processing simplifies
 - Pipeline processing \(b_k = \arg \max |H_k w_k|^2 \)
 - Multiplications at Q block can be implemented without any multiplier because entries of \(c_j \) belong to \(\mu \)

Vector Mapping to Construct Finite Alphabet Codebooks (FAC)

- Map any codebook \(W \) into a FAC \(W_{FAC} \) with codebook alphabet \(\mu \)
 - Map each beamforming vector \(w_j \) into \(W_{FAC j} \)
 \(c_j = \arg \max < m, w_j > \)
 \(m \) : Set of T-dim vectors with entries \(\in \mu \)

BER Results

- The FAC was obtained by mapping the USTC codebook
- The alphabet of the FAC is \(\mu = \{1, -1, j, -j\} \)
- Results are for a single subcarrier (per subcarrier)

Mixed Codebook (MxC) Scheme for WiMax

- Mixed Codebook (MxC) Scheme: Use WiMax codebook at Beamforming and MRC blocks and a FAC version of the WiMax codebook at the Quantizer
- WiMax codebook at Beamforming and MRC blocks
 - Makes MxC scheme WiMax compliant
- FAC version of the WiMax codebook at the Quantizer
 - Significantly simplifies the implementation of the Quantizer
- FAC version of the WiMax codebook is obtained using the proposed vector mapping

Resource Estimate for WiMax

- \(T=\mu=4, N=64, 1536 \) data subcarriers (2048FFT), \(T_{OFDM}=100.8 \mu s \)
- \(\mu \) : Duration of an OFDM symbol

<table>
<thead>
<tr>
<th>Quantizer</th>
<th>Multipliers</th>
<th>Adders</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiMax</td>
<td>549</td>
<td>0</td>
</tr>
<tr>
<td>FAC</td>
<td>61</td>
<td>244</td>
</tr>
</tbody>
</table>

- Time constraint: Quantize all channels (1536) in a time equal to \(T_{OFDM} \)
- \(f_{FPGA}=128 \) MHz

- FAC1 has alphabet \(\mu = \{1, -1, j, -j\} \)
- FAC2 has alphabet \(\mu = \{1, -1, j, -j, 1j, -1j, -1j, 1j\} \)
- Results are for a single subcarrier (per subcarrier)