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Abstract— This paper studies the constellation diagram de-
sign for a class of communication systems known as near-field
direct antenna modulation (NFDAM) systems. The modulation
is carried out in a NFDAM system by means of a control
unit that switches among a number of pre-designed passive
controllers such that each controller generates a desired voltage
signal at the far field. To find an optimal number of signals
that can be transmitted and demodulated reliably in a NFDAM
system, the coverage area of the signal at the far field should
be identified. It is shown that this coverage area is a planar
convex region in general and simply a circle in the case when no
constraints are imposed on the input impedance of the antenna
and the voltage received at the far field. A convex optimization
method is then proposed to find a polygon that is able to ap-
proximate the coverage area of the signal constellation diagram
satisfactorily. A similar analysis is provided for the identification
of the coverage area of the antenna input impedance, which is
beneficial for designing an energy-efficient NFDAM system.

I. INTRODUCTION

A vast majority of problems in circuits, electromagnetics,
and optics can be regarded as the analysis and synthesis
of linear systems in the frequency domain. These systems,
in the circuit theory, consist of passive elements including
resistors, inductors, capacitors, ideal transformers, and ideal
gyrators [1]. Since the seminal work [2], there has been re-
markable progress in characterizing such passive (dissipative)
systems using the concept of positive real functions. This
notion plays a vital role not only in circuit design but also
in various control problems [1], [3], [4].

The application of control theory in circuit and commu-
nication areas evidently goes beyond the passivity concept.
Indeed, the emerging optimization tools developed by control
theorists, such as linear matrix inequalities (LMIs) [5] and
sum-of-squares (SOS) [6], have been successfully applied
to a number of fundamental problems in these fields. For
instance, the recent paper [7] proposes an LMI optimization
to check whether a given multi-port network can be realized
using a pre-specified set of linear time-invariant components
(namely an inductor and small-signal model of a transistor).
Moreover, the work [8] formulates the pattern synthesis of
large arrays with bound constraints on the sidelobe and
mainlobe levels as a semidefinite program.

It is well-known that a broad class of problems in circuits,
electromagnetics, and optics can be formulated as an opti-
mization over the parameters of a multi-port passive network
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which is obtained, for instance, via an electromagnetic (EM)
simulation. As an example, it is shown in [9] that a strikingly
efficient and practical way to deal with certain complex
antenna problems is to extract a circuit model and then
search for appropriate values of its parameters. The circuit
model proposed in [9] is indeed a simple, general model
which could be considered the abstract model of different
types of problems. Our recent work [10] studies such circuit
problems using the available techniques developed in the
control theory, especially the LMI and passivity concepts.

The present paper aims to apply our recent results de-
veloped in [10] to the problem of constellation diagram
design for a class of communication systems, referred to
as near-field direct antenna modulation (NFDAM) systems.
The objective is to propose a systematic method to design
an energy-efficient NFDAM system that is able to send
an optimal number of independent signals which can be
demodulated reliably.

The rest of the paper is organized as follows. Some
preliminaries on NFDAM systems are provided in Section II
and the problem is introduced accordingly. The main results
are then presented in Section III. The efficacy of this work is
elucidated in a practical example in Section IV. Concluding
remarks are drawn in Section V. Finally, a proof is given in
the appendix.

II. PRELIMINARIES AND PROBLEM FORMULATION

Since the invention of the radio in the end of nineteen
century, there have been major revolutions in the architecture
of the radio but there has been a central component that
all of them had in common. In all of these systems, the
information is generated before the antenna and the role of
the antenna is only to efficiently transmit the signal. Different
schemes are developed to add information to a carrier signal
(e.g. a sinusoidal waveform). The act of adding information
to a carrier signal, known as modulation, can be achieved
by altering some properties of the carrier signal such as its
frequency, amplitude, or phase. In a broad range of wireless
communication systems, the information is generated in
low frequencies (base-band frequency region), and then up-
converted to a carrier frequency (RF) via a mixer that acts
as a multiplier.

The base-band data forms a series of complex numbers
that can be separated into real and imaginary parts. The
first set is called the In-phase signal (I) that is the real
part of the complex signal and the second set is called
the Quadrature-phase signal (Q) that is the imaginary part
of the complex signal. A simple constellation diagram can
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Fig. 2. Modulation after the antenna [9].

be used to represent this complex signal, where each point
of the diagram corresponds to some information symbol.
After modulating an incoming signal, a conventional antenna
propagates the modulated signal in almost all directions. This
signal can ideally be received in different directions after
some time delay and power attenuation. This implies that the
signal cannot be transmitted securely only in some desired
directions, and indeed the underlying transmission technique
does not differentiate between desired and undesired direc-
tions. This fact is illustrated in Figure 1.

A method is proposed in the recent papers [9] and [11]
for secure wireless transmission, which allows for generating
information by varying the characteristics of the antenna
itself as opposed to modulating a signal before the antenna.
This idea is illustrated in Figure 2, and will be further
elaborated in the next section. This has made it possible to
simultaneously transmit independent information to different
directions in space. The feasibility of this idea was proved by
implementing a silicon-based transmitter leading to the chip
given in Figure 3. An unmodulated carrier signal drives an
on-chip dipole antenna in this chip, and 90 switches and 10
reflectors are used to vary the characteristics of the antenna
(the near-field boundary conditions around the antenna). Note
that antennas with time-varying boundary conditions are able
to transmit independent signals to different directions simul-
taneously. The systems based on this concept are said to be
near-field direct antenna modulation (NFDAM) transmitters.

The objective of the current paper is to study a NFDAM
system with the aim of finding the set of points that can
be generated on the signal constellation diagram. As a
secondary goal, it is desired to investigate the variation of
the input impedance of the antenna and identify the region
that the antenna input impedance belongs to.

 

Fig. 3. The first implemented NFDAM transmitter [11].

III. NEAR-FIELD DIRECT ANTENNA MODULATION

Consider an antenna configuration consisting of a main
transmitting antenna and a number of reflectors where each
reflector is accompanied by certain ports (see Figure 6
for an example of this configuration). The objective is to
control the ports in such a way that the antenna acts as a
secure wireless transmission device that is able to transmit
data correctly in one desired direction and scramble data
in z − 1 undesired directions (where z ∈ N). To design
a controller for the reflectors’ ports, the first step is to
place z receiving dipole antennas at the far filed in all
desired and undesired directions. Denote with vj the voltage
induced on the dipole antenna j, for every j ∈ {1, 2, ..., z}.
By convention, assume that v1 corresponds to the voltage
at the desired direction. One can run an electromagnetic
simulation at a given frequency ω0 to extract the circuit
model of the system. The equivalent circuit model, referred
to as Circuit 1, is depicted in Figure 4, which comprises the
following ingredients:

• v1, ..., vz denote the voltages at the desired and unde-
sired directions in the far field.

• vz+1, vz+2, ..., vn denote the voltages on the reflectors’
ports in the near field.

• vn+1 is the voltage of the input source connected to the
transmitting antenna.

• The block “Y-parameter matrix” corresponds to the Y -
parameter matrix of the antenna system.

• The block “control unit” represents the controller to be
designed for the reflectors’ ports.

With no loss of generality, assume that vn+1 = 1. Denote
the Y -parameter matrix of the antenna system at the given
frequency ω0 with Ys. Moreover, let zin and yin represent
the input impedance and the input admittance of the antenna
system, respectively.

Definition 1: For every arbitrary column vectors x and
y of the same dimension, define the norm ∥x + iy∥ as√
x∗x+ y∗y (note that i stands for the imaginary unit).
Given a modulation (complex) point α, a problem of

interest is how to design the control unit in Circuit 1 so
that the received voltage v1 at the desired direction becomes
equal to α and, in addition, a number of norm constraints

1066



Control

Unit

v1

vn

vn+1

vz+1

Y-Parameter

Matrix

zin

vn-1

v2

vz

Fig. 4. Circuit 1 modeling the antenna problem under investigation

on yin and v2, ..., vz , namely:

∥yin − ydin∥ ≤ ε, (1a)
∥vj − βj∥ ≤ εj , j = 2, 3, ..., z (1b)

are satisfied, where β2, β3, ..., βz are given complex numbers
and ε, ε2, ..., εz are prescribed tolerances. Note that:

• ydin is the admittance of the source delivering power to
the transmitting antenna. The constraint (1a) is intended
to match the input admittance of the transmitting an-
tenna to that of the input source in order to minimize
the reflected power.

• For every j ∈ {2, 3, ..., z}, βj is a modulation point,
which is sufficiently distant from α. The constraint (1b)
is imposed to ensure that while the correct symbol
α is received at the desired direction, wrong symbols
β2, ..., βz are received at the undesired directions.

The simplest type of control unit that one can think of is
likely a switching network, which corresponds to Circuit 2
given in Figure 5a. We have shown in our recent work
[10] that deciding whether or not there exists a switching
control unit that makes the above constraints be satisfied is
an NP-complete problem. To alleviate this issue, we have
proved that dealing with reciprocal passive control units
leads to a convex problem in the form of LMI. Thus, it is
henceforth assumed that the control unit being designed is a
general reciprocal (linear) passive network (see Circuit 3 in
Figure 5b).

An important question arises as to what modulation point
α and input impedance yin can be generated via a passive
control unit. Addressing this significant problem is the core
of the present work. Define D to be the set of all modulation
points α that can be produced by a passive network in
Circuit 3 such that the constraints given in (1) are satisfied.
Likewise, define Q to be the set of all feasible input
admittance yin. Note that each of the sets D and Q can be
identified by a planar region, because every complex number
has a 2-d representation. The sets D and Q will be referred to
as feasibility constellation region and feasibility admittance
region, respectively. It is critical to know the regions D
and Q before designing an optimal modulation/demodulation
scheme. The rest of the paper aims to investigate the shapes
of these regions.

Decompose the complex-valued matrix Ys in a block
form as:

Ys =

 W11 W12 W13

W21 W22 W23

W31 W32 W33

 (2)

where W11 ∈ Cz×z , W22 ∈ C(n−z)×(n−z) and W33 ∈ C
(note that C denotes the set of complex numbers). Define
also {e1, e2, ..., ez} to be the set of standard basis vectors of
ℜz . Throughout this paper, the notation ≻ will be used to
show inequalities in the positive definite sense. Moreover, the
notations Re{·} and Im{·} denote the operators returning the
real and imaginary parts of a complex number, respectively.

The following theorem is required for the development of
the present work (see our recent paper [10]).

Theorem 1: A point α belongs to D if and only if there
exist symmetric matrices M,N ∈ ℜ(n−z)×(n−z) and vectors
ṽ1 ∈ C1×z , ṽ2 ∈ C1×(n−z) such that ṽ1e1 = α,[ (

Re
{
W22 −W21W

−1
11 W12

})−1 −M N
N M

]
≻ 0, (3)

and: ∥∥ṽ1ep − βp

∥∥ ≤ εp, p = 2, ..., z (4a)∥∥ṽ1W13 + ṽ2W23 +W33 − ydin
∥∥ ≤ ε (4b)

ṽ1 = −ṽ2W21W
−1
11 −W31W

−1
11 (4c)

ṽ2 = (W31W
−1
11 W12 −W32)(M +Ni) (4d)

If there exist such matrices M,N satisfying the above
constraints, then one candidate for the admittance of the
passive control unit at the frequency ω0 is:

(M +Ni)−1 −W22 +W21W
−1
11 W12. (5)

Note that if the optimization problem in Theorem 1 is
feasible, then ṽ1 and ṽ2 turn out to be equal to the two
subvectors of the output voltages, i.e.:

ṽ1 =
[
v1 v2 · · · vz

]
ṽ2 =

[
vz+1 vz+2 · · · vn

] (6)

It is worth mentioning that the optimization problem pro-
posed in Theorem 1 is indeed an LMI problem. In what
follows, an immediate corollary of this theorem will be
presented.

Corollary 1: The feasibility constellation and admittance
regions D and Q are both planar convex sets.

Proof: The proof is a consequence of the fact that the
necessary and sufficient conditions provided in Theorem 1
are convex. �

That D is a convex set has an important practical implica-
tion: to design an optimal modulation scheme, it is required
to identify a maximal set of points in the feasibility con-
stellation region with the minimum point-to-point distance
greater than d, where d is a given positive number. If D
were a non-convex set with a complicated shape, finding
such a maximal set would be a highly complex problem.
In contrast, the convexity of the set D simplifies the design
problem significantly, as noted below.
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Define Du and Qu to be the feasibility constellation
and admittance regions, respectively, in the case when the
constraints given in (1) do not exist. In other words, Du and
Qu are meant to characterize the sets of all possible v1 and
yin which could be generated via a passive control unit. Note
that D and Q are contained in Du and Qu, respectively, and
therefore finding Du and Qu leads to understanding how
restrictive the imposed constraints are. This is particularly
important for a practical design because if the constraints
turn out to be too restrictive, the designer may need to relax
the constraints to better utilize the system. The following
lemma will be later used to study the shapes of Du and Qu.

Lemma 1: Given a natural number m and real vectors
x1,x2,y1,y2 ∈ ℜm×1, consider the set of all complex points
α for which there exist symmetric matrices M,N ∈ ℜm×m

such that:

α = (x∗
1 + x∗

2i)(M +Ni)(y1 + y2i) (7)

and: [
−M N
N M

]
≺ I (8)

This set, denoted by G, is an open circle (ball) centered at
the origin with radius:√

(∥x1∥2 + ∥x2∥2) (∥y1∥2 + ∥y2∥2) (9)

Proof: The proof is provided in the appendix. �
Define:

K1 := Re
{
W31W

−1
11 W12 −W32

}
K2 := Im

{
W31W

−1
11 W12 −W32

}
L1 := Re

{
W21W

−1
11 e1

}
L2 := Im

{
W21W

−1
11 e1

}
Q :=

(
Re

{
W22 −W21W

−1
11 W12

})−1

o1 := −Re
{
0.5(K1 +K2i)Q(L1 + L2i) +W31W

−1
11 e1

}
o2 := −Im

{
0.5(K1 +K2i)Q(L1 + L2i) +W31W

−1
11 e1

}
r :=

1

2

(
∥K1Q

1
2 ∥2 + ∥K2Q

1
2 ∥2

) 1
2

×
(
∥Q 1

2L1∥2 + ∥Q 1
2L2∥2

) 1
2

o′1 := −Re
{
0.5(K1 +K2i)Q(K∗

1 +K∗
2 i)

+W31W
−1
11 W13 −W33

}
o′2 := −Im

{
0.5(K1 +K2i)Q(K∗

1 +K∗
2 i)

+W31W
−1
11 W13 −W33

}
r′ :=

1

2

(
∥K1Q

1
2 ∥2 + ∥K2Q

1
2 ∥2

)
(10)

where Q
1
2 is the unique symmetric positive-definite matrix

whose square is equal to the positive-definite matrix Q.

Theorem 2: The closure of the convex set Du is a circle
centered at (o1, o2) with radius r. Likewise, the closure of the
convex set Qu is a circle centered at (o′1, o

′
2) with radius r′.

Proof: It can be inferred from Theorem 1 that a complex
point α belongs to Du if and only if there exist symmetric
matrices M,N ∈ ℜ(n−z)×(n−z) such that:[

Q−M N
N M

]
≻ 0 (11)

and:

α =− (W31W
−1
11 W12 −W32)(M +Ni)W21W

−1
11 e1

−W31W
−1
11 e1

(12)

The constraint (11) can be re-arranged as:[
M̃ Ñ

Ñ −M̃

]
≺ I (13)

where:
M̃ := 2Q− 1

2MQ− 1
2 − I

Ñ := 2Q− 1
2NQ− 1

2

(14)

The constraint (12) can be expressed in terms of M̃ and Ñ
as follows:

α = −(K1 +K2i)(M +Ni)(L1 + L2i)−W31W
−1
11 e1

= −0.5(K1 +K2i)
(
Q

1
2 M̃Q

1
2 +Q+Q

1
2 ÑQ

1
2 i
)

× (L1 + L2i)−W31W
−1
11 e1

= −0.5(K̃1 + K̃2i)(M̃ + Ñi)(L̃1 + L̃2i) + o1 + o2i
(15)

where:

K̃j := KjQ
1
2 , L̃j := Q

1
2Lj , ∀j ∈ {1, 2} (16)

By applying Lemma 1 to the constraints (13) and (15), it
can be concluded that Du is a circle with the aforementioned
properties. The proof for the set Qu can be carried out in
the same line, after noting that:

yin = −(W31W
−1
11 W12 −W32)(M +Ni)

× (W21W
−1
11 W13 −W23)−W31W

−1
11 W13 +W33

(17)
The details are omitted for brevity. �

The first part of Theorem 2 states that the feasibility
constellation region Du is simply a circle with known radius
and center. This result significantly benefits the design of an
optimal modulation scheme, because finding a maximal set
within a circle can be performed systematically. Furthermore,
the second part of Theorem 2 says that the feasibility
admittance region is again a circle, which is a useful fact
for the modulation design. To be more precise, denote the
impedance of the input source and the input impedance of the
antenna system with zdin and zin, respectively. The reflection
coefficient at the input of the antenna, denoted by T , is
equal to

T =
zin − zdin
zin + zdin

(18)
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Fig. 5. (a): Circuit 2 with a switching control unit; (b): Circuit 3 with a passive control unit.

To maximize the power accepted by the antenna, the norm of
this reflection coefficient must be minimized. Since the feasi-
bility admittance region is a circle, the feasibility impedance
region, denoted by Q̃, is also a circle whose radius and
center can be obtained in terms of (o′1, o

′
2) and r′. Now,

the minimization of the reflected power amounts to finding
a point zin in the circle Q̃ such that ∥T∥ is minimum. This
problem has a simple analytic solution. In other words, the
optimal input impedance that the antenna system accepts by
using a passive control unit can be obtained routinely.

After identifying the sets Du and Qu, and obtaining an
optimal input impedance, it is required to find a control
unit which makes a number of constraints on the output
voltages and the input admittance (i.e. the ones given in (1))
be satisfied. This implies that the modulation scheme must
be ultimately designed based on D, rather than Du. It
can be seen that even though D is a convex set, it may
not be a circle. The question arises as how to reconstruct
the feasibility constellation set D (or the set Q) in the
general case. Due to the convexity of the set D (in light
of Corollary 1), a polygon approximation of this set can be
found efficiently. Given a positive number ε, consider the
problem of finding a simple (non-intersecting) polygon with
its vertices on the boundary of D such that the x-distance
(i.e. distance in the x direction) between every neighboring
vertices of this polygon is less than or equal to ε. Note
that as ε tends to zero, the interior polygon being sought
converges to the region D. The following algorithm can be
used to determine a polygon satisfying the above-mentioned
properties.

Algorithm 1:

Step 1: Minimize Re{v1} subject to the constraints (3)
and (4). If the optimization problem is feasible, denote
the optimal value obtained for v1 with vmin

1 . In case
of infeasibility of the optimization problem, halt the
algorithm because D is empty.
Step 2: Maximize Re{v1} subject to the constraints (3)
and (4). Denote the optimal value of v1 with vmax

1 .
Step 3: Set j = 0.

Step 4: If j ≤ Re{vmax
1 −vmin

1 }
ε , minimize Im{v1} subject

to the constraints (3), (4) and Re{v1} = Re{vmin
1 }+εj,

and denote the optimal value of v1 with Pj .
Step 5: If j ≤ Re{vmax

1 −vmin
1 }

ε , maximize Im{v1} subject
to the constraints (3), (4) and Re{v1} = Re{vmin

1 }+εj,
and denote the optimal value of v1 with P̄j .
Step 6: If j ≤ Re{vmax

1 −vmin
1 }

ε − 1, increment j by 1 and
jump to Step 4.
Step 7: The polygon with the vertices P0, P1, ...,
Pj , P̄j , ..., P̄1, P̄0 satisfies the required properties.

The above algorithm obtains an approximating polygon
after solving at most 2

Re{vmax
1 −vmin

1 }
ε + 4 LMIs. The main

ideas behind Algorithm 1 are laid out below:

• Steps 1 and 2 are intended to obtain two vertical lines
x = Re{vmin

1 } and x = Re{vmax
1 } tangential to D

between which the region D is confined.
• Due to the convexity of D, the line x = Re{vmin

1 }+εj,
j ≤ Re{vmax

1 −vmin
1 }

ε , intersects the region D in two points
Pj and P̄j . These points are obtained in Steps 4 and 5.

Algorithm 1 presents an efficient optimization-based
method to approximate the unknown region D by a polygon.
A derivative of this algorithm can be used for designing an
optimal rectangular quadrature amplitude modulation (QAM)
scheme. Given a positive constant d, consider a constellation
diagram J in the from of rectangular QAM with the points:{

(j1d, j2d)
∣∣ j1 ∈ [−ζ1, ζ1], j2 ∈ [−ζ2, ζ2], j1, j2 ∈ Z

}
(19)

where Z represents the set of integer numbers. It is desired to
obtain the intersection of D and J , denoted by Qp. Note that
Qp consists of those points in the QAM diagram J which
can be generated by a passive control unit. The following
algorithm can be used for this purpose.

Algorithm 2:

Step 1) Minimize Re{v1} subject to the constraints (3)
and (4). If the optimization problem is feasible, denote
the optimal value obtained for v1 with vmin

1 . In case
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of infeasibility of the optimization problem, halt the
algorithm because Qp is empty.
Step 2) Maximize Re{v1} subject to the constraints (3)
and (4). Denote the optimal value obtained for v1 with
vmax
1 .

Step 3) Set j = 0, d1 = d
⌈

Re{vmin
1 }
d

⌉
and d2 =

d
⌊

Re{vmax
1 }
d

⌋
(where ⌈·⌉ and ⌊·⌋ are the ceiling and floor

operators).
Step 4) If d2 < d1, the set Qc is empty and therefore
exit the algorithm; otherwise, proceed to the next step.
Step 5) If j ≤ d2−d1

d , minimize Im{v1} subject to the
constraints (3), (4) and Re{v1} = d1 + jd, and denote
the imaginary part of the optimal value of v1 with ymin

j .
Step 6) If j ≤ d2−d1

d , maximize Im{v1} subject to the
constraints (3), (4) and Re{v1} = d1 + jd, and denote
the imaginary part of the optimal value of v1 with ymax

j .
Step 7) If j ≤ d2−d1

d − 1, increment j by 1 and jump
to Step 5.
Step 8) The set Qp is equal to:

Qp =
{
(d1 + jd, kd)

∣∣ kd ∈
[
ymin
j , ymax

j

]
,

jd ∈ [0, d2 − d1], k, j ∈ Z
}

(20)
Note that Algorithm 2 finds the set Qp after solving at

most 4 + d2−d1

d LMIs. The importance of these algorithms
will be further revealed in the simulations provided in the
sequel.

IV. SIMULATION RESULTS

Consider the antenna configuration depicted in Figure 6,
which consists of a transmitting dipole antenna, 10 metal
reflectors each with 5 ports (antenna parasitic elements), and
a receiving dipole antenna located at the far field in the
upward direction. There are 52 ports as follows:

• Port 1 acts as a receiving antenna sampling the radiation
pattern of the transmitting antenna at a specific angle in
the far field.

• Ports 2 to 51 are intended to change the boundary
condition of the transmitting antenna.

• Port 52 corresponds to the transmitting antenna.
The circuit model of the antenna system is extracted at
the desired frequency 60GHz (using localized differential
lumped ports) by means of the electromagnetic software
IE3D [12]. This model can be either Circuit 2 or Circuit 3,
depending on how the impedances of the parasitic elements
are designed and implemented. Note that n and z are equal
to 51 and 1, respectively, and that vn+1 = v52 = 1.

As the first goal, it is desired to obtain all possible values
for v1 and yin in this antenna system under a general passive
control unit used to control ports 2 to 51. Algorithm 1 is
deployed to approximate the feasibility constellation and
admittance regions Du and Qu (with ε equal to 0.0001).
These regions are depicted in Figure 7. It can be seen that
both of the regions are circle, which is in accordance with
Theorem 2. Due to the circular shape of Du, it is easy to

Fig. 6. Configuration of the antenna problem studied in Section IV.
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Fig. 7. (a): The feasibility constellation set Du; (b): the feasibility
admittance region Qu.

find an optimal number of modulation points in Du which
are far away from each other by a prescribed number.

To compare the achievable performances of switching and
passive control units, denote with Ds the feasibility region
for v1 under switching control units. Finding the exact shape
of Ds requires computing v1 for all possible switchings,
i.e. 250 combinations. Since this may not be possible, a
number of switching networks are generated at random and
the corresponding values of v1 are plotted in Figure 8a. It
can be seen that even though a passive network has far more
free parameters than a switching network, the region Du is
a fairly good approximation of Ds, which can be used for
finding the hard limits on the switching performance.

Recall that the feasibility region for yin is a circle shown
in Figure 7b. It is desired to find the set of all possible v1
under a passive control unit when the input admittance is
matched to the center of this circle. Since yin is enforced to
be fixed, one may speculate that the corresponding feasibility
constellation region, denoted by D1, is noticeably smaller
than Du. However, it is interesting to note that the set D1
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Fig. 8. (a): The feasibility constellation sets Ds and Du; (b): the feasibility
constellation regions D1 and Du.

is only a little smaller than Du, as shown in Figure 8b. This
is due to the high degree of freedom in devising a passive
control unit. Notice that D1, found using Algorithm 1, is
a circle despite the fact that imposing a constraint on the
input admittance can potentially make the feasibility region
non-circular (this will be demonstrated later).

Now, assume that the impedance of the input source is
equal to the standard value 50Ω. Since 50Ω is outside the
circular feasibility impedance region, the goal is to find an
input impedance (admittance) for the antenna system that
minimizes the reflection factor ∥T∥. By solving a simple
geometric problem based on the circle obtained for Qu, the
optimal input admittance can be found as 0.008 + 0.012i.
Since this number is located on the boundary of Qu, it is
expected that imposing yin to be equal to 0.008 + 0.012i
leads to a feasibility constellation region much smaller than
Du. Suppose that the input admittance yin is permitted to be
different from the value 0.008+0.012i by at most

√
2×10−3.

The corresponding admittance feasibility region is shown in
Figure 9a (see the colored area). The feasibility constellation
region under this input admittance constraint, denoted by D2,
is also plotted in Figure 9b. It can be seen that this region
covers a big part of Du and that D2 is a non-circular (but
nearly circular) region.

V. CONCLUSIONS

This paper studies the constellation diagram design for
a recently introduced communication system that is based
on the concept of near-field direct antenna modulation (NF-
DAM). Unlike the conventional architectures, the signal is
modulated in a NFDAM system after the antenna by varying
the electromagnetic boundary conditions of the antenna via a
passive controller. One of the major challenges in designing
an optimal NFDAM system is to find the coverage area of the
signal constellation diagram. It is shown that this coverage
area is always a convex region that turns into a circle if no
constraints are imposed on the parameters of the system.
Later on, a linear matrix inequality (LMI) optimization
method is proposed to approximate the coverage region by a
polygon with any prescribed accuracy. A similar analysis is
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Fig. 9. (a): The feasibility admittance constellation (colored area) under the
constraint that the input admittance is in a circle centered at 0.008+0.012i
with radius

√
2 × 10−3; (b): the feasibility constellation regions D2 and

Du.

performed for the identification of the coverage area of the
antenna input admittance.
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APPENDIX

Proof of Lemma 1: The proof will be carried out in two
steps. First, the goal is to show that the set G is contained in
the aforementioned circle. To this end, consider a point α ∈
G together with its associated matrices M and N satisfying
the relations (7) and (8). It can be verified that:

∥α∥2 =
[
−x∗

1 x∗
2

] [ −M −N
−N M

] [
−y1 y2

y2 y1

]
×
[

−y∗
1 y∗

2

y∗
2 y∗

1

] [
−M −N
−N M

] [
−x1

x2

]
(21)

On the other hand, since the eigenvalues of a Hamiltonian
matrix are symmetric, it follows from the inequality (8) that
the eigenvalues of the symmetric matrix given in the left side
of (8) are all in the interval (−1, 1). Hence:[

−M −N
−N M

]2
≺ I (22)

Therefore:[
−y∗

1 y∗
2

y∗
2 y∗

1

] [
−M −N
−N −M

]2 [ −y1 y2

y2 y1

]
≺[

−y∗
1 y∗

2

y∗
2 y∗

1

] [
−y1 y2

y2 y1

]
= (∥y1∥2 + ∥y2∥2)I

(23)

The above inequality can be manipulated to arrive at:[
−M −N
−N M

] [
−y1 y2

y2 y1

] [
−y∗

1 y∗
2

y∗
2 y∗

1

]
×
[

−M −N
−N M

]
≺

(
∥y1∥2 + ∥y2∥2

)
I

(24)

Substituting (24) into (21) leads to:

∥α∥2 <
[
−x∗

1 x∗
2

] (
∥y1∥2 + ∥y2∥2

) [ −x1

x2

]
=

(
∥x1∥2 + ∥x2∥2

) (
∥y1∥2 + ∥y2∥2

) (25)

This shows that the point α is inside a circle centered at
origin with the radius given by (9).

It remains to show that this circle is contained in G
too. A constructive proof will be provided in the sequel.
Let α be an arbitrary point in the underlying circle. Two
symmetric matrices M and N satisfying the constraints (7)
and (8) are to be constructed. To present the basic idea,
assume for now that x2 = y2 = 0. Observe that Re{α} =

x∗
1

(
Re{α}x1y

∗
1

∥x1∥2∥y1∥2

)
y1. This suggests that M be considered as

x1Re{α}y∗
1

∥x1∥2∥y1∥2 . However, the symmetry constraint on M may
not be satisfied for this choice of M . To resolve this issue,
one can symmetrize this term and then define:

M = Re{α}x1y
∗
1 + y1x

∗
1

∥x1∥2∥y1∥2
(26)

It can be seen that the constraint (7) may not hold for
this choice of M . As a result, the term added in the

symmetrization step must be somehow nullified. Define now:

M := Re{α}x1y
∗
1 + y1x

∗
1 − (x∗

1y1)I

∥x1∥2∥y1∥2

N := Im{α}x1y
∗
1 + y1x

∗
1 − (x∗

1y1)I

∥x1∥2∥y1∥2

(27)

It is desired to show that the parameters M and N defined
above, along with α, make the constraints (7) and (8) hold,
which in turn proves that α belongs to G. It is easy to observe
that (7) is satisfied. To show the validity of (8), it is sufficient
to prove that (in light of the inequality ∥α∥ < ∥x1∥∥y1∥):

x1y
∗
1 + y1x

∗
1 − (x∗

1y1)I ≤ ∥x1∥∥y1∥I (28)

Given arbitrary constants ζ1, ζ1 ∈ ℜ, one can write:

(ζ1x
∗
1 + ζ2y

∗
1)
(
∥x1∥∥y1∥I − x1y

∗
1 − y1x

∗
1 + (x∗

1y1)I
)

× (ζ1x1 + ζ2y1) =
(
∥x1∥∥y1∥ − x∗

1y1
)

×
(
∥x1∥ζ1 − ∥y1∥ζ2

)2 ≥ 0
(29)

This shows that the matrix inequality (28) holds (note that
the inequality (28) was pre- and post-multiplied by a vector
ζ1x

∗
1+ζ2y

∗
1 rather than a general vector, because the columns

of x1y
∗
1 + y1x

∗
1 are in the span of the vectors x1 and y1).

So far, it is shown how to construct M and N in the case
when x2 and y2 are zero vectors. These matrices can be
obtained in the same line for the general case, although the
argument is more involved. Note that the staring point for
constructing these matrices is to define the matrix U as:

U : =

[
−x1 x2

x2 x1

] [
−Re{α} Im{α}
Im{α} Re{α}

] [
−y∗

1 y∗
2

y∗
2 y∗

1

]
× 1

(∥x1∥2 + ∥x2∥2) (∥y1∥2 + ∥y2∥2)
(30)

The main property of U is the following:[
−Re{α} Im{α}
Im{α} Re{α}

]
=

[
−x∗

1 x∗
2

x∗
2 x∗

1

]
U

[
−y1 y2

y2 y1

]
(31)

If U can be expressed in the form of:[
−M −N
−N M

]
(32)

then the corresponding matrices M and N extracted from
U satisfy the constraints (7) and (8). This happens when
x1 = y1 and x2 = y2. Nonetheless, the matrix U must be
symmetrized and then the redundant term be compensated
in the general case, similar to what was carried out above in
the special case x2 = y2 = 0. The details are omitted here
for brevity. �
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