A Wirelessly Powered Injection-Locked Oscillator with On-Chip Antennas in 180nm SOI CMOS

Yuxiang Sun, Aydin Babakhani

Rice University, Houston, TX 77005, USA

Abstract — This paper presents a battery-less mm-sized wirelessly powered injection-locked oscillator with on-chip antennas in 180nm SOI CMOS. The chip harvests electromagnetic radiation from a continuous-wave source in the X-band using an on-chip antenna. In addition, the chip is equipped with a broadband injection-locking oscillator that locks to the frequency of the input and produces a synchronized signal at the half frequency of the input. The new signal is then radiated back using an on-chip dipole antenna. This architecture resolves the conventional self-interference issue in RFID sensors by separating the received and transmitted frequencies. In addition, the locking mechanism improves the phase-noise of the on-chip oscillator to -93dBc/Hz at 100Hz offset.

Index Terms — Wireless Power, Energy Harvesting, On-chip Antenna, Sub-harmonic Injection Locking, RFID, Battery-less Sensor.

I. INTRODUCTION

Recently, there has been a growing interest in Internet of Things (IoT), wireless sensor network (WSN), and implantable devices. In these applications, a battery-less, small footprint, low-cost microchip is important for the prevalence of the technology. Conventional battery-less sensors capture the electromagnetic energy with an external antenna and convert it to DC power. These sensors typically operate in the sub-gigahertz frequency regime and require large external antennas with an area exceeding ~10cm² area. This limitation severely limits the miniaturization of the device and causes complex packaging issues and increased cost. In order to shrink the size of the antenna and integrate it with the energy-harvesting circuits, the operation frequency must increase. In this paper, we report the first wirelessly powered injection-locked oscillator with on-chip antennas operating in the X-band. The integration of the antennas dramatically reduces the overall chip size to millimeter level.

In addition to integration of on-chip antennas, the reported chip uses a novel topology to improve the phase-noise and resolve the self-interference issue. In conventional RFID systems, frequency division or time division duplexing is applied to mitigate self-interference issue but, in these systems, the transmitted signal is not locked to the received signal [1-3]. Due to the free-running nature of the transmitted signal, the RFID reader should use a large measurement bandwidth, which increases the noise-floor and reduces the sensitivity of the measurement system. This issue can be resolved by using a PLL-based architecture, but this requires high power, and occupies a large area [4]. Other groups used the technique of injection locking with wired input [5] or large off-chip antennas to capture injection-locking signal [6-7].

The reported chip integrates a sub-harmonic injection locked block with on-chip antennas and energy-harvesting circuit to reduce the size of the entire system to 2.47 mm².

II. BLOCK DIAGRAM AND DESIGN DETAILS

Figure 1 shows the block diagram of the reported chip for IoT sensor node. It consists of two RX and one TX on-chip antennas, a power-harvesting rectifier circuit, a power management unit (PMU), and a sub-harmonic injection-locked (Sub-IL) LC oscillator.

The on-chip antenna receives the incoming electromagnetic power, and feeds it to the power-harvesting rectifier circuits. The power is rectified and stored on the on-chip capacitor. The PMU unit continuously monitors the voltage on a storage capacitor and turns the transmitter circuit on after the chip

Fig. 1 IoT sensor network concept and block diagram of proposed chip for IoT sensor node.
scavenges and stores enough energy on the capacitor. When
the voltage on the storage capacitor reaches 1.6V (Vhigh), the
sub-harmonic injection-locked oscillator turns on and locks to
the input signal, which can range from 8GHz to 10GHz. The
oscillator generates a signal at half frequency (4GHz to
5GHz), and radiates it back using on-chip antennas. This event
discharges the storage capacitor. When the capacitor voltage
drops to 1.2V (Vlow), the PMU turns the oscillator off and
chip enters the sleep mode. The PMU is composed of a
voltage reference, a comparator, a divider and a Low Dropout
Regulator (LDO). The whole PMU consumes less than 200nA
in sleep mode. After enough energy is stored on the capacitor,
the PMU enables the LDO and the sub-harmonic injection
locked oscillator. The LDO generates a stable supply voltage
of 0.8V for the sub-harmonic injection locked oscillator. At
this supply level, the oscillator generates -25dBm power to TX
on-chip antenna.

In this design, three on-chip dipole antennas with length of
3.8mm are utilized. The first RX antenna is used at the input
of the rectifier, to harvest the incident RF electromagnetic
power. By increasing the operating frequency, the antenna
gain increases but the power conversion efficiency of the
rectifier circuit drops. Considering this trade-off, an optimum
operating frequency of 9GHz is achieved. To alleviate the
matching issues at the input of the rectifier, a dedicated dipole
antenna is used at the input of the rectifier and a second dipole
antenna is connected to the input of the sub-harmonic
injection-locking oscillator. The third dipole antenna is
implemented at the output of the Sub-IL transmitter. The
dipole antennas achieve a radiation efficiency of 5% at
4.5GHz and 21% at 9GHz.

The power-harvesting rectifier circuit consists of 10
Dickson stages. A 3.4nH inductor is used at the input to
resonate with the dipole antenna and maximize the amplitude
of the input voltage. To achieve a DC voltage of 1V on a
1.1nF MIM storage capacitor, a minimum input power of
-16.1dBm is required. At this input power level, a conversion
efficiency of 7% at 9GHz is achieved.

The PMU enables the LDO and the sub
To alleviate the
locking oscillator
The whole PMU
consumes less than 200nA
in sleep mode. After
enough energy is stored
on the capacitor, the
PMU enables the LDO
and the sub-harmonic
injection locked oscillator.

III. MEASUREMENT RESULT

Figure 2 shows the measurement setup. A Keysight
E8259D signal generator and a commercial MACOM PA
transmit a 40dBm EIRP X-band signal through a horn
antenna. The chip receives the signal and radiates back a
locked signal at the half frequency. This signal is captured by
a custom PCB-based antenna, which is connected to a
Keysight PXA N9030A spectrum analyzer.

Fig.3 Wide frequency of operation in sub-harmonic injection
locked mode. Input frequency is varied from 8GHz to 10GHz.

In this experiment, the chip is placed 1.5cm away from the
TX horn antenna. At this distance, by using a source with an
EIRP of 40dBm, the IL oscillator successfully locks to the
input signal within a frequency range of 8-10GHz. This
represents a locking range of 22% (shown in Figure 3).

Fig.4 Spectrum of the radiated signal by the chip in both free-
running and sub-harmonic injection locked modes.

Figure 4 shows the spectrum of the oscillator in free running
and locked modes. Figure 5 shows the phase noise in the
locked mode, which is about -93dBc/Hz at 100Hz offset. The
phase noise follows the phase noise of the RF source at low
offset. It flattens out at higher offset because of the limitation
of the test instrument. At 8.9GHz, a maximum harvesting
range of 4.2cm is achieved while the base station is
transmitting 40dBm of EIRP.
We present a 2.47mm² fully integrated wirelessly powered microchip that includes an energy-harvesting circuit, power management unit, sub-harmonic injection locked oscillator, and on-chip receiving and transmitting antennas. The chip achieves a maximum operating distance of 4.2cm, a locking range of 22%, and a phase noise of -93dBC/Hz at 100Hz offset.

IV. CONCLUSION

Fig. 6 Die micrograph.

REFERENCES