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Abstract

Wireless cellular systems have grown dramatically in the last two decades, thanks to several key

innovations in communication algorithms and high speed silicon technology. We review fundamental

physical layer techniques for the future high speed wireless networks.
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1 Introduction

The last two decades have been a witness to the rapid growth and widespread success of wireless

connectivity. The success of wireless systems is largely due to breakthroughs in communication theory

and progress in the design of low-cost power efficient mobile devices. Beyond the widespread use of voice

telephony, new technologies are replacing wires in virtually all modes of communication. For example,

in addition to widely recognized outdoor connectivity via cellular wide area networks (WANs), wireless

local area networks (LANs) and wireless personal area networks (PANs) have also become popular.

Wireless LANs (e.g., IEEE 802.11) provide high speed untethered access inside buildings replacing

traditional wired Ethernet, and wireless PANs (e.g., Bluetooth) are replacement for wires between

common peripherals like mouse, keyboard, PDAs and printers.

Providing ubiquitous mobile access to a large number of users requires solution to a wide spectrum

of scientific and economic issues, ranging from low-power semiconductor design and advanced signal

processing algorithms to the design and deployment of large cellular networks. In this paper, we will

highlight the challenges in the design of advanced signal processing algorithms for high speed outdoor

cellular access. The signal processing algorithms form the core of all wireless systems, and are thus

critical for their success. In addition, the techniques and algorithms discussed in this paper form a
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basis for most wireless systems, and thus have a wider applicability than outdoor wireless systems. To

keep the discussion tractable, we will focus on baseband design for third generation wireless cellular

systems (e.g., WCDMA or CDMA2000) based on code division multiple access (CDMA).

Wireless channel is a shared resource, i.e., multiple users in the same geographical locale have to

contend for the common spectral resource and in the process interfere with other users. To allow

meaningful and resource efficient communication between different users, it is crucial that all partic-

ipating users agree on a common protocol. The common protocol should enable fair access to the

shared resource for all users. The three most commonly used multiple access protocols1 are time di-

vision (TDMA), frequency-division (FDMA) and code-division (CDMA) multiple access. Among the

three, direct-sequence CDMA (DS-CDMA) has been adopted as the access technique for all the third

generation wireless standards, and thus will be the main focus of this article.

In outdoor cellular systems, the coverage area is divided into smaller regions called cells, each capable

of supporting a subset of the users subscribing to the cellular system. The cellular structure exploits the

fact that electromagnetic signals suffer loss in power with distance, thereby allowing reuse of the same

communication channel at another spatially separated location. The reuse of communication channels

allows a cellular system to support many more users as compared to a system which treats the whole

geographical region as one cell. Each cell is served by a base station which is responsible for operations

within a cell, primarily serving calls to and from users located in the respective cell. Figure 1 shows the

components of a typical cellular system. The size and distribution of the cells [1] are dictated by the

coverage area of the base station, subscriber density and projected demand within a geographical region.

As mobile users travel from cell to cell, their calls are handed off between cells in order to maintain

seamless service. The base stations are connected to the mobile telephone switching office (MTSO) that

serves as a controller to a group of base stations and as an interface with the fixed wired backbone.

Wireless networks, like typical multiple access networks, have a layered architecture [2, 3]. The

three main layers of each network are the physical layer, the network layer2 and the application layer.

The physical layer is responsible for actual transport of data between the source and the destination

points. The network layer controls the communication session, and the user applications operate in the

application layer. Both network and application layer design are critical in wireless networks, and are

areas of active research. In this paper, our focus will be on the design of physical layer for wireless

networks.

1We limit our discussion to circuit-switched networks and deterministic multiple access schemes. In packet-switched

networks, probabilistic multiple access is used; a good example is contention avoidance/resolution based protocol used in

IEEE 802.11, and packet services used in EGPRS and 3G systems.
2Network layer consists of several layers which among others include multiple access layer (MAC), data link layer and

transport layer.
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The rest of the paper is organized as follows. In Section 2, we will briefly discuss the three major

challenges in the design of wireless systems and commonly used methods to combat them. Models

for wireless channels are discussed in Section 3. In Section 4, we will introduce information theoretic

methods to analyze the limits of wireless systems. The core of the paper is in Section 5, which discusses

various aspects in the design of a typical transceiver. We conclude in Section 6.

2 Challenges and Design of Wireless Systems

In this section, we highlight the major challenges and techniques employed in wireless system design.

• Time varying multipath: Enabling mobility, which is the fundamental premise in designing

wireless systems and is the major reason for their success, also presents itself as the most funda-

mental challenge. Due to mobility of users and their surrounding environment, wireless channels

are generally time-varying. Electromagnetic signals transmitted by base-station or mobile users

reach the intended receiver via several paths; the multiple paths are caused by reflections from

man-made and natural objects (Figure 2). Since the length of the each path may be different,

the resultant received signal shows a wide fluctuations in its power profile (Figure 3), thereby

complicating the design of spectrally efficient systems.

To combat time-varying fading, a combination of time, spatial or frequency diversity is commonly

used [4]. By using diversity techniques, the receiver obtains multiple copies of the transmitted

signal, thereby increasing the chance that at least one of the copies is reliable. To exploit time

diversity, error control codes are used in conjunction with an interleaver [4]. Spatial diversity can

be obtained by using multiple antennas which are sufficiently separated. Spatial diversity can be

tapped by using space-time codes [5] at the transmitter or signal combining [6] at the receiver.

Spatial diversity techniques have recently received considerable interest due to their potential

to support larger data rates on the same channels compared to current technology. Frequency

diversity is analogous to spatial diversity where frequency selectivity due to multipath is used.

• Shared multiple access: Unlike wired networks, where new bandwidth is “created” by adding

additional physical resources (cables, servers, etc.), users in wireless system have to share limited

spectral resources. Although, the available spectrum for commercial wireless system has increased

in the last two decades, it is clear that growth in demand will always outpace the available

spectrum. Limited growth of resources immediately implies that the requirements of new data

rate hungry wireless services can only be sustained by progress in efficiently using the available

spectrum. An obvious way of increasing system capacity is to use smaller cells, but using smaller
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cells is undesirable due to economic reasons; increased number of base-stations and the required

wired backbone are the major reasons for the increased system cost. Further, smaller cells generally

lead to increased intercell handoffs and out-of-cell interference, leading to diminishing returns with

increasing cell partitioning.

The capacity of cellular systems can also be improved by cell sectorization [7, 8], where each cell is

further divided into sectors. Cell sectorization is achieved by using multiple directional antenna [9]

at each base-station, thereby reducing the inter-sector interference. Due to the directional antenna

response, cell sectorization has also been shown to reduce the delay spread of the received signal

leading to power savings [10]. Much like cell splitting, cell sectorization has also its limits too. To

achieve smaller sectors using directional antennas requires increasingly large size antennas, which

are both expensive and hard to deploy.

Information theoretic results [11] for multiuser systems indicate that the optimal methods to share

spectral resources should not attempt to avoid inter-cell and intra-cell interference. The co-channel

interference in wireless systems can be suppressed by using multiuser detection [12], leading to

increased spectral efficiency [13, 14]. Further improvements in system capacity can be obtained

by the use of dynamic resource allocation among users, for example, adaptive channel assignment

techniques [15], and dynamic spreading gain and power control [16].

• Power limitation for mobile users: Since most of the mobile devices are battery operated,

power efficiency is a crucial design parameter in wireless system design. The major consumers of

power in wireless handsets are power amplifier used during transmission, silicon based computing

units (A/D, D/A and baseband processor) used in reception, and in some cases, the color display.

Power dissipation in the RF power amplifier can be reduced by using cells with smaller radii, better

multiuser signal processing at the base-station, improved coding schemes or receiver diversity. As

pointed out earlier, cell splitting is not attractive due to increased system cost with diminishing

returns. Advanced signal processing, multiuser channel estimation, and data detection have been

shown to greatly reduce the power requirements to achieve a desired performance level [12]. Recent

advances in channel coding, namely turbo coding [17], can lead to further reduction in power

requirements for the transmitter to achieve a desired performance level. Reduction in power

requirements of baseband processing units requires development of hardware-frugal algorithms

and low power CMOS circuits. Also, techniques which require more computation at the base-

station to cut the complexity of handset are very effective in saving power at the mobile unit.
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3 Fading Channel Models

In this section, we will describe time-varying wireless channels and the statistical models used to capture

their effect on transmitted signals. A detailed discussion of channel models can be found in [4, 18]. A

fading multipath channel is generally modeled as a linear system with time-varying impulse response3

h(t; τ). The time-varying impulse response is assumed to be a wide-sense stationary random process

with respect to the time variable t. Due to time variations of the channel, the transmitted signal is

spread in frequency; the frequency spreading is called Doppler spreading. The transmitted signal also

suffers time spreading due to multipath propagation. Thus, the received signal is spread both in time

and frequency.

Two parameters are commonly used to characterize wide-sense stationary channels: multipath delay

spread and Doppler spread. To define the multipath delay and Doppler spread, it is convenient to work

with the scattering function H(τ ;λ), which is a measure of average power output4 of the channel at

delay τ and frequency offset λ relative to the carrier. The delay power spectrum of the channel is

obtained by averaging H(τ ;λ) over λ, i.e.,

Hc(τ) =

∫
∞

−∞

H(τ ;λ)dλ. (1)

The multipath delay spread Tm is the maximum delay τ for which delay power spectrum Hc(τ) is

non-zero. Similarly, the Doppler spread Bd is the maximum value of λ for which the following Doppler

power spectrum Hc(λ) is non-zero,

Hc(λ) =

∫
∞

−∞

H(τ ;λ)dτ. (2)

The reciprocal of the multipath delay spread is defined as channel coherence bandwidth, Bcoh = 1/Tm

and provides an indication of the width of band of frequencies which are similarly affected by the channel.

The Doppler spread provides a measure of how fast the channel variations are in time. The reciprocal

of Doppler spread is called channel coherence time Tcoh = 1/Bd. A large value of Tcoh represents a

slowly fading channel and a small values represents fast fading. If TmBd < 1, then the channel is said

to be underspread, else it is overspread. In general, if TmBd � 1, then the channel can be accurately

measured at the receiver, which can aid in improving the transmission schemes. On the other hand,

channel measurement is unreliable for the case of TmBd > 1.

An appropriate model for a given channel also depends on the transmitted signal bandwidth. If

s(t) is the transmitted signal with the Fourier transform S(f), the received baseband signal, with the

3A linear time-invariant system requires a single-variable transfer function. For a time-varying linear system, two

parameters are needed; the parameter t in h(t; τ ) captures the time-variability of the channel.
4Under the assumption that all different delayed paths propagating through the channel are uncorrelated.
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additive noise, is

z(t) =

∫
∞

−∞

h(t; τ)s(t− τ)dτ + ν(t)

=

∫
∞

−∞

H(t; f)S(f)e2πftdf + ν(t),

whereH(t; f) is the Fourier transform of h(t; τ) with respect to τ . If the bandwidthW of the transmitted

signal S(f) is much smaller than the coherence bandwidth, i.e., W � Bcoh, then all the frequency

components in S(f) undergo the same attenuation and phase shift during propagation. This implies

that within the bandwidth of the signal, the transfer function H(t; f) is constant in f , leading to a

frequency nonselective or flat fading. Thus, the received signal can be rewritten as

z(t) = H(t; 0)

∫
∞

−∞

S(f)e2πftdf + ν(t)

= H(t)s(t) + ν(t), (3)

where H(t) ∈ C is the complex multiplicative channel. A flat fading channel is said to be slowly fading

if the symbol time duration of the transmitted signal Ts is much smaller than the coherence time of the

channel, Ts � Tcoh. The channel is labeled as fast fading if Ts ≥ Tcoh.

If the signal bandwidth W is much greater than the coherence bandwidth of the channel, then the

frequency components of S(f) with frequency separation more than Bcoh are subjected to different

attenuations and phase shifts. Such a channel is called frequency selective. In this case, multipath

components separated by delay more than 1/W are resolvable and the channel impulse response can be

written as [4]

h(t; τ) =
P∑

p=1

hp(t)δ(τ − p/W ). (4)

Since the multipath delay spread is Tm and the time resolution of multipaths is 1/W , the number of

paths L is given by bTmW c + 1. In general, the time-varying tap coefficients hp(t) are modeled as

mutually uncorrelated wide-sense stationary processes. The random time-variation of the channel are

generally modeled via a probability distribution on the channel coefficients hp(t). The most commonly

used probability distributions are Rayleigh, Ricean and the Nakagami-m [4].

The main purpose of the channel modeling is to characterize the channel in a tractable yet meaningful

manner, to allow design and analysis of the communication algorithms. Note that all models are

approximate representation of the actual channel, and thus development of practical systems requires

both theoretical analysis and field testing.

In the sequel, we will consider only slowly fading channels, where Ts � Tcoh, i.e., multiple consecutive

symbols or equivalently, a block of symbols undergo the same channel distortion. Hence, these channels
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are also referred as block fading channels [19–22]. As a result of slow time-variation of the channel, the

time dependency of the channel will be suppressed, i.e., h(t) will be denoted by h and h(t; τ) by h(τ).

4 Capacity of Multiple Access Channels

Developed in the landmark paper by Shannon [23], information theory forms the mathematical foun-

dation for source compression, communication over noisy channels and cryptography. Among other

important contributions in [23], the concept of channel capacity was developed. It was shown that a

noisy channel can be characterized by its capacity, which is the maximum rate at which the information

can be transmitted reliably over that channel. Information theoretic methods not only provide the

ultimate achievable limits of a communication system, but also provide valuable insight into the design

of practical systems.

Typically, a capacity analysis starts by using a simple model of the physical phenomenon. The sim-

plified model captures the basic elements of the problem, such as time-varying fading wireless channel,

shared multiple access and power-limited sources. Information theoretic analysis then leads to limits

on reliably achievable data rates and provides guidelines to achieve those limits. Although information

theoretic techniques are rarely practical, information theory inspired coding, modulation, power control

and multiple access methods have led to significant advances in practical systems. Furthermore, the

analysis techniques allow performance evaluation of suboptimal but implementation-friendly techniques,

thereby providing a useful benchmarking methodology.

In this section, we will provide a brief sampling of results pertaining to time-varying fading wire-

less channels; the reader is referred to [19] for a detailed review. Our aim is to highlight basic single

and multiuser results for fading channels to motivate the algorithms discussed in the sequel. In Sec-

tion 4.1, we will first introduce two notions of channel capacity, Shannon-theoretic capacity [23] and

outage capacity [24]. Capacity of a channel characterizes its performance limits using any practical

transmitter-receiver pair and is a fundamental notion in evaluating efficacy of practical systems. Single-

user fading channels will be analyzed using the two capacity notions, motivating the importance of

diversity techniques (like space-time coding and beamforming) and power control. In Section 4.2, the

multiuser extensions will be discussed to motivate the use of power controlled CDMA based multiple

access.

All results in this section will be given for flat fading channels. The results can be easily extended

to frequency selective fading by partitioning the channel into frequency bins of width Bcoh, and then

treating each bin as a separate channel.
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4.1 Capacity of Single-user Fading Channels

A channel is deemed noisy if it introduces random perturbations in the transmitted signals. In [23],

the capacity of a noisy channel was defined as the highest data rate at which reliable communication is

possible across that channel. Communication reliability is defined as the probability that the receiver

will decode the transmitted message correctly; higher reliability means lower errors in decoding messages

and vice versa. An information rate is achievable if there exists at least one transmission scheme such

that any preset level of communication reliability can be achieved. To achieve this (arbitrary level

of) reliability, the transmitter can choose any codebook to map information message sequences to

channel inputs. If the rate of transmission R is no more than the channel capacity C, then reliable

communication is possible by using codebooks which jointly encode increasingly longer input messages.

The above notion of channel capacity is commonly referred as Shannon-theoretic capacity.

Besides providing a characterization of the channel capacity for a broad class of channels, Shan-

non [23] also computed the capacity of the following additive white Gaussian noise (AWGN) channel,

z(t) = s(t) + ν(t), (5)

as

C = W log2

(
1 +

Pav

σ2

)
bits/second. (6)

Note that the AWGN channel in (5) can be considered as a special case of fading channel (3) with

h(t) ≡ 1. In (6), W represents the channel bandwidth (in Hertz), Pav = Es{|s(t)|
2} is the average

transmitted power over time5 and σ2 is the variance of the additive noise ν(t). The fundamental

formula (6) clarifies the role of two important system parameters, the channel bandwidth W and signal

to noise ratio (SNR), Pav/σ
2. The capacity result (6) claims a surprising fact that even for very

small amount of power or bandwidth, information can be sent at a non-zero rate with vanishingly few

decoding errors. To achieve this reliable communication, the transmitter encodes multiple information

bits together using a channel code. The encoded bits are then jointly decoded by the receiver to correct

errors introduced by the channel (5).

The capacity analysis in [23] forms the basis for deriving capacity of fading channels (3), which we

review next. With an average transmitted power constraint, Es{|s(t)|
2} ≤ Pav , the Shannon-theoretic

capacity of fading channels, with perfect channel information at the receiver, is given by [25]

Cr
sc = WEγ

{
log2

(
1 +

Pavγ(t)

σ2

)}
, (7)

5The expectation Es{|s(t)|
2} represents an average computed over time (assuming that it exists) using the distribution

of s(t).
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where σ2 is the variance of the additive i.i.d. Gaussian noise ν(t) in (3), and γ(t) = |h(t)|2 is the received

instantaneous power. The expectation in (7) is computed with respect to the probability distribution

of the variable γ(t). If in addition to perfect channel information at the receiver, the transmitter has

knowledge of the instantaneous channel realization, then the transmitter can adapt its transmission

strategy based on the channel. The optimal strategy, in this case, turns out to be “water-filling” in

time [26]. To water-fill in time, the transmitter waits for the good channel conditions to transmit and

does not transmit during poor channel conditions. Thus, the optimal transmission policy is a constant

rate Gaussian codebook (see [11] for details on Gaussian codebooks) transmitted using an instantaneous

channel SNR dependent power. The optimal transmission power is given by [26]

Psc(γ(t)) =




Pav

(
1

γsc
− 1

γ(t)

)
, γ(t) ≥ γsc

0 , γ(t) < γsc

, (8)

where the threshold γsc is found to satisfy the power constraint Eγ,s

{
Psc(γ(t))|s(t)|

2
}

≤ Pav . The

achievable capacity is then given by

Crt
sc = WEγ

{
log2

(
1 +

Psc(γ(t))γ(t)

σ2

)}
. (9)

Note that allocated power in (8) is zero for poor channels whose SNR is less than γsc(t) and increases

monotonically as channels conditions improve. Adapting the transmission power based on channel

conditions is known as power control. Channel state information at the transmitter leads to only

modest gains for most fading distributions [26] with a single transmitter and receiver, i.e., C rt
sc is

only marginally greater than Cr
sc. But the gains of transmitter information increase dramatically with

multiple transmit and receive antennas. Using the extensions of (7) and (9) to multiple antennas [25, 27],

a representative example is shown in Figure 4. Thus, building adaptive power control policies is more

useful for multiple antenna systems; see [28] for practical methods to achieve a significant portion of

this capacity in a practical system. The gain due to channel state information at the transmitter can

also be achieved by using imprecise channel information [28–30]. The large gains promised by multiple

antenna diversity, with or without channel information at the transmitter, have sparked the rich field

of space-time coding [5, 31, 32].

In slow fading channels, achieving Shannon-theoretic capacity requires coding over exceedingly long

input blocks. The long codewords are required to average over different fading realizations, which

then allow the use of assumed ergodicity6 of the fading process to prove the capacity theorem. The

6A stochastic process h(t) is called ergodic if its ensemble averages equal appropriate time averages [33]. The channel

capacity theorem proved by Shannon [23] relied on law of large numbers, i.e., the time averages converge to their ensemble

averages, which in turn motivated the idea of encoding increasingly long blocks of input messages. Ergodic channels
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large delays associated with Shannon-theoretic capacity directly translate into impractical delays in

delay sensitive applications like voice and video. Thus, with a delay constraint, the Shannon-theoretic

capacity of slowly fading practical channels (more specifically, non-ergodic channels) is zero [24]. In [24],

the concept of capacity versus outage was introduced, which captures the effect of delay in slow fading

channels. A block of transmitted data, which is assumed to undergo the same fading throughout, is in

outage if the instantaneous capacity of the channel is less than the rate of transmission. The concept

of outage provides a code-independent method (by using asymptotic approximations) to gauge the

codeword error probability for practical codes. Assuming that the flat fading channel h is constant for a

block of transmitted data, the instantaneous capacity is given by7 W log2(1 +Pavγ(t)/σ
2). The outage

probability, when only the receiver is aware of the channel state, is then given by

Πr
oc = Prob

(
W log2

(
1 +

Pavγ(t)

σ2

)
< R

)
, (10)

where the probability is computed over the distribution of channel h(t). Analogous to the above

Shannon-theoretic capacity analysis, the probability of outage can also be computed for different amount

of channel state information at the transmitter. With perfect channel state information at the trans-

mitter and receiver, the outage probability is given by

Πrt
oc = min

Poc(γ(t))
Prob

(
W log2

(
1 +

Poc(γ(t))γ(t)

σ2

)
< R

)
. (11)

The power allocation Poc(γ(t)) minimizing the outage is given by [27]

Poc(γ(t)) =





σ2(2R/W −1)
γ(t) , γ(t) ≥ γoc

0 , γ(t) < γoc

(12)

The threshold γoc is chosen to meet the average power constraint, Eγ,s{Poc(γ(t))|s(t)|
2} ≤ Pav. The

outage capacity, which measures the total number of transmitted bits per unit time not suffering an

outage, is given by

Cr
oc = (1 − Πr

out)R

Crt
oc = (1 − Πrt

out)R

Due to the extra information at the transmitter, it immediately follows that Πrt
out < Πr

out and hence

Crt
oc > Cr

oc. The gain in outage capacity due to transmitter information is much more substantial

are the most general channels with dependency across time for which the (strong) law of large numbers holds, thereby

allowing a direct extension of capacity theorem [23] to ergodic channels. For a more general capacity theorem without any

assumptions on channel structure, see [34].
7Assuming that the transmitter is unaware of the instantaneous channel state and receiver has the perfect knowledge

of h(t) [25].
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compared to Shannon-capacity even for a single antenna system [35]. Similar to the Shannon-capacity,

outage capacity increases with the increasing number of transmit and receive antennas [25, 36].

The differences in the objectives of achieving outage capacity versus achieving Shannon-theoretic

capacity can be better appreciated by the difference in the optimal power allocation schemes, Psc(γ(t))

and Poc(γ(t)). In the Shannon-theoretic approach, the transmitter uses more power in the good channel

states and less power during poor channel conditions. On the other hand, to minimize outage the

transmitter employs more power as the channel gets worse, which is exactly opposite to the power

allocation Psc(γ(t)). The difference in power allocation strategies, Psc(γ(t)) and Poc(γ(t)) can be

attributed to optimization goals: Shannon-theoretic capacity maximizes long-term throughput and

hence it is not delay-constrained, and outage capacity maximizes short-term throughput with delay

constraints.

Irrespective of the capacity notion, the main lesson learnt from information theoretic analysis is

that diversity and channel information at the transmitter can potentially lead to large gains in fading

channels. The gains promised by above information theoretic results have motivated commonly used

methods of space-time coding and power control to combat fading. Readers are referred to [21, 25, 26, 36–

38] for detailed results on capacity of single user flat fading channels. In the next section, we will

briefly discuss the results for multiple access channels and their impact on the choice of multiple access

protocols.

4.2 Multiple User Fading Channels

The primary question of interest in a multiuser analysis is the multiaccess protocol to efficiently share

the spectral resources among several power-limited users. An accurate capacity analysis of a complete

cellular system is generally intractable. Hence, the information theoretic analysis relies on a series of

simplifying assumptions to understand the dominant features of the problem. Our main emphasis will

be on uplink communication in a single cell, where multiple users simultaneously communicate with a

single receiver, the base-station.

The sampled received baseband signal at the base-station is the linear superposition ofK user signals

in additive white Gaussian noise, given by

y(t) =

K∑

i=1

hi(t)si(t) + ν(t), (13)

The Gaussian noise ν(t) is assumed to be zero mean with variance σ2. The channels for all users hi(t)

are assumed to vary independently of each other and from one coherence interval to another. The

fading processes for all users are assumed to be jointly stationary and ergodic. Furthermore, each user

is subjected to an average power constraint, Esi{|si(t)|
2} ≤ Pi.
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Equivalent to the capacity of channel in the single-user case, a capacity region specifying all the

rates which can be simultaneously and reliably achieved are characterized. Thus, the capacity region

for K users is a set of rates defined as

R = {R = (R1, R2, . . . , RK) : Rates Ri can be reliably achieved simultaneously } . (14)

When the base-station receiver is aware of all the fading realizations of all the users, {hi(t)}, then the

rate region is described by the following set of inequalities (in the single user case, there is only one

inequality, R ≤ C),

∑

i∈B

Ri ≤ Eγ(t) log2

(
1 +

∑
i∈B γi(t)Pav

σ2

)
(15)

where it is assumed that each user has the same average power limit Pi = Pav . In (15), B represents

a subset of {1, 2, . . . ,K} and γi(t) = |hi(t)|
2 is the received power. The expectation of Eγ(t) is over all

the fading states {γi(t)}i∈B. A quantity of interest is the normalized sum rate which is the maximum

achievable equal rate per user and is obtained by taking B to be the whole set to yield [39]

Rsum =
1

K

K∑

i=1

Ri = Eγ(t)
1

K
log2

(
1 +

Pav
∑K

i=1 γi(t)

σ2

)
(16)

→
K→∞

1

K
log2

(
1 +

KPav

σ2

)
. (17)

The asymptotic result (17) shows an interesting phenomenon, that as the number of users increases,

the effect of fading is completely mitigated due to the averaging effect of multiple users. The averaging

effect due to increasing users is analogous to time or frequency [40] or spatial [25] averaging in single-user

channels. In [39], using (16), it was shown that a non-orthogonal multiple access scheme has a higher

normalized sum rate Rsum than orthogonal schemes like time (frequency) division multiple access8.

By requiring orthogonality of users, an orthogonal multiple access scheme adds additional constraints

on user transmission, which leads to a performance loss compared to optimal non-orthogonal method.

Non-orthogonal CDMA is an example of non-orthogonal multiple access scheme. Spread signals, like

CDMA signals, occupy more bandwidth than needed and were first conceived to provide robustness

against intentional jamming [41]. The capacity versus outage analysis also shows the superiority of

CDMA schemes over orthogonal access methods [42].

In [43], a cellular multicell model was introduced to study the effect of multiple cells. The model

extends (13) to include inter-cell interference from users in neighbouring cells. The cellular model in [43]

was extended to fading channels in [39, 44]. There again, it was concluded that CDMA like wideband
8In time (frequency) division multiple access, each user transmits in its allocated time (frequency) slot such that no two

user share a time (frequency) slot. Thus, the transmission of one user is orthogonal in time (frequency) to any other user.
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methods achieve optimal normalized sum rates even in the presence of multicell interference, for several

important practical receiver structures. Even though the spread spectrum signals occupy more band-

width than needed for each signal, multiuser spread spectrum systems are spectrally efficient [13, 14].

Motivated by the success of the second generation CDMA standard, IS-95, currently all third gener-

ation wireless systems (CDMA2000 and W-CDMA) use some form of spread spectrum technique. In

addition to information theoretic superiority, CDMA based multiple access provides other practical

advantages [45]. First, CDMA signals allow finer diversity combining due to larger signal bandwidth,

thereby providing robustness to multipath fading. In other words, combined with an interleaver, spread

spectrum signals naturally exploit both frequency and time diversity. Frequency diversity is not avail-

able in bandwidth-efficient TDMA systems. Second, CDMA allows a frequency reuse of one in contrast

to TDMA/FDMA which require a higher reuse factor. A lower reuse factor immediately implies higher

system capacity; a reuse factor of one also simplifies frequency planning. Lastly, CDMA naturally ex-

ploits the traffic activity factor, the percentage of time during a two-way communication each channel

is actually used. Most of the information theoretic analysis completely ignores the data burstiness, a

property which is central to higher resource utilization in wired networking [46]; see [47, 48] for insightful

reviews.

The CDMA based systems allow communication without the need for a universal clock or equiva-

lently synchronism among different users. The need for synchronism in TDMA requires the use of time

guard bands between time slots and hence wastes resources. Finally, in long-code DS-CDMA systems,

like the one used in IS-95 standard9 assigning channels to users is straightforward because each user

is given a unique fixed spreading code. In TDMA, time slots are granted adaptively as users handoff

from one cell to another, thereby complicating resource management and requiring additional protocol

overhead. Also, long-code CDMA leads to the same average performance for all users, and thus a fair

resource allocation among users.

Though the area of multiuser information theory is rich and well-studied, we maintain that many

fundamental results are yet to be published. For instance, connections with queuing theory [47–49]

which is the mathematical basis for networking are far from well understood, but due to the rise of

internet, it is more urgent than ever to unify the areas of data networking and wireless communications.

Furthermore, with the growth of wireless services beyond voice communication, and advent of newer

modes of communication like ad hoc networking10, current information theoretic results should be

9In long-code CDMA systems, unlike short repeating code CDMA systems, each transmitted bit is encoded with a

different spreading code.
10In ad hoc networking, mobile nodes can communicate with each other without the need for any infrastructure like in

cellular systems; IEEE 802.11 and Bluetooth are examples of ad hoc networking.
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considered as the beginnings of our understanding on the subject of multiuser communications.

5 Typical Architecture of Wireless Transceiver

Most wireless systems transmit signals of finite bandwidth using a high frequency carrier11. This imme-

diately leads to the wireless transceiver with three major components, an RF front end which performs

the frequency conversion from passband to baseband and vice versa, digital to analog converter (D/A)

and analog to digital (A/D) converter, and a baseband processing unit. In this section, we will dis-

cuss the signal processing algorithms used in the digital baseband unit. Wherever applicable, we will

highlight the differences between the baseband unit at the mobile receiver and that at the base-station.

We briefly note that the hardware receiver design for CDMA systems is generally more challenging

than its TDMA counterparts. The design of A/D, D/A converters, and digital baseband processors

require special effort. Higher chipping rates in CDMA systems require faster sampling and hence lead

to higher computational throughput requirements and increased circuit power dissipation compared to

their TDMA counterparts. Fortunately, advances in low-power high-speed complementary metal oxide

semiconductor (CMOS) circuits have allowed implementation of sophisticated digital signal processing

algorithms, and high speed converters.

5.1 Transmitter

A simplified transmitter for DS-CDMA system is shown in Figure 5. The data obtained from the higher

layers is passed through a channel encoder, spread spectrum modulator, digital to analog converter and

finally through an RF unit.

5.1.1 Channel Encoding

The source data bits are first encoded using a forward error correction (FEC) code. A FEC code

systematically adds redundant bits to the source bits, which are used by the receiver to correct errors

in the received signal. Error correction coding is essential to achieve low bit error rates at the receiver

and has a strong information theoretic foundation [23]. Following Shannon’s work in 1948 [23], error

control coding has seen tremendous growth in last fifty years; the readers are referred to [51–54] for

recent reviews on state of the art. Several excellent texts [55–58] on channel coding theory are available,

hence we will keep our discussion in this section elementary.

The choice of code primarily depends on desired performance level, the specific channel under

consideration and the complexity of the resulting receiver. The desired level of performance is based on

11Carrier-less systems include impulse radio [50].
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the type of services to be provided. For instance, loss tolerant services like speech can work with high

packet loss probability, while data/email/fax requires a much higher error protection, thereby requiring

FEC codes with different amount of error protection capabilities12. The complexity of decoding the

received packets to correct errors is a major concern in the design of power-limited mobile handsets.

Typically, stronger FEC codes are computationally harder to decode and, hence require more battery

power for the baseband units; see [59] for a discussion.

The communication channel is a major factor in selection of forward error correcting codes. For

example, code design is different for slow and fast fading channels. To illustrate the concept of coding,

our discussion will be limited to convolutional codes which are used in both telephone line modems,

and both second and third generation digital wireless cellular standards. Further, we will highlight the

recent interest in space-time coding by dividing this section into two parts: single-antenna systems and

multiple-antennas systems. Our discussion on single-antenna systems will give a quick introduction to

convolutional codes with a review of recent coding results for slow and fast fading channels. In the

multiple antenna discussion, diversity techniques will be central to our discussion, with an emphasis on

spatial and time diversity for wireless systems.

Single antenna systems: The choice of convolutional codes is motivated by their simple optimal

decoding structure, systematic construction of strong codes for large block lengths and lower decoding

delay compared to block codes. A convolutional code is generated by passing the information sequence

through a linear finite-state shift register. In general, the shift register consists of S B-bit stages and

m linear algebraic function generators; see Figure 6 [4]. The input data to the encoder, assumed to be

binary, is shifted into and along the shift register B bits at a time. The number of output bits for each

B input bits is m bits. Consequently, the code rate is defined as Rc = B/m. The parameter S is called

the constraint length of the convolutional code.

To understand the encoding procedure, consider the convolutional encoder for S = 3, B = 1 and

m = 3 shown in Figure 7 [4]. All the shift registers are assumed to be in zero state initially. If the first

input bit is a 1, the resulting output sequence of 3 bits is
[
b[1] b[2] b[3]

]
= [1 1 1]. Now if the second

input bit is a 0, the next three output bits are
[
b[4] b[5] b[6]

]
= [001] (else the output bits are [110] if

the input bit is 1). If the third bit is a 1, the output is
[
b[7] b[8] b[9]

]
= [100]. The operation of a non-

recursive (Figure 7) convolutional code is similar to that of a finite impulse response (FIR) filter with

all the operations done over a finite field; in Figure 7, the finite field consists of only two elements {0, 1}

with binary addition. The convolutional code has one input and several outputs, equivalent to single-

input multiple-output finite impulse response linear system. The equivalent of the impulse response of

12Some of the networking layers use checksums for error detection and perform error correction by requesting retrans-

mission of packets.
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the filter is the generator polynomial, which succinctly describes the relation between output and shift

register states for a convolutional code. For the example in Figure 7, the generator polynomials are

Output 1 → g1 = [1 0 0],

Output 2 → g2 = [1 0 1],

Output 3 → g3 = [1 1 1].

The generator polynomials of a convolutional code characterize its performance via different metrics,

notably minimum distance and distance spectrum [60]. To design any code requires an appropriate

metric space, which depends on the channel under consideration. For slowly block fading channels,

the Euclidean distance between the codewords is the natural metric [60], while for fast fading channels,

Hamming distance is the appropriate metric [61]; see below for further discussion on diversity techniques.

Addition of redundant bits for improving the error probability leads to bandwidth expansion of the

transmitted signal by an amount equal to the reciprocal of the code rate. For bandwidth constrained

channels, it is desirable to achieve a coding gain with minimal bandwidth expansion. To avoid bandwidth

expansion due to channel coding, the number of signal points over the corresponding uncoded system

can be increased to compensate for the redundancy introduced by the code. For instance, if we intend to

improve the performance of an uncoded system using BPSK modulation, a rate 1/2 code would require

doubling the number of signal points to quadrature phase shift keying (QPSK) modulation. However,

increasing the number of signals leads to higher probability of error for the same average power. Thus,

for the resultant bandwidth efficient scheme to provide gains over the uncoded system, it must be able

to overcome the penalty due to increased size of the signal set.

If the modulation (mapping of the bits to channel signals) is treated as an operation independent of

channel encoding, very strong convolutional codes are required to offset the signal set expansion loss and

provide significant gains over the uncoded system [4]. On the other hand, if the modulation is treated

as an integral part of channel encoding, and designed in unison with code to maximize the Euclidean

distance between pairs of coded signals, the loss due to signal set expansion is easily overcome. The

method of mapping by set partitioning [62] provides an effective method for mapping the coded bits

into signal points such that the minimum Euclidean distance is maximized. When convolutional codes

are used in conjunction with signal set partitioning, the resulting method is known as trellis coded

modulation (TCM). TCM is a widely used bandwidth efficient coding scheme with a rich associated

literature; see [63] for a comprehensive in-depth review.

The fundamental channel coding theorem by Shannon [23] proved the existence of good codes,

which can achieve arbitrarily small probability of error, as long as the transmission rate is lower than

the channel capacity. The proof in [23] required creating codes which had ever increasing block sizes to
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achieve channel capacity. Another key component of the proof in [23] was the choice of codebooks, they

were chosen at random. Random codes with large block sizes have no apparent structure to implement

a physically tractable decoder. Proven optimality of random codes coupled with the inability to find

good structured codes led to a common belief that the structured deterministic codes had a lower

capacity than the channel capacity, often called the “practical capacity” [64, 65]. The discovery of turbo

codes [17] and the rediscovery of low-density parity check (LDPC) codes [66] appears to have banished

the above “practical capacity” myth. Both turbo and LDPC codes have been shown to operate below

the “practical capacity,” within a tenth of a decibel of the Shannon capacity. Turbo codes have also

been proposed for the third generation wireless standards. The main ingredients of a turbo code are

constituent codes (block or convolutional code) and a long interleaver. The long interleaver serves

two purposes: lends codewords a “random-like” structure, and leads to long codes which are easily and

efficiently decoded using a (sub-optimal yet effective) iterative decoding algorithm. Several extensions of

turbo codes are areas of active research, notably, bandwidth efficient turbo codes [67, 68], deterministic

interleaver design [69] and space-time turbo codes [70].

We close the discussion on codes for slow fading Gaussian channels, by highlighting that none of the

current codes come close to the lower bounds on the performance of codes [71]. Current codes require

large block lengths to achieve small probability of decoded message errors, but relatively short block

lengths suffice to achieve the same level of performance for “good” codes [71]. Thus, the field of code

design, though more than fifty years old, has still significant room to develop.

Multiple antenna systems : The random time-variations in the received signal provide diversity,

which can be exploited for improved error performance. Typical forms of diversity include time, fre-

quency and spatial diversity. In Section 4.1, it was noted that diversity is important to improve the

outage performance or achievable rates in fading channels. Although only spatial diversity using mul-

tiple transmit and receive antennas was studied in Section 4.1, similar benefits are also obtained by

using time or frequency diversity or a combination of them. In time and frequency diversity, channel

variations in time and across frequency are used to increase reliability of the received signal. In spatial

diversity, multiple transmit and/or receive antennas exploit the random spatial time-variations.

The codes designed for Gaussian channels can be used for slowly fading channels if an accurate

channel estimator is available and all symbols of a codeword undergo the same channel fading. In the

presence of medium to fast fading, where the coherence interval is shorter than a codeword, Hamming

distance between the codewords should be maximized [61]. If channel variations are slower than a

codeword, an interleaver is commonly used to induce time diversity. For interleaver based schemes

to be effective, the interleaver depths should be larger than the coherence interval; this implies that

it is useful for fast fading channels or for communications where large delay can be tolerated. For
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low-delay application, the interleaver-induced time diversity is not possible. In addition, if the channel

is flat-fading (true for narrowband communications), then frequency diversity cannot be used either.

Irrespective of the availability of time and frequency diversity, the spatial diversity via multiple antennas

is a promising method to achieve higher data rates.

Receiver diversity using multiple receive antennas is a well-understood concept [6] and often used in

practice [72]. In contrast, using multiple antennas at the transmitter has gained attention only recently

due to discovery of space-time codes [5, 31], motivated by encouraging capacity results [25, 73]. Space-

time coding exploits multiple independent channels between different transmit-receive antenna pairs in

addition to time diversity (possibly interleaver induced). The work in [5] extended well-founded coding

principles to spatial diversity channels, thereby simultaneously achieving coding gain and the highest

possible spatial diversity. The space-time codes proposed in [5] have become a performance benchmark

for all subsequent research in space-time coding [74–80]. The concept of transmitter diversity can be

appreciated using the following elegant Alamouti scheme [81] for two transmit antennas.

In a given symbol period, two symbols are simultaneously transmitted from the two antennas.

Denote the signal transmitted from antenna 1 as s1 and from antenna 2 as s2 (see Figure 8). During the

next symbol period, signal −s∗2 is transmitted from antenna 1, and s∗1 is transmitted from antenna 2.

Note that the encoding of symbols is done in both space and time. As is evident from Figure 8, the

received signal in any symbol interval is a linear combination of the signals transmitted from the two

antennas. Thus, the space-time channel is an interference channel. An analogous scenario exploiting

frequency diversity would use non-orthogonal carrier frequency to send two symbols in each symbol

period. The Alamouti scheme sends orthogonal signals over two time instants from the two antennas,

i.e., vector [s1 − s∗2] transmitted from antenna 1 over two time symbols is orthogonal to the vector

[s2 s
∗
1] transmitted from antenna 2. If the channel stays constant over two consecutive symbol periods,

then the orthogonality is maintained at the receiver. Since each symbol s1 and s2 is transmitted from

both the antennas, they travel to the receiver from two different channels, which provides the desired

diversity order of two. The orthogonality of the time signals helps resolution of the two symbols at the

receiver without affecting the diversity order.

The Alamouti scheme can be extended to more than two transmit antennas using the theory of

orthogonal designs [74]. The Alamouti scheme is a rate 1 code and thus requires no bandwidth expansion.

But it provides a diversity order of two, which is twice that of any rate 1 single-antenna system. The

Alamouti scheme has a very simple optimal receiver structure, thereby making it a prime candidate for

practical implementations. In addition to its simplicity, the Alamouti scheme-based systems do not lose

in their asymptotic performance. In [79], it was shown that orthogonal transmit diversity schemes are

capacity achieving, and thus provided a motivation for the concatenated space-time coding methods
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in [79, 80]. The concatenated space-time codes decouple the spatial and temporal diversity to simplify

the space-time code design.

All third generation systems have adopted some form of transmit and receive diversity. Multiple

antennas at the base-station are relatively easier to implement in comparison to multiple antennas at

the mobile handset, due to size limitation. Two cross polarized antennas have been proposed and tested

for mobile handsets [82].

5.1.2 Spreading and Modulation

The binary output of the error control encoder is mapped to either ±1 to obtain the sequence bi[k],

which is multiplied by a spreading sequence, ci[n] ∈ {−1, 1}, of length N ; the spreading operation is

shown in Figure 9. After spreading the signal, the signal is passed through a digital pulse shaping filter,

φ[n], which is typically a square root raised cosine filter [4]. The pulse shaping filter is chosen to limit

the bandwidth of the transmitted signal to the available spectrum, while minimizing the intersymbol

interference (ISI) caused by the filter. The digital signal for user i after pulse shaping can be written as

si[n] =
G∑

k=1

bi[k]ψi[n− kNL] (18)

where L is the number of samples per chip and ψi[n] = φ[n]?ci[n] where ? represents linear convolution,

and G is the number of bits in the packet.

After converting the digital signal to analog using a D/A converter, the RF upconverter shifts the

baseband analog signal to the carrier frequency fc. The upconverted signal is amplified by a power

amplifier and transmitted via an antenna. The transmitted passband signal assumes the following

form,

xi(t) =
√
Pie

−ωct
G∑

k=1

bi[k]ψi(t− kTs),

= e−ωctsi(t) (19)

where Ts is the symbol period and Pi is the transmitted power. The bits bi[k] are the output of a

suitable channel encoder discussed in Section 5.1.1. Since CDMA signals at the base-station typically

have large peak to average power ratios, the operating point of the power amplifier is kept low to avoid

amplifier nonlinearities. The amplifier nonlinearities are avoided for several important reasons: (a) RF

amplifier efficiency is lower in nonlinear region which increases the power loss and hence total power

consumed by the transmitter, (b) the nonlinearity introduces higher spectral components, which can

cause increased interference in the neighbouring frequency bands, and (c) algorithm design for resulting

nonlinear systems becomes intractable.

19



As discussed in Section 4.1, multiple antennas at the transmitter and receiver can lead to large gains

in fading wireless channels [21, 25, 37]. If multiple transmit antennas are used, the vector transmitted

passband signal is given by

xi(t) =

√
Pi

M
e−ωct

G∑

k=1

bi[k]ψi(t− kT ), (20)

where M is the number of transmit antennas. The M × 1 vectors, xi(t) and bi[k], represent the

transmitted vector signal and space-time coded signal, respectively. In (20), we have assumed that

the transmitter has no knowledge of the channel and hence uses same average power on each of the

transmitter. If the transmitter knows the channel, then the power across different antennas can be

adapted to achieve an improved performance [25, 83].

5.2 Base-station Receiver

In cellular systems, the time and spectral resources are divided into different logical channels. The

generic logical channels are broadcast, control, random access, paging, shared and dedicated chan-

nels [84, 85]. All logical channels are physically similar and the distinction is solely made based on

the purpose served by each channel. In the sequel, we will restrict our attention to the dedicated and

shared channels, since they carry most of the user data and hence impose the biggest computational

bottleneck. Implementation details of other channels can be found in [84, 85].

As noted in Section 2, the unknown time-varying multipath is one of the biggest challenges in

the design of wireless systems. Optimal transmission schemes which do not require the knowledge

of the wireless channel at the receiver can be designed using information theoretic tools [86, and the

references therein], but are seldom employed. The primary reason for not using optimal strategies is

their high computational complexity, and large latency of the resulting communication method. Hence,

suboptimal and computationally efficient solutions are generally employed. The receiver estimates the

unknown channel, and then uses the channel estimate to decode the data using a channel decoder.

A simplified illustration of the baseband receiver is shown in Figure 10. The key components of the

receiver are multiuser channel estimation, multiuser detection and single-user channel decoding. Most

systems also provide feedback from the receiver for power control and automatic repeat request (ARQ)

to improve system reliability. The choice of algorithms used in each of the blocks is determined by their

computational complexity, desired performance level and the available side information. Mobile units

are power and complexity constrained, and have little or no knowledge of the multiple access interfer-

ence. On the other hand, the base-stations are equipped with higher processing power and detailed

information about all in-cell users, thereby allowing more sophisticated processing at the base-stations.
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Our discussion will focus on base-station algorithms in the following section, with only bibliographic

references to relevant counterparts for the mobile handset.

5.2.1 Received Signal

For each of the active users in a cell, the received signal at the base-station consists of several unknown

time-varying parameters. These parameters include propagation delay, amplitude, delay and number

of paths, and residual carrier offset. The time-variation in propagation delay is caused as users move

closer or away from the base-station. The mobility of the users or the surrounding environment also

causes time-variation in the multipath environment. Finally, drift in the local oscillator frequencies of

the transmitter and receiver leads to a residual carrier offset at the baseband.

Using the model (4) for the multipath channel impulse response and assuming that the channel

coefficients for the ith user hp,i are constant over the observation interval, the received signal for a

transmitted signal xi(t) without additive white noise is given by

zi(t) =

P∑

p=1

hp,ixi(t− τi − p/W ),

=
√
Pie

−ωct
P∑

p=1

hp,ie
ωc(τi+p/W )

︸ ︷︷ ︸
ap,i

G∑

k=1

bi[k]ψi(t− kT − τi − p/W ),

=
√
Pie

−ωct
G∑

k=1

P∑

p=1

bi[k]ap,iψi(t− kT − τi − p/W ). (21)

where τi is the propagation delay of the received signal. If the number of paths P = 1, then it is a flat

fading channel else a frequency selective channel. The received signal is amplified and downconverted

to baseband. In practice, there is a small difference in the frequencies of the local oscillators at the

transmitter and the receiver. The received baseband signal after downconversion (without additive

noise) is given by

zi(t) =
√
Pie

−∆ωit
G∑

k=1

P∑

p=1

bi[k]ap,iψi(t− kT − τi − p/W ), (22)

where ∆ωi represents the residual carrier frequency offset. Assuming that the carrier offset ∆ωi is

negligible or is corrected using a multiuser equivalent of digital phase lock loop [4, 87], the sampled

baseband (without noise) with L samples per chip can thus be written as

zi[n] =

G∑

k=1

P∑

p=1

bi[k]ap,iψi[n− kNL− τi − p]. (23)
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In general, the receiver components introduce thermal noise, which is generally modeled as additive

noise. For K simultaneously active users, the received baseband signal in the presence of thermal noise

at the base-station is

z[n] =
K∑

i=1

zi[n] + ν[n]. (24)

The additive component ν[n] in (24) is generally modeled as white Gaussian noise. The received signal

model in Equations (13) and (24) are similar, both consider a sum of all user signals in additive noise.

The main difference is the assumption on the fading statistics, a flat fading model is assumed in (13)

compared to a multipath model in (24).

In the sequel, we will focus our discussion on estimation of the unknown channel coefficients and

subsequent detection of the data bits, bi[k] for all users i = 1, . . . ,K. The development of multiuser

channel estimation and data detection is greatly simplified by using linear algebraic methods. We will

write the received signal (24) using matrix-vector notation in two different forms. The first form will

be used in multiuser channel estimation methods, and the second in multiuser detection.

Channel as unknown: For simplicity, we will assume that all τi are multiple of sampling instants,

i.e., τi = li; for the general case, the reader is referred to [88]. Let ui[n] =
∑G

k=1 bi[k]ψ(n−kNL). Then

the received signal zi[n] can be rewritten in matrix-vector notation [89] as

zi =




ui[1] 0 0 · · · 0

ui[2] ui[1] 0 0

ui[3] ui[2] ui[1] 0
...

0 0 0
... ui[GLN + lφ]







0
...

0

a1,i

...

aP,i




,

= Uiai, (25)

where there are li leading zeros in the channel vector ai to account for the propagation delay, and lφ

is the length of the pulse φ (measured in number of samples). The total received signal can thus be

written as

z =
[
U1 U2 · · · UK

]




a1

a2

...

aK




+ ν

= Ua + ν, (26)
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where we recall that N is the spreading gain, L is the number of samples per chip and G is the number

of bits in the packet. The above signal model will be used to derive channel estimation algorithms in

Section 5.2.2.

Data as unknown: Define qi[n] =
∑P

p=1 ap,iψ[n−kNP−li−p]; qi[n] can be understood as the effective

spreading waveform for the ith user. The waveform qi[n] is generally longer than one symbol period and

hence causes interference between the consecutive symbols. To highlight the presence of intersymbol

interference (ISI), we will write the received signal zi[n] for every symbol duration. For simplicity, we

will assume that the length of qi[n], lq, is less than two symbol durations, i.e., lq < 2NL. Then the

received signal zi[n] can be written as

zi[k] =




0 qi[1]

0 qi[2]
...

...

qi[NL+ 1] qi[2NL− lq + 1]
...

...

qi[lq] qi[NL]





bi[k − 1]

bi[k]




= Qibi (27)

The total received signal can be written as

z[k] =
[
Q1 Q2 · · · QK

]




b1[k]

b2[k]
...

bK [k]




+ ν (28)

= Qb[k] + ν (29)

The above received signal model (29) clearly demonstrates the challenges in multiuser detection. Not

only does the receiver have to cancel the multiple access interference, but also the ISI for each user

introduced by the multipath channel. The ISI acts to increase the effective multiple access interference

experienced by each bit. The multiuser detection methods aim to jointly make all bits decisions b[k].

In the following section, we will discuss channel estimation, multiuser detection and channel decoding

algorithms for DS-CDMA systems.
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5.2.2 Multiuser Channel Estimation

Most channel estimation can be divided into two broad classes, training based and blind methods. In

each of the classes, a further subdivision13 is made based on assumptions made regarding the multiple

access interference: single-user channel estimation in the presence of multiple access interference or

jointly estimating channels for all the users.

Most wireless systems add known symbols periodically to the data packets. The known data symbols

are known as training symbols and facilitate coarse synchronization, channel estimation and carrier offset

recovery. Training based methods simplify estimation of unknown baseband parameters at the cost of

throughput loss; symbols used for training could potentially be used to send more information bits. The

amount of training depends on the number of simultaneous users, number of transmit antennas [28] and

desired reliability of channel estimates. Given the training symbols and assuming perfect carrier offset

recovery, multiuser channel estimation can be cast as a linear estimation problem [91], and admits a

closed form solution. The work in [91] also discusses extensions to multiple antennas.

A class of blind channel estimation procedures, collectively known as constant modulus algorithms (CMA)

were first proposed in [92, 93] using the constant amplitude property of some of the communication sig-

nals like BPSK. The CMA algorithms use a nonlinear (nonconvex) cost function to find the channel

estimate, and hence can converge to poor estimates. An alternate procedure of blind estimation was

proposed in [94, 95], which used the cyclostationarity of the communication signals. Motivated by the

method in [94], a single-user blind channel identification method, using only second-order statistics, was

proposed in [96]. The blind channel equalization exploits only the second (or higher) order statistics

without requiring periodic training symbols, with an assumption that the data symbols are independent

and identically distributed. The assumption of i.i.d. data is rarely correct due to channel coding used

in almost all systems. Hence, the results based on blind channel estimation should be interpreted with

caution. Nonetheless, there is value in exploring blind channel identification methods. Blind estimation

can improve the estimates based on training or completely avoid the use of training symbols; the reader

is referred to [97, 98] for results on single-user systems.

Single-user channel estimation in the presence of unknown multiple access interference was addressed

in [99]. An approximate maximum-likelihood channel estimation for multiple users entering a system was

presented in [100]; the estimate-maximize algorithm [101] and the alternating projection algorithm [102]

in conjunction with the Gaussian approximation for the multiuser interference were used to obtain a

computationally tractable algorithm. Blind multiuser channel estimation has also been addressed in

13Another possible subdivision can be based on linear and non-linear algorithms. An example of feedback based non-

linear algorithm is the decision feedback based equalization [90].
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several papers [103, 104], with an assumption of coarse synchronization.

Most of the current work, with a few exceptions [105–108], assume square pulse shaping waveforms

leading to closed form optimistic results; see [107] for a detailed discussion. Furthermore, very little

attention has been paid to carrier offset recovery in a multiuser system, except for the results in [87]. In

this section, we will only discuss channel estimation at the base-station, assuming coarse synchronization

and perfect downconversion. For handset channel estimation algorithms, the reader is referred to [107,

109]. Additionally, we restrict our attention to only training based methods; blind techniques are rarely

used in wireless systems14. The channel model assuming T training symbols for each user can be written

as

z = Ua + ν, (30)

where the size of the vectors z and ν, and matrix U is appropriately redefined for an observation

length of T symbols, using the definition in (26). The matrix U depends on the spreading codes, φi[n]

and the training symbols bi[k], all of which are assumed known for all users. Thus, the matrix U is

completely known. The maximum likelihood estimate of the channel coefficients, a, is given by the

pseudo-inverse [4, 91],

â =
(
UHU

)−1
UHz. (31)

The above solution retains several desirable statistical properties of the maximum likelihood estimates

for linear Gaussian problems [110], namely, consistency, unbiasedness and efficiency. Note that there

are several leading zeros in a. The variance of the maximum likelihood estimator â can be reduced by

detecting the unknown number of leading (and possibly trailing) zeros in a, which reduces the number of

estimated parameters. The above channel estimation procedure can also easily be extended to long code

DS-CDMA systems [111]. In practice the additive noise ν is better modeled as colored Gaussian noise

with unknown covariance due to out-of-cell multiuser interference. The maximum likelihood estimate

of a requires estimation of the unknown covariance, thereby leading to more accurate results compared

to (31) at the expense of increased computation [89].

Having estimated the channel for all the users, the channel estimates are then used to detect the

rest of the information bearing bits in the packet. For bit detection, the received signal representation

in (29) is more appropriate, where the matrix Q is formed using the channel estimates â and the user

signature waveforms ψi[n].

14A notable exception is high definition television (HDTV) transmission, where no resources are wasted in training

symbols, and slow channel time-variation permit the use of blind estimation techniques.
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5.2.3 Multiuser Detection

Due to channel induced imperfections and time-varying asynchronism between the users, it is practically

impossible to maintain orthogonality between the user signals’. Multiple access interference (MAI) is

caused by the simultaneous transmission of multiple users, and is the major factor which limits the

capacity and performance of DS-CDMA systems. In the second generation CDMA standards, the

multiple access interference is treated as part of the background noise and single-user optimal detection

strategy is used. The single-user receiver is prone to the near-far problem, where a high power user

can completely drown the signal of a weak user. To avoid the near-far problem, CDMA based IS-95

standard uses tight power control to ensure that all users have equal received power. Even with the

equal received power, the output of the single-user detector is contaminated with MAI and is suppressed

by using very strong forward error correction codes.

The MAI is much more structured than white noise and this structure was exploited in [112] to derive

the optimal detector which minimizes the probability of error. The optimal detector alleviates the near-

far problem which plagues the single-user receiver. The optimal detector, thus, does not require fast

power control to achieve a desired level of performance, thereby reducing the system overhead greatly.

Further, as the number of users increases, the optimal receiver achieves significant gains over single-

user receiver, even with perfect power control. Unfortunately, the optimal receiver is computationally

too complex to be implemented for large systems [113]. The computational intractability of multiuser

detection has spurred a rich literature on developing low-complexity suboptimal multiuser detectors.

Most of the proposed suboptimal detectors can be classified in one of two categories: linear multiuser

detectors and subtractive interference cancellation detectors. Linear multiuser receivers linearly map

the soft outputs of single-user receivers to an alternate set of statistics, which can possibly be used for

an improved detection. In subtractive interference cancellation, estimates for different user signals’ are

generated and then removed from the original signal.

To gain insight into different methods for multiuser detection, we will limit the discussion in this

section to a simple case of no multipath and no carrier frequency errors. We further assume that the

pulse shaping introduces no ISI and all users are synchronous, thereby leading to simplification of (29)

as

z[k] = Qb[k] + ν[k], (32)

where Q =
[
q1 q2 · · · qK

]
, qi =

[
qi[1] qi[2] · · · qi[NP ]

]T
, and b[k] =

[
b1[k] b2[k] · · · bK [k]

]T
.

Note that the above simplification only eliminates ISI not the multiple access interference, which is the

primary emphasis of the multiuser detection. We quickly note that all the subsequently discussed mul-

tiuser detection methods can be extended to the case of asynchronous and ISI channels. The code
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matched filter outputs, y[k] = QHz[k] can be written as

y[k] = Rb[k] + ν[k]. (33)

The K×K matrix R = QHQ is the correlation matrix, whose entries are the values proportional to the

correlations between all pair of spreading codes. The matrix R can be split into two parts, R = D+O,

where D is a diagonal matrix with Dii = Pi. Thus (33) can be written as follows

y[k] = Db[k] + Ob[k] + ν[k]. (34)

The matrix O contains the off-diagonal elements of R, with entries proportional to the cross-correlations

between different user codes. The first term in (34), b[k], is simply the decoupled data of each user and

the second term, Ob[k], represents the MAI.

Matched-filter detector : Also known as single-user optimal receiver, the matched-filter receiver

treats the MAI+ν[k] as white Gaussian noise, and the bit decisions are made by using the matched

filter outputs, y[k]. The hard bit decisions are made as

b̂MF [k] = sign (y[k]) , (35)

where sign(·) is a nonlinear decision device and outputs the sign of the input. The matched-filter

receiver is extremely simple to implement and requires no knowledge of MAI for its implementation.

However the matched-filter receiver suffers from the near-far problem, where a non-orthogonal strong

user can completely overwhelm a weaker user; in fading environments, power disparities are commonly

encountered and perfect power control is generally impossible.

Maximum a posteriori probability (MAP) detector : As the name suggests, the maximum

likelihood detector chooses the most probable sequence of bits to maximize the joint a posteriori prob-

ability, the probability that particular bits were transmitted having received the current signal, i.e.

Prob(b[k]|r(t), for all t). The MAP detector minimizes the probability of error [112]. Under the as-

sumption that all bits are equally likely, the MAP detector is equivalent to the maximum-likelihood

detector, which finds the bits b[k] that maximize the probability Prob (r(t)|b[k]).

For the case of K synchronous users in (32), there are 2K possible transmitted bit combinations

in each received symbol duration. Thus, the computation of the maximum-likelihood bit estimates

requires number of operations proportional to 2K . For large number of users, the number of operations

to obtain maximum-likelihood estimates become prohibitive for real-time implementation.

In the general case of asynchronous users, if a block of M ≤ G bits per user is used to perform the

detection, there are 2MK possible bit decisions, {b[k]}M
k=1. An exhaustive search over all possible bit
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combinations is clearly impractical, even for moderate values of M and K. However, the maximum-

likelihood detector can be implemented using the Viterbi algorithm [114]; the Viterbi implementation

(see Section 5.2.4 for more details on Viterbi decoding) is similar to maximum likelihood sequence

detection for ISI channels [4]. The resulting Viterbi algorithm has a complexity which is linear in block

length M and exponential in the number of users, of the order of M2K .

The maximum-likelihood detector requires complete knowledge of all user parameters which not

only include the spreading signatures of all users but also their channel parameters. The channel pa-

rameters are unknown a priori, and have to be estimated. Despite the huge performance and capacity

gains of the maximum-likelihood detector, it remains impractical for real-time systems. The compu-

tational intractability of the ML detector has led to several detectors which are amenable to real-time

implementation.

Linear detectors : Linear detectors map the matched filter outputs, y[k], in Equation (33) into another

set of statistics to reduce the MAI experienced by each user. Two of the most popularly studied matched

filter receivers are the decorrelating detector and minimum mean-squared error (MMSE) detector.

The decorrelating detector was proposed by [115, 116] and was analyzed in [117, 118]. The

decorrelating detector uses the inverse of the correlation matrix, R−1, to decouple the data of different

users. The output of the decorrelating detector before hard decision is given by

b̂dec[k] = R−1y[k], (36)

= b[k] + R−1
ν[k], (37)

= b[k] + νdec[k]. (38)

The decorrelating detector completely suppresses the MAI at the expense of reduced signal power15.

For non-multipath channels and unknown user amplitudes, the decorrelating detector yields optimal

maximum likelihood estimates of the bits and the received amplitudes. The decorrelating detector

leads to substantial performance improvements over the single-user detector [118] if the background

noise is low compared to the MAI. In addition to the noise enhancement problem, the computational

complexity of the decorrelating detector can be prohibitive to implement in real-time; however, dedicated

application specific integrated circuits (ASIC) can ameliorate the real-time implementation issues. The

computational complexity of the decorrelating detector prohibits its use for long-code CDMA systems,

since it requires recomputation of R−1 for every bit.

The MMSE detector [119] accounts for the background noise and the differences in user powers

to suppress the MAI. The detector is designed to minimize the mean-squared error between the actual

15The decorrelating detector is very similar to the zero-forcing equalizer [4] which is used to completely suppress ISI.

28



data, b and the soft estimate of data, b̂mmse. The MMSE detector hard limits the following transform

of the received signal,

b̂mmse =
(
R + σ2I

)−1
y[k]. (39)

The MMSE detector16 balances between the suppression of MAI and suppression of background noise.

The higher the background noise level, the lesser is the emphasis on suppressing MAI and vice versa. The

MMSE detector has been shown to have a better probability of error than the decorrelating detector [12].

It is clear that as the background noise goes to zero, the MMSE detector converges to the decorrelating

detector. On the other hand, as the background noise becomes more dominant compared to MAI, the

MMSE detector converges to a single-user detector. Unlike the decorrelator and single-user receiver,

the MMSE detector requires an estimate of user amplitudes. Further, the complexity of the MMSE

detector is similar to that of the decorrelator.

A blind extension of the MMSE detector, which does not require the knowledge of other user codes

and parameters, was presented in [120]. The blind MMSE is similar to the commonly used beamformer

in antenna array processing [121]. The probability of error performance of the MMSE detector was

studied in [122]. The MMSE estimator was extended to multiple data rate systems, used in the third

generation standards, in [123, 124].

Subtractive interference cancellation : The basic idea in subtractive interference cancellation is

to separately estimate the MAI contribution of each user and use the estimates to cancel a part or all

the MAI seen by each user. Such a detector structure can be implemented in multiple stages, where

each additional stage is expected to improve the accuracy of the decisions. The bit decisions used

to estimate MAI can be hard (after the sign(·) operation) or soft (before the sign(·) operation). The

nonlinear hard-decision approach uses the bit decisions and the amplitude estimates of each user to

estimate the MAI. In the absence of reliable estimates, the hard-decision detectors may perform poorly

as compared to their soft-decision counterparts [125, 126].

The successive interference cancellation (SIC) detector cancels interference serially. At each

stage of the detector, bit decisions are used to regenerate a user signal and cancel out the signal of one

additional user from the received signal. After each cancellation, the rest of the users see a reduced

interference. The SIC detector is initialized by ranking all the users by their received power. For the

following discussion, assume that the subscripts represent the user rank based on their received powers.

The received signal corresponding to user 1 is denoted by z1[n] (cf (32)), and its bit estimate is denoted

by b1[n]. The SIC detector includes the following steps:

1. Detect the strongest user bit, b1[k], using the matched-filter receiver.
16The MMSE detector is similar to the MMSE linear equalizer used to suppress ISI [4].
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2. Generate an estimate, ẑ1[n], of the user signal based on the bit estimate, b1[k], and the channel

estimate.

3. Subtract ẑ1[n] from the received signal z[n], yielding a signal with potentially lower multiple access

interference.

4. Repeat Steps (1)-(3) for each of the successive users using the “cleaned” version of the signal from

the previous stage.

Instead of using the hard bit estimates, b̂i[k], soft bit estimates (without the sign operator) can also

be used in Step 3. If reliable channel estimates are available, hard decision SIC generally outperforms

the soft-decision SIC; the situation may reverse if the channel estimates have poor accuracy [125, 126].

The reasons for canceling the signals in descending order of received signal strength are as follows.

First, acquisition of the strongest user is the easiest and has the highest probability of correct detection.

Second, the removal of the strongest user greatly facilitates detection of the weaker users. The strongest

user sees little or no interference suppression but the weakest user can potentially experience a huge

reduction in MAI. Third, SIC is information theoretically optimal, i.e., optimal performance can be

achieved using SIC [127].

The SIC detector can improve the performance of the matched-filter receiver with minimal amount

of additional hardware, but SIC presents some implementation challenges. First, each stage introduces

an additional bit delay, which implies that there is a trade-off between the maximum number of users

that are canceled and the maximum tolerable delay [128]. Second, time-variation in the received powers

caused by time-varying fading requires frequent reordering of the signals [128]. Again, a trade-off

between the precision of the power ordering and the acceptable processing complexity has to be made.

Note that the performance of SIC is dependent on the performance of the single-user matched filter

for the strongest users. If the bit estimates of the strongest users are not reliable, then the interference

due to the stronger users is quadrupled in power (twice the original amplitude implies four times the

original power). Thus, the errors in initial estimates can lead to large interference power for the weaker

users, thereby amplifying the near-far effect. So, for SIC to yield improvement over matched filter, a

certain minimum performance level of the matched-filter is required.

In contrast to the SIC detector, the parallel interference cancellation (PIC) detector [129]

estimates and cancels MAI for all the users in parallel. The PIC detector is also implemented in

multiple stages:

1. The first stage of the PIC uses a matched-filter receiver to generate bit estimates for all the users,

b̂MF [k].
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2. The signal for the matched filter for user i in the next stage is generated as follows. Using the

effective spreading codes and the bit estimates of all but the ith user, the MAI for user i is

generated and subtracted from the received signal, r[n].

3. The signal with canceled MAI is then passed to the next stage which hopefully yields better bit

estimates.

4. Steps (1)-(3) can be repeated for multiple stages. Each stage uses the data from the previous

stage and produces new bit estimates as its output.

The output of (m+ 1)st stage of the PIC detector can be concisely represented as

b̂(m+1)[k] = sign
(
y[k] −Ob̂(m)[k]

)

= sign
(
Db[k] + O(b[k] − b̂(m)[k]) + ν[k]

)
(40)

The term Ob̂(m)[k] is the estimate of MAI after the mth stage. Since soft-decision SIC exploits power

variation by canceling in the order of signal strength, it is superior in a non power-controlled system.

On the other hand, soft-decision PIC has a better performance in a power-controlled environment.

Performance evaluation of soft-decision PIC can be found in [130, 131]. A comparison of the soft-

decision PIC and SIC detectors can be found in [130].

The susceptibility of the PIC to the initial bit estimates was discussed in [129]. An improved PIC

scheme, which uses a decorrelator in the first stage, was proposed in [132]. The decorrelator based PIC

detector provides significant performance gains over the original PIC scheme. Further improvements to

PIC detector’s performance can be obtained by linearly combining the outputs of different stages of the

detector [133].

For long-code systems, multistage detection is best suited for its good performance-complexity trade-

off. Multistage detection requires only matrix multiplications in each processing window while other

multiuser detectors like the decorrelator and MMSE detector require matrix inversions during each

processing window due to the time-varying nature of the spreading codes.

5.2.4 Channel Decoding

Following the multiuser detection, the detected symbols are decoded using a channel decoder to produce

an estimate of the transmitted information bits. In this section we will review decoders for FEC coding

when the sender uses either one or more than one transmit antenna. For single antenna systems, we will

consider Viterbi decoding [134] of convolutional codes and review its lower complexity approximations.

For multiple antennas, the ML decoder for the Alamouti scheme is presented along with a discussion

on complexity of decoding space-time trellis codes.
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Single transmit antenna: The detected bits after the multiuser detection can be treated to be free of

multiple access interference and hence a single-user channel decoder can be used. Viterbi decoding for

convolutional codes is an application of the dynamic programming principle, and allows efficient hard

or soft decision decoding of convolutional codes. Furthermore, Viterbi decoding is amenable to VLSI

implementation.

To understand the decoding of a convolutional code, an alternate representation for the encoding

process, known as a trellis diagram, is better suited. A convolutional code is a finite state machine,

whose next state and output is completely determined by its current state and input. The states of a

convolutional code can be depicted using a trellis diagram. The trellis diagram for the example code

in Figure 7 is given in Figure 11. A close examination of the trellis diagram in Figure 11 reveals that

the diagram repeats itself after three stages, which is equal to the constraint length of the code, S = 3.

In fact, the three outputs are completely determined by the first two states of the system and the

input, which explains the four possible states (‘00’, ‘01’, ‘10’ and ‘11’) in the trellis and the two possible

transitions from the current state to the next state based on the input (‘0’ or ‘1’). The solid transitions

are due to input ‘0’ and the dashed line shows transition due to input ‘1.’ The numbers along the

transition describe the output of the decoder due to that transition.

Assume that κ encoded bits were sent using a rate R convolutional code; note that κ can be less than

the packet length G if a training sequence is sent in the packet for channel estimation. The maximum

a posteriori decoder chooses the information bit sequence which maximizes the posterior probability of

the transmitted information symbols given the received noise corrupted signal. To compute the exact

estimate of the transmitted information symbols, a total of 2κR bits should be considered. In [134],

it was shown that due to encoding structure of the convolutional codes, the optimal decoder has a

complexity which is linear in the codeword length κ. In the Viterbi algorithm, a metric is associated

to each branch of the code trellis. The metric associated with a branch at a particular stage or level i,

is the probability of receiving ri, when the output corresponding to that branch is transmitted. A path

is defined as a sequence of branches at consecutive levels so that the terminal node of a branch ends

in the source node of the next branch. The metric associated with a path is the sum of the metrics

associated with the branches in the path. And the metric associated to a node is the minimum metric

associated with any path starting from the start node to that node. With the above associations, the

MAP codeword corresponds to the path that has the lowest metric from the start node to the final

node. If the decoder starts and ends in state 0, with start level labeled 0 and end level labeled κ, then

for all 0 < l < κ, the defining equation in the optimization problem is

metric(0, κ) = min
m∈ states

(metric(0, lm) +metric(lm, G)) (41)
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where metric(i, j) is the minimum metric of any path originating from node i and ending in node j

and lm represent the mth node in level l. With additive Gaussian noise, the metric for each branch is

the mean-squared error between the symbol estimate and the received data. Once we know the metric

associated with all the nodes in level l, the metric associated with the mth node in level l + 1 can be

calculated by

metric(0, (l + 1)m) = min
i∈ states

(metric(0, li) +metric(li, (l + 1)m)) . (42)

If there is no branch between the node i in state l and node m in state l+1, then the metric associated

with that branch is assumed to be infinitely large.

This iterative method of calculating the optimal code reduces the complexity of the decoder to

be linear in codeword length κ. However, at every stage of the trellis, the Viterbi algorithm requires

computation of the likelihood of each state. The number of states is exponential in the size of the

constraint length, S, of the code, thereby making the total complexity of the algorithm of the order of

κ2(S+1).

For large constraint lengths, the Viterbi decoding can be impractical for real-time low-power applica-

tions. As applications require higher data rates with increasing reliability, higher constraint lengths are

desirable. There have been several low-complexity alternatives to Viterbi decoding proposed in the liter-

ature: sequential decoding [135], majority logic decoding [136], M-algorithm or list-decoding [137, 138],

T-algorithm [139], reduced state sequence detection [140, 141] and maximal weight decoding [59].

As noted in the beginning of this section, most of the channel coding and decoding procedures are

designed for single-user AWGN channels or fading channels. In the presence of multiaccess interference,

joint multiuser detection and decoding [142–146] can lead to lower error performance at the expense of

increased receiver complexity.

Multiple transmit antennas: The information symbols encoded using the Alamouti scheme in Fig-

ure 8 admit a simple maximum likelihood decoder. With two transmit and single receive antenna, the

sampled received signal in two consecutive time symbols is given by

z[1] = h1s1 + h2s2 + n1

z[2] = −h1s
∗
2 + h2s

∗
1 + n1

where n1 and n2 are assumed to be independent instances of circularly symmetric Gaussian noise with

zero mean and unit variance. The maximum likelihood detector builds the following two signals,

ŝ1 = h∗1z[1] + h2z
∗[2] = (|h1|

2 + |h2|
2)s1 + h∗1n1 + h2n

∗
2

ŝ2 = h∗2z[1] − h1z
∗[2] = (|h1|

2 + |h2|
2)s2 − h0n

∗
1 + h∗1n1 (43)
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followed by the maximum likelihood detector for each of the symbol si, i = 1, 2. The combined signals

in (43) are equivalent to that obtained from a two-branch receive diversity using maximal ratio com-

bining (MRC) [6]. Thus, the Alamouti scheme provides an order two transmit diversity much like an

order two receive diversity using MRC. Note that both the Alamouti and MRC schemes have the same

average transmission rate, one symbol per transmission, but the Alamouti scheme requires at least two

transmissions to achieve order two diversity, while MRC achieves order two diversity per transmission.

If a space-time trellis code is used, then the decoder is a simple extension of the decoder for the

single-antenna case. As the number of antennas is increased to achieve higher data rates, the decoding

complexity increases exponentially in the number of transmit antennas [5], thereby requiring power

hungry processing at the receiver. Though there is no work on reduced complexity decoders for space-

time trellis codes, complexity reduction concepts for single-antenna trellis decoding should apply (see

above).

5.3 Power Control

Power control was amply motivated on the capacity grounds in Sections 4.1 and 4.2; in this section,

we will only highlight some of the representative research on power control methods and its benefits.

Power control is widely used in second and third generation cellular systems. For instance, in IS-95,

transmit power is controlled not only to counter the near-far effect, but also to overcome the time-

varying fading. By varying the transmit power based on the channel conditions, a fixed received signal

to noise ratio (SNR) can be achieved. A SNR guarantee implies a guarantee on the reliability of received

information, through the relation between the packet error rate and the received SNR [4].

Information theoretically optimal power control for a multiuser system was discussed in [147–150].

While providing a bound on the achievable capacity, the proposed power control algorithms assume

perfect knowledge of the time-varying channel at the transmitter. Hence, the power control policies

and the resultant system performance is only a loose bound for the achievable performance. Network

capacity analysis with power control errors has appeared in [151, 152, and references therein].

Recently, significant research effort has been devoted to power control algorithms for data traffic, e.g.,

the work in [153–160]. Most of the above work on power control has been for circuit switched networks,

where users are given a certain dedicated channel for their entire session. With the advent of services

supporting bursty traffic, like email, web browsing etc., resource allocation for shared channels and

packet networks becomes of importance. First steps in these directions can be found in [158, 159, 161].

Lastly, we note that power control can also lead to gain in packet switched networks, like IEEE 802.11

or ad hoc networks; preliminary results can be found in [162, 163].
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6 Conclusions

If the relentless advances in wireless communications in the past decade are an indicator of things

to come, then it is clear that we will witness not only faster ways to communicate, but also newer

modes of communication. The fundamental information theoretic bounds hold as long as the assumed

communication model holds. The capacity of the channel can be “increased,” by introducing new

capabilities like multiple antennas and ad hoc networking. Thus, it will be safe to conclude that the

actual physical limits of wireless communication are still unknown and it is for us to exploit that

untapped potential with a mix of creativity and serendipity.
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Figure 1: Components of a cellular wireless network.
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Figure 2: Multipath propagation.
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Figure 3: Time variations in the received signal power due to multipath and user mobility.
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Figure 4: Capacity with multiple transmit antennas and single receive antenna, with different amount

of channel state information at the transmitter.
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Figure 5: DS-CDMA handset transmitter components.

Figure 6: Convolutional encoder.
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Figure 7: Convolutional encoder for a (3,1) code.

Figure 8: Alamouti encoder for two transmit and one receive antenna.
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Figure 9: The spreading operation.
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Figure 10: Base-station receiver structure.

Figure 11: Trellis diagram for the example (3,1) convolutional code.
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