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Population coding
✼ Describe a population as parallel point process

channels
✼ Variations

➣ Separate inputs
➣ Common input
➣ Dependence among channels

✼ What do information theoretic
considerations suggest is best?
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Modeling approach
✼ We would like to use point process models

for the outputs
➣ Technically very difficult to describe

connection-induced dependencies
➣ Use simpler Bernoulli models, capable of

describing complex correlation structures
✼ Assume homogeneous populations
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A note on modeling
✼ Correlation, orthogonal model

✼ Exponential model
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Fisher information analysis
✼ How should the stimulus be encoded in spike

rate to achieve constant Fisher information?
✼ Input structure not important
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Kullback-Leibler distance and data analysis

✼ α0, α1 two different stimulus conditions
✼ p (x; α) - response probabilities
✼ K-L distance is the “exponential rate” of a

Neyman-Pearson classifier’s false-alarm
probability

✼ Distance resulting from information
perturbations is proportional to Fisher
information
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Data Processing Theorem Redux

✼ “Systems cannot create information”
✼ Basis for a system theory for information

processing and determining which structures
are inherently more effective
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Population encoding properties from a
K-L distance perspective
✼ Individual inputs don’t necessarily achieve

maximal information transfer

✼ Explicitly indicating that the inputs encode a
single quantity reveals that perfect fidelity is
possible

X

Y1

...

Y2

YN

    

! 

"X,Y (N ) # 1$
k

N
or

"X,Y (N ) # 1$ e
$kN

γX,Y(N)
1

0 N
1

    

! 

"X,Y (N ) # max
i

" X i,Yi



Another viewpoint: Channel Capacity
✼ Capacity for the stationary point process

channel is known
➣ If 0 ≤ λt ≤ λmax is the “power” constraint

➣ If we additionally constrain average rate

✼ Capacity achieved by a Poisson process
driven by a random telegraph wave
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Channel capacity of populations
✼ Use a Bernoulli model and investigate the small

probability limit to determine capacity for
parallel Poisson channels

✼ The two input structures have the same capacity
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Imposing connection dependence
changes the story
✼ Using Bernoulli models, connection dependence

can be added
✼ Caveat: modeling Poisson processes
✼ Interesting restrictions arise

➣ Capacity depends only on pairwise
correlations (dependencies)

➣ Only positive pairwise correlations possible
➣ Restricted range of correlation values

• For homogenous populations:
• For inhomogenous populations:  
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Capacity results
✼ Capacity achieved with a homogeneous

population
✼ Correlation affects the two input structures

differently
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✼ Qualitatively similar to Gaussian channel results



However…
✼ As population size increases, introducing

connection-induced dependence reduces
capacity

Capacity unaffected by input- or connection-
induced dependence

✼ Fits with previous results derived using
Fisher information



Poisson vs. Non-Poisson Models
✼ Results derived using a Poisson assumption
✼ How about non-Poisson models?
✼ Probably impossible to extend Bernoulli

approach to interesting non-Poisson cases,
but…

✼ Kabanov showed that the single-channel
Poisson capacity bounded the capacity of all
other point process models

✼ Does this bound apply to multi-channel
processes as well?



Connection-induced dependence
✼ Bernoulli model vague about how

correlations are induced
✼ If internal feedback is used…

➣ Feedback can increase capacity
➣ M. Lexa has shown that internal feedback

can increase the performance of
distributed classifiers
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Conclusions
✼ From two theoretical viewpoints, connection-

induced dependence not required to increase
capacity

✼ Specific forms of dependence may increase a
population’s processing power

✼ Capacity afforded by non-Poisson models
probably bounded by Poisson result, but not in
detail


