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Abstract. Researchers studying neural coding have speculated that populations of neurons would more effec-
tively represent the stimulus if the neurons “cooperated:” by interacting through lateral connections, the neurons
would process and represent information better than if they functioned independently. We apply our new theory of
information processing to determine the fidelity limits of simple population structures to encode stimulus features.
We focus on noncooperative populations, which have no lateral connections. We show that they always exhibit pos-
itively correlated responses and that as population size increases, they perfectly represent the information conveyed
by their inputs regardless of the individual neuron’s coding scheme. Cooperative populations, which do have lateral
connections, can, depending on the nature of the connections, perform better or worse than their noncooperative
counterparts. We further show that common notions of synergy fail to capture the level of cooperation and to reflect
the information processing properties of populations.
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1. Introduction

With advances in multi-electrode recording techniques
and spike-sorting algorithms, researchers can discern
the individual discharge patterns of several neurons
located within a small region. Such recordings allow
study of population coding: how does the population
(neural assembly) as a whole represent information?
Perhaps the simplest population occurs in sensory
systems, where several neurons receive innervation
from cells representing the same feature space. For
example, in the peripheral auditory system, many
auditory-nerve fibers innervate the same region of
the cochlea, which means that their outputs represent
the same frequency range. The populations receiving
auditory-nerve fiber input would fall into the category
of populations of concern here. The standard presump-
tion is that neurons within a population “cooperate”
to better encode information contained in their inputs.

Many investigators have developed statistical tests to
determine whether such population coding is occur-
ring or not. Most of these tests focus on synergy as
measured by information theoretic quantities (entropy
and mutual information): the population’s response
considered as a whole represents stimuli better than
the sum of individual neuron response contributions
(Alonso et al., 1996; Bezzi et al., 2001; deCharms
and Merzenich, 1996; Kang and Sompolinksy, 2001;
Kilgard and Merzenich, 1999; Nirenberg et al., 2001;
Reich et al., 2001; Warland et al., 1997).

Surveying the literature reveals remarkably incon-
sistent findings; some report synergy, some none, and
some anti-synergy (the whole conveys less than the
sum of individual contributions) in population record-
ings. In this paper, we endeavor to understand from
a general theoretical perspective how well the sim-
ple neural population structures shown in Fig. 1 can
represent the stimulus information expressed by their
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Figure 1. A neural population is defined here as a group of statistically identical neurons that receive a common set of inputs X . “Statistically
identical” means that the probability distribution of the output for a given stimulus is the same for each neuron. In such homogeneous populations,
the responses will differ in detail but each has the same average response. The simplest population, the independent one shown at the left, has
statistically identical and independent inputs, which makes the outputs statistically independent. The noncooperative configuration has neurons
with a common input but no other interactions, and thus reflects stimulus-induced dependencies. In the cooperative case shown on the right, the
neurons interact and thus express stimulus- and connection-induced dependencies. For graphic simplicity, only nearest-neighbor interactions
are shown; in general, any kind of interactions are allowed.

inputs. The framework for this analysis is our new the-
ory of information processing (Johnson et al., 2001;
Sinanović and Johnson, 2004). This theory quantifies
how well single- and multi-neuron discharge patterns
encode information according to a coding fidelity mea-
sure. Rather than using entropy or mutual information,
we define synergy with our measure in a way simi-
lar to previous definitions. We use our coding fidelity
measure to quantify how well systems can process in-
formation by operating on their inputs and encoding
the result in a population code. Other than requiring
that neural discharge patterns have a probabilistic de-
scription, our theory makes no assumptions about the
neurons, what stimulus features are encoded, or what
the neural code is. Because we do not rely on neural
models to make theoretical predictions, the source of
discharge pattern randomness is not specified: it could
arise from the stimulus, the neural input, from the spike
generator, or any combination of these. Furthermore,
we are not restricted to analytic models chosen for
tractability rather than appropriateness (e.g., Gaussian
models). Rather than use detailed statistical models for
the population’s joint statistics, we focus on the infor-
mation processing properties inherent to various popu-
lation structures. Using our theory, we show that simple
cooperative populations, which contain both stimulus-
induced and connection-induced statistical dependen-
cies among the individual neural outputs, can express
both synergy (the population expresses the stimulus
better than the sum of individual neuron contributions)
and anti-synergy (the population expresses the stimu-
lus less well than the sum). Which occurs depends on
the statistical relationships among the neural responses
that result from the cooperation. Regardless of which

measure is used, ours or others, we show that synergy
measures do not assess cooperation and that structures
that do not exhibit synergy can encode stimuli as well
as theoretically possible. In particular, we show that
noncooperative populations, which only have stimulus-
induced dependencies, can always represent stimulus
features with arbitrary fidelity regardless of the neural
code if the population size is sufficiently large.

2. Methods

We use the symbols X and Y to denote a neuron’s
input and output, respectively (Fig. 1). What aspects
of the input and output code information need not be
stated in our theory. For example, X could represent
the spike count over some time interval, spike occur-
rence times, or some other quantity extracted from the
spike train. The input X could also express a popula-
tion’s response by representing the spike times of sev-
eral neurons, and even incorporate the state of some
neuromodulator. The population output is expressed
by the vector Y = [Y1, . . . , YN ], with Yn representing
the nth neuron’s output and N denoting the population
size. As with the input, Yn can represent any aspect of
the discharge pattern. Because of this generality and
because we don’t rely on any neural models, the re-
sults contained here apply to a wide variety of signal-
ing mechanisms. The conditional probability function
pYn |X (yn | x) describes each neuron’s input-output re-
lationship in statistical terms. When this conditional
probability function is the same for each neuron, we
have a homogeneous population. In this case, each neu-
ron’s output obeys the same probability law as the oth-
ers, but the output signals will differ.
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Our work focuses on the three population structures
shown in Fig. 1. When each neuron’s input is statisti-
cally independent of the other neurons’ inputs and the
neurons do not cooperate, we have the independent
population. In an independent structure, the individual
neuron responses are statistically independent of each
other and, as we show later, this population exhibits
no information processing gain beyond that of a single
neuron. In a noncooperative population, the common
innervation of population neurons means that each neu-
ron’s response is statistically dependent on the others to
some degree; we refer to this dependence as stimulus-
induced dependence.1 In a cooperative population, the
neurons interact with each other via collaterals and/or
interneurons—cooperate—to create connection-
induced dependence. In general, cooperative popula-
tions also have stimulus-induced dependence.

The three population structures are mathematically
specified by the different forms they yield for pY(y; α)
that describes the joint probability function of the
aggregate population output. We assume that this
probability function varies with the stimulus, repre-
sented here symbolically by α. For the independent
structure, the stimulus drives a set of statistically
independent inputs that serve a population of noncoop-
erative neurons. The outputs are thus statistically inde-
pendent, and the population’s probability function fac-
tors: pY (y; α) = pY1 (y1; α) · pY2 (y2; α) . . . pYN (yN ; α),
which can be more succinctly expressed using the prod-
uct notation pY(y; α) = ∏N

n=1 pYn (yn; α). The nonco-
operative structure has the property that for each spe-
cific input, the population output has statistically in-
dependent components. “Specific input” here means a
particular value for the neural input X , a specific se-
quence of spike times for example, but not some partic-
ular stimulus. Mathematically, this property means that
the outputs are statistically independent when condi-
tioned on the input: pY|X (y | x) = ∏N

n=1 pYn |X (yn | x).
The omission of α from terms in the product is inten-
tional; this notation expresses the assumption that each
neuron has no knowledge of the stimulus attribute other
through its input X . The nth neuron’s output probability
function and the population’s joint probability function
are

pYn (yn; α) =
∫

pYn |X (yn | x)pX (x ; α) dx (1)

pY(y; α) =
∫ N∏

n=1

pYn |X (yn | x)pX (x ; α) dx (2)

Because of the integral, the joint probability function
does not factor and we have mathematically expressed
stimulus-induced dependence. In the cooperative case,
the joint probability distribution does not have any par-
ticular form, which means that both connection- and
stimulus-induced dependence can occur.

Typically, theoretical analyses of neural coding em-
ploy Fisher information (Abbott and Dayan, 1999;
Wilke and Eurich, 2002; Shamir and Sompolinsky,
2001) or measures widely used in information theory
such as entropy and mutual information (Tishby et al.,
1999; Strong et al., 1998; Warland et al., 1997). We
use an information-theoretic distance here to tackle
neural coding in a broader fashion. In our theory of
information processing, which is described more fully
in Sinanović and Johnson (2004), a neural code’s ef-
ficacy can be judged by the ability to discriminate a
stimulus change from the response and by the ability
to estimate the stimulus from the response. We wanted
a quantity related to the classification and estimation
performance levels a hypothetical optimal processor
could achieve by observing single-neuron or popula-
tion responses. Fisher information is directly related to
estimator performance through the Cramér-Rao bound
(Abbott and Dayan, 1999; Johnson et al., 2001), but not
to classification. Neither entropy nor mutual informa-
tion can be directly related to either processing crite-
rion.2 Rate distortion theory offers a way to relate mu-
tual information to classification and estimation issues
in a very general way (Shannon, 1948; Kolmogorov,
1956; Berger, 1971). This theory forms the heart of the
information bottleneck method (Tishby et al., 1999).
However, this approach requires the stimulus to have
a stochastic model and an explicitly specified measure
of the error between the encoded and decoded stimu-
lus. Choices for either the stimulus model and the error
measure greatly affect the results (Johnson, 2002).

In addition to desiring a quantity that could assess
both classification and estimation abilities, we wanted
it to act like an “information probe.” We wanted a mea-
sure that could be used to analyze any response mea-
sured along a pathway so that we could determine what
stimulus features were well encoded at each stage and
how well each neural system processed its input. We
did not want to limit the kind of response studied; we
wanted to encompass single-neuron discharge patterns,
population discharges, intracellular signals, and behav-
iors. With this information probe, we could empirically
or theoretically study how a pathway processed and in-
tegrated information. This work describes a theoretical
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study of simple population structures that reaches gen-
eral conclusions on how well a population’s collective
output represents information.

Our information probe is an information-theoretic
distance between the probability distributions describ-
ing the responses to two stimulus conditions (Johnson
et al., 2001). The distance measure we use is the
Kullback-Leibler (KL) distance because it quantifies
coding effectiveness: how well can the stimulus change
be discerned from the responses and how well can the
stimulus be determined. Details on the theoretical rea-
sons for using the KL distance are found elsewhere
(Sinanović and Johnson, 2004); empirical methods are
detailed in Johnson et al. (2001). The KL distances
between the population’s input and output that result
when the stimulus is α0 and when it is α1 are given by
the following integrals.

DX (α1 ‖ α0) =
∫

pX (x ; α1) log
pX (x ; α1)

pX (x ; α0)
dx (3)

DY(α1 ‖ α0) =
∫

pY(y; α1) log
pY(y; α1)

pY(y; α0)
dy (4)

The logarithm base is arbitrary; we use base-two loga-
rithms, which makes our distance have units of bits.
The only assumption made in information process-
ing theory is that the signals are stochastic, and thus
are described entirely by their probability functions.
We make no assumption about the stimulus; it can be
deterministic or stochastic. To calculate the KL dis-
tance, we need the probability model (either actual or
measured) describing the response such as expressed
by the probability functions in Eqs. (1) and (2). The
relation of the KL distance to optimal classification
and estimation is detailed in Johnson et al. (2001).
Briefly, the error probability of an optimal classifier
that tries to distinguish between the responses to the
stimuli parameterized by α0 and α1 decreases expo-
nentially in the KL distance: Pe ∼ 2−D(α1 ‖ α0). Further-
more, for small differences between the stimuli, the
KL distance is proportional to the Fisher information:
D(α0 + δα ‖ α0) ≈ F(α0) · (δα)2/2. Thus, with one
quantity we can assess coding effectiveness from both
classification and estimation perspectives.

The KL distance between random vectors having sta-
tistically independent components equals the sum of
the distances between each component (Johnson et al.,
2001): DY(α1 ‖ α0) = ∑N

n=1 DYn (α1 ‖ α0). This so-
called additivity property is shared by the entropy and
mutual information measures. For independent neural

populations, population coding effectiveness equals the
sum of what individual neuron contribute. We define
synergy (anti-synergy) to occur when the population
distance is greater (less) than the sum of individual
distances, a definition similar to that when entropy or
mutual information measures are used. Thus, the inde-
pendent population defines the baseline against which
we determine synergy. We show later that populations
can show synergy, anti-synergy, or both.

How well a population processes the stimulus in-
formation contained in its input is quantified by the
information transfer ratio γ of KL distances between
the population’s responses to two stimulus conditions
and between the population’s inputs corresponding to
the same stimuli (Johnson et al., 2001).

γX,Y(α0, α1) = DY(α1 ‖ α0)

DX (α1 ‖ α0)

The information transfer ratio quantifies how a
system—here, a neural population—affects the abil-
ity to discern the stimulus from its output relative to its
input. Note that we can find the information transfer ra-
tio even when the neural codes of the input and output
differ; in fact, the nature of signals could differ. For ex-
ample, the input could be a post-synaptic potential and
the output a spike train (Johnson et al., 2000; Rozell
et al., 2002). Because KL distances and the information
transfer ratio can be applied to any signal, they provide
a general means of analyzing the information process-
ing of neurons and populations. A fundamental result
from information theory, the data processing theorem
or inequality (Cover and Thomas, 1991; Johnson et al.,
2001), states that this ratio must be less than or equal
to one. This result means that no system can enhance
the effectiveness of stimulus coding beyond that of its
input. Thus, the information transfer ratio quantifies
the fidelity of the population’s information processing.
Consequently, the fidelity cannot be greater than one:
a population cannot create a less noisy representation
of the stimulus than found in its input. This important
concept from our theory of information processing ap-
plies regardless of the population structure or the kinds
of neurons in the population; they can even be inhomo-
geneous and encode the stimulus differently. A small
value for γ means that little of the information about the
two stimulus conditions expressed by the input appears
in the neural output. A value approaching one means
that nearly all of the information in the input about
the stimulus change appears in the output. We could
have the situation wherein the population suppresses
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some stimulus features so as to enhance the represen-
tation of some other feature. Such information filtering
is certainly allowed. We usually take α0 to represent a
reference stimulus condition and α1 to represent stimu-
lus changes with respect to this reference. The stimulus
change α0 → α1 could correspond to changing a sup-
pressed or a desired feature, which presumably results
in small or large values for γ, respectively. Our previ-
ous work has shown that information filtering can be
dynamically expressed in neural responses (Johnson
et al., 2001).

Our goal here is to study the three population struc-
tures defined here—the independent, the noncoopera-
tive and the cooperative—to determine whether they
can represent information conveyed by their inputs.
To study the fidelity problem, we seek the asymptotic
behavior of the information transfer ratio. As pop-
ulation size increases, is the population collectively
able to achieve perfect fidelity? Mathematically, does
γ (N ) → 1 as N → ∞ for some stimulus attribute
change? Furthermore, we want to determine how large
the population needs to be to achieve a given fidelity
and how this size depends on population structure.
This approach allows a population’s redundancy to be
defined. In communications engineering, redundancy
means more is available than needed to achieve some
given level of fidelity. In our framework, wherein fi-
delity is quantified by the information transfer ratio,
any population larger than that needed to achieve a
specified value γ0 is a redundant population. Whether
a population can exhibit redundancy depends on its
structure in addition to its size. For example, increasing
independent and noncooperative populations results in
the same structure. Studying redundancy in coopera-
tive structures can be tricky. If we assume that coop-
erative populations have a regular structure, increasing
the number of neurons elaborates the same underly-
ing structure, making it easy to characterize its prop-
erties. However, the loss of any neuron in a regular
structure may not result in a smaller population having
the same structure. For independent and noncoopera-
tive structures, loss of any neuron leaves the structure
unchanged.

3. Results

3.1. Correlation Between Neuron Outputs

As a preliminary, we need to characterize the stimulus-
induced dependence found in homogeneous nonco-

operative populations. We use here the pairwise cor-
relation coefficient ρ because of its simplicity. In
Appendix A we show that this correlation coefficient
cannot be negative. Thus, stimulus-induced depen-
dence in a homogeneous population always results in
positive correlation between pairs of neural outputs:
ρ ≥ 0. Maximal correlation (ρ = 1) occurs only in the
noncooperative structure when the each neuron’s out-
put equals its input: the neurons introduce no random-
ness and serve as ideal relay cells. The correlation de-
creases with increasing noninput-related randomness
in each neuron’s output. Minimal correlation (ρ = 0)
occurs when we have the independent structure or when
each neuron’s output does not depend on the input.

A simple example shows that if a population were to
encode binary stimulus attributes (is the stimulus on or
off, for example), synergy can result from correlation
(the KL distance obtained at the population’s output
can be greater than that provided by the independent
population). We considered a two-neuron population,
each of which is described by a Bernoulli model for the
number of spikes occurring in a time bin. This model
merely says that no more than one spike can occur
in a bin and that the probability of a spike in a bin
is p, which equals the product of discharge rate and
binwidth. The binwidth is usually chosen so that the
resulting probability is never large (does not exceed
0.5, for example).

Pr[m spikes in a bin] =




p m = 1

1 − p m − 0

0 m > 1

(5)

Bernoulli models for the two-neuron population are
specified by the correlation coefficient ρ and the spike
probabilities for each neuron.3

Pr[Y1 = m1; Y2 = m2]

=




ρ
√

p1(1 − p1)p2(1 − p2) + p1 p2 m1 = 1, m2 = 1
p1 − Pr[Y1 = 1; Y2 = 1] m1 = 1, m2 = 0
p2 − Pr[Y1 = 1; Y2 = 1] m1 = 0, m2 = 1
1 − p1 − p2 + Pr[Y1 = 1; Y2 = 1] m1 = 0, m2 = 0

(6)

We assume that the spike probabilities and the corre-
lation can vary with stimulus attribute. Note that be-
cause we model the joint probability function of the
population’s output, we do not directly specify what
population structures can yield various combinations
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Figure 2. We used a Bernoulli model for a simulated two-neuron population. The first stimulus condition produced a spike probability of
p = 0.2 and a correlation ρ = 0. The second stimulus condition yielded values of p and ρ located somewhere in their allowable domain
(nonallowable combinations of p, ρ yield negative probabilities for the population’s joint response). The left panel shows the Kullback-Leibler
distance achieved by the population (color-coded) and by the sum of the individual neuron’s distances (red). The red-filled region in the right
panel corresponds to the domain over which antisynergy occurs; the blue-filled regions denote the domain in which synergy resulted. Those
values of p and ρ not colored are nonallowable. The × marks the probability-correlation value corresponding to the first stimulus. Large synergies
result if the neurons are correlated in the correct way.

of p and ρ. We have shown that noncooperative pop-
ulations can only exhibit positive correlations; cooper-
ative populations can exhibit positive or negative cor-
relations. For the reference stimulus condition in this
example, we assume the population respond with iden-
tical spike probabilities, equal to p0, and are uncor-
related (ρ = 0). In this model, the ρ = 0 case cor-
responds to the independent model and serves as the
synergy baseline. For the second stimulus condition,
both neurons respond with the same spike probability
(and thus remain a homogeneous population) and can
become correlated. By computing the KL distance be-
tween this baseline and the correlated response for a va-
riety of spike probability and correlation values, we see
in Fig. 2 that both synergy and anti-synergy can result.
The region of spike probability and correlation values
that yield anti-synergy is quite limited and the differ-
ence of the population KL distance from the baseline
value in this region is small. Be that as it may, nonco-
operative population structures, which exhibit positive
correlation, can lie in this region. Outside of this region,
which constitutes most of the feasible range of p and
ρ, synergy occurs and the distances achieved in this
region can be large. The region corresponding to neg-
ative correlation values has generally larger distances
than in the positive correlation region, indicating that
cooperative populations can demonstrate greater KL
distances than noncooperative ones. Consequently, co-

operation can potentially enhance somewhat the ability
of this simple two-neuron population to represent stim-
ulus change. The synergy region can be expressed by
both cooperative and noncooperative structures, and
certainly this region corresponds to a better expression
of the binary nature of the stimulus.

3.2. Effect of Population Size on Fidelity

We study population coding fidelity by analyzing how
the information transfer ratio depends on population
size. Considering the baseline independent structure
first, wherein each neuron’s input is statistically inde-
pendent of other neuron inputs. Thus, the population
outputs Yn, n = 1, . . . , N , are also statistically inde-
pendent of each other. The additivity property applies
to both the input and the output.

γX,Y(α0, α1) =
∑N

n=1 DYn (α0 ‖ α1)∑N
n=1 DXn (α0 ‖ α1)

Consequently, when the population is homogeneous,
the information transfer ratio is a constant, equal-
ing that of an individual neuron γX,Y(α0, α1) =
γXn ,Yn (α0, α1) regardless of the population size. Sim-
ple bounding arguments reveal that in the general case
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the overall information transfer ratio cannot exceed the
largest individual information transfer ratio.

γX,Y(α0, α1) ≤ max
n

γXn ,Yn (α0, α1)

Thus, from an information processing viewpoint, the
independent population is ineffective: one neuron could
serve the purpose of many and only if each neuron has
maximum fidelity (γXn ,Yn (α0, α1) = 1 for all n) can
perfect population fidelity be achieved. The indepen-
dent population is highly redundant: more neurons are
present than required to yield a given information trans-
fer ratio. Thus, any of several neurons could be removed
from this structure without affecting the population’s
ability to represent input information.

In contrast, we show in Appendix B that any non-
cooperative population, homogeneous or not, having
dependent outputs can ultimately represent its input
information perfectly. As population size N increases,
the information transfer ratio monotonically increases
(γ (N + 1) > γ (N )) and that the information transfer
ratio approaches one (limN→∞ γ (N ) = 1). This result
does not depend on each neuron’s input code, how each
neuron processes its input, or on the code each neuron
uses to express the processed input in its output. This
result contrasts with the independent population’s be-
havior, which shows no variation in the information
transfer ratio.

What is missing from this analysis of the noncoop-
erative population is some idea how the information
transfer ratio increases with population size. As shown
in by Sinanović and Johnson (2004), the way γ in-
creases with the population size for large populations
depends on the way the input encodes the stimulus at-
tribute. If the input uses a rate code (only the number
of spikes occurring in a time interval encodes the stim-
ulus), the information transfer ratio approaches one ex-
ponentially. If the input encodes the stimulus in con-
tinuous variables, such as spike timing or latency, γ

approaches one hyperbolically.

γ (N )

N→∞=
{

1 − k1 exp{−k2 N } X is discrete-valued

1 − k/N X is continuous-valued

(7)

The constants k, k1, and k2 depend on the nature of both
the input and each neuron’s coding scheme, but these
asymptotic results apply regardless of the coding each

neuron uses. In the continuous-valued case, examples
indicate that the formula γ (N ) ≈ (1 + k/N )−1 approx-
imates the actual information transfer ratio quite well.
Asymptotically, this approximation has the same form
as the second part of (7).

Noncooperative structures cannot exhibit synergy. In
our noncooperative structure, the input distance com-
ponent of the information transfer ratio is a constant,
The synergy baseline demands that the output distance
be proportional to N , which in this case means that
γ (N ) must increase linearly: γ (N ) = N · γ (1). A
linear increase in γ (N ) is impossible simply because
γ (N ) ≤ 1. The asymptotic formulas (7) mean that
any sufficiently large noncooperative population can-
not demonstrate synergy; in fact they only demonstrate
anti-synergy.4 Thus, synergy is not a necessary prop-
erty for populations either to exhibit an information
processing gain or to achieve perfect fidelity.

Determining the exact form of γ (N ) for any par-
ticular example and for small populations is difficult
because the stimulus-induced statistical dependence
among the population outputs makes evaluation of (2)
difficult. Examples we can analyze are contrived from
a neural coding viewpoint, but they illustrate how the
constants in the asymptotic formulas depend on the
coding parameters of individual neurons. In particu-
lar, let the input be a scalar random variable having
an exponential distribution and the conditional proba-
bility function pYn |X (yn | x) of the nth neuron’s output
describe a Poisson random variable.

pX (x ; a) = ae−ax , x ≥ 0
(8)

pYn |X (yn | x) = (Gn x)yn e−Gn x

yn!
, yn = 0, 1, . . .

In this model, the input determines the average number
of Poisson-distributed spikes measured in the output
over some time interval. Gn is the gain between the in-
put and the output average spike count. The population
would be homogeneous if all the gains were equal. Us-
ing Eq. (1), the unconditional output probability func-
tion for each neuron is found to be geometric.

pY (yn; a) = a

a + Gn

(
Gn

a + Gn

)yn

, yn = 0, 1, 2, . . .

The input and output KL distances can be calculated ex-
actly from Eqs. (2)–(4) when we change the parameter
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a from a0 to a1.

DX (a1 ‖ a0) = log
a1

a0
+ 1

ln 2

a0 − a1

a1

DY(a1 ‖ a0) = log
a1

a0
+

(
1 + 1

a1

N∑
n=1

Gn

)

× log

(
a0 + ∑N

n=1 Gn

a1 + ∑N
n=1 Gn

)

As the population size N increases, the information
transfer ratio, given by the ratio of these two distances,
attains a value of unity only if the sum of gains di-
verges: for γ (N ) → 1 as N → ∞, we must have∑N

n=1 Gn → ∞. This situation occurs when we have
a homogeneous population (Gn = G) and the gain is
not zero. The sum of gains will not be infinite when
the gains decrease quickly, which corresponds to ad-
ditional neurons diminishingly expressing the input.
The output KL distance has the hyperbolic form in
Eq. (7) with k = (a1 − a0)2/(a1ḠDX (α1 ‖ α0)) and
Ḡ equaling the average of the gain parameters across
the population. Figure 3 shows the exact and asymp-
totic analysis results. The empirical equation men-
tioned earlier γ (N ) ≈ (1 + k/N )−1 closely matches
the exact result. Analytic calculations show the cor-
relation coefficient between pairs of neurons, given
by Eq. (9), to be ρn1,n2 = (

Gn1
a+Gn1

Gn2
a+Gn2

)1/2, confirming
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Figure 3. The information transfer ratio for the example population
is plotted against the population size. The hyperbolic asymptotic
formula is also shown as a dotted line. In this example, a0 = 2, a1 =
1, G = 1, which makes each neuron’s information transfer ratio
0.38 and the correlation coefficient between neuron pairs equal to
1/3 when a = 1.

that the correlation is indeed positive. Furthermore,
this example always demonstrates anti-synergy be-
cause

∑N
n=1 DYn (a1 ‖ a0) > DY(a1 ‖ a0) for all N > 1.

Yet, the information transfer ratio can come as close to
one as desired when the population is large enough.

Changing the input in this Poisson example to a
binary-valued random variable results in exponential
rather than hyperbolic asymptotics, consistent with
(7). To show this, let X ∈ {0, 1} with pX(x = 0) = p
and pX (x = 1) = 1 − p. The input and output KL
distances are

DX (p1 ‖ p0) = p1 log
p1

p0
+ (1 − p1) log

1 − p1

1 − p0

DY(p1 ‖ p0) =
(

p1 + (1 − p1)e− ∑
n Gn

)
× log

p1 + (1 − p1)e− ∑
n Gn

p0 + (1 − p0)e− ∑
n Gn

+ (1 − p1)(1 − e− ∑
n Gn ) log

1 − p1

1 − p0

Thus, if
∑N

n=1 Gn → ∞, the information transfer ratio
has an asymptotic value of one and approaches it expo-
nentially. Consequently, a change in the nature of the
input used by each neuron indeed changes the asymp-
totics of the population’s information transfer ratio.

4. Conclusions

This paper addresses the fundamental information pro-
cessing capabilities of admittedly simple population
structures: the independent, the noncooperative, and
the cooperative (Fig. 1). Our results are theories of
structure, and do not depend on what neural codes the
input or each constituent neuron employ: they apply
to any collection of systems having these structures re-
gardless of the signals they are processing and what sig-
nals they produce. Our most important result concerns
the noncooperative structure: as the population grows,
the information processing capability always increases
to its theoretical limit. This result means that an ideal
processing system could extract stimulus information
from the population’s collective output without incur-
ring a fidelity loss. The purpose of the population can
be more than serving as a relay; the population could be
selecting some stimulus feature and suppressing others.
Our results say that such information filtering for the
selected feature can be accomplished with as perfect a
fidelity as desired (relative to the input). This collective
behavior occurs even when each neuron incurs infor-
mation processing losses. This behavior represents the
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kind of population coding researchers have envisioned;
our results indicate that stimulus-induced dependence
suffices to achieve perfect population coding fidelity.

The two different ways in which the information
transfer ratio varies with population size depend en-
tirely on the way the population’s inputs encode the
stimulus (Eq. (7)). It is tempting to say that discrete-
valued inputs (i.e., rate codes) lead to “better” coding
than do continuous-valued quantities because of the
exponential increase of the information transfer ratio
in the latter case. This temptation is mitigated by the
fact this result is an asymptotic one, and only applies
when the population is “large” (see Fig. 3, for example).
Small populations may well exhibit different behaviors
and ultimately the differences among input coding pos-
sibilities may not result in dramatically different infor-
mation transfer ratios.

In addition to its information processing capability,
the robustness of a structure to missing neurons needs
to be considered. Rather than develop a separate mea-
sure of robustness, we considered how the information
transfer ratio would change if neurons were removed
from the structure. Coupled with this way of quantify-
ing robustness is the notion of redundancy: how many
neurons can be removed from the structure before its
information processing performance falls below some
critical level γ0. Noncooperative structures, including
the independent structure, are robust to neuron loss,
with the information transfer ratio changing in a pre-
dictable manner. The redundancy depends on the na-
ture of the input code as well as the population size
because of the differing asymptotic formulas for the
information transfer ratio. The robustness and redun-
dancy of cooperative structures depends on the nature
of the neural interaction.

We have shown that synergy is not a sufficiently pow-
erful notion to determine whether population coding
employing cooperation is occurring. This conclusion
does not hinge on our choice for the definition of syn-
ergy; rather, the problem with synergy is simply that
it ignores the coding fidelity of the population input.
Sufficiently large noncooperative populations can rep-
resent stimuli encoded in their inputs as accurately as
desired without ever demonstrating synergy. In fact, the
independent population that serves as the synergy base-
line cannot represent information with perfect fidelity
unless each neuron does. When we consider optimal
rate coding of continuous-valued attributes over their
entire range rather than binary-like stimulus changes
(Johnson and Ray, 2004), we infer that populations hav-

ing statistically independent outputs, which have zero
synergy, provide the best coding structure. We suggest
there that cooperation in the form of a lateral connec-
tion network can produce independent outputs while
achieving the same fidelity as a noncooperative one. In
other words, connection-induced dependence can can-
cel stimulus-induced dependence. Those results might
explain why so few experiments have found significant
synergies in rate coding situations despite at least the
suspicion that lateral connections exist.

We have not found general results for the improve-
ments cooperative structures may have over noncooper-
ative ones. Simple examples of cooperative, nonhomo-
geneous population structures illustrate how vital they
can be for stimulus coding. To represent the direction
a light bar is moving, interneuron timing differences
might serve as an efficient code. Although we have
not explored such models here, interesting cooperative
structures would need to exhibit a greater information
transfer ratio than their noncooperative counterparts:
why have the added interconnections without provid-
ing better representation of information? Examining
Fig. 3 indicates that cooperation cannot achieve large
increases in the information transfer ratio. However,
these increases could be important in that a given value
of the information transfer ratio could be achieved with
fewer neurons.

Whether the population has a cooperative structure
or not, once a population is larger than some size, it
reaches the point of diminishing returns: increases in
the population do not result in significant information
processing gains. The number of neurons needed to
achieve a given value of γ (N ) depends on the informa-
tion transfer ratios of individual neurons: the smaller
they are, the more neurons are needed. For the ho-
mogeneous, noncooperative population processing a
continuous-valued input, we can use the approxima-
tion γ (N ) ≈ (1 + k/N )−1 to show that the constant
k = 1/γ (1) − 1. Achieving a given value of γ (N ) re-
quires the ratio k/N , which equals 1/(Nγ (1)) − 1/N ,

to be some value. Thus, a greater population size is
needed to overcome neurons having small information
transfer ratios. Once this critical size is achieved, fur-
ther gains will be small and will require substantial
increases in the population size. An information fil-
tering perspective also suggests that populations be of
limited size. Appendix B states that unless the individ-
ual information transfer ratios are zero, the information
transfer ratio for a population approaches one mono-
tonically as the population size increases. This result
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means that any information filtering provided by each
neuron will be washed out by the population unless the
filtering is perfect. As our analysis suggests, the popula-
tion size required to affect filtering properties depends
on the information transfer ratio, with larger popula-
tions required the smaller the individual information
transfer ratio. These considerations suggest that large
populations are only needed when each neuron poorly
processes its input, but if too large, the population re-
sponse will diminish any differences in the information
filtering of individual neurons.

Appendix A

The correlation coefficient between the n1th and n2th
neurons in a homogeneous population equals

ρYn1 ,Yn2
= E

[
Yn1 Yn2

] − (E[Y ])2

E[Y 2] − (E[Y ])2
(9)

Because the population is homogeneous, Y denotes the
output of any neuron and E[Yn1 ] = E[Yn2 ] = E[Y ].
To determine the range of values ρ can take on, we
focus on the numerator and write its components using
conditional expected values.

E
[
Yn1 Yn2

] = EX
[
E
[
Yn1 Yn2

∣∣ X
]]

= EX
[
E
[
Yn1

∣∣ X
]
E
[
Yn2 | X

]]
= EX [(E[Y | X ])2]

E[Y ] = EX [E[Y | X ]]

Here EX [·] means expected value with respect to the
collective input’s probability function. In going from
the first to the second line, we used the fact that in non-
cooperative structures, neural outputs are conditionally
independent, which makes them conditionally uncor-
related. To prove our result, note that this expected
value defines an inner product, EX [ f (X )g(X )] :=
〈 f (X ), g(X )〉. We apply the Cauchy-Schwarz inequal-
ity, which states for any inner product 〈 f (X ), g(X )〉2 ≤
〈 f (X ), f (X )〉〈g(X ), g(X )〉.Equality occurs only when
f (X ) is proportional to g(X ). We can show that the nu-
merator of (9) is positive by letting f (X ) = E[Y | X ]
and g(X ) = 1. The Cauchy-Schwarz inequality be-
comes

(EX [E[Y | X ]])2 ≤ EX [(E[Y | X ])2] · EX [1]

The term EX [1] equals one. Subtracting the left side
from the right gives the numerator of (9) and we con-

clude that the numerator is always non-negative. The
equality condition means that zero correlation only re-
sults when E[Y | X ] equals a constant, which oc-
curs only when the output’s statistical characteristics
do not vary with the input. Consequently, so long as
each neuron’s output reflects its input to some degree,
the noncooperative population’s outputs are positively
correlated.

Because an independent population has each neuron
receiving a separate input statistically independent of
the other, the correlation coefficient is also zero. This
result does not conflict with this derivation because X
denotes the entire input and we assumed each neuron
has access to it.

By comparing numerator and denominator of (9),
we can understand the range of positive values the
correlation coefficient can achieve. Because ρ ≤ 1,

simple rearrangement of (9) yields EX [E[Y 2 | X ]]
− EX [(E[Y | X ])2] ≥ 0, which can also be written as
EX [E[Y 2 | X ] − (E[Y | X ])2] ≥ 0. The quantity inside
the outer brackets is the conditional variance of each
neuron’s output for a given input. For this conditional
variance to equal zero, which would imply ρ = 1,

the neuron output Y would need to equal a constant
times the input X . This situation corresponds to the
case where each neuron is a relay cell, which expresses
its input in a noiseless way.

Appendix B

The limit achieved by the information transfer ratio
for a homogeneous, noncooperative population is one,
corresponding to perfect information transfer fidelity.
Proving this result rests on the so-called log-sum in-
equality (Cover and Thomas, 1991):

∫
p1(x) log

p1(x)

p0(x)
dx ≥

∫
p1(x) dx log

∫
p1(x) dx∫
p0(x) dx

with p0(x), p1(x) being probability functions. Equal-
ity occurs only when p0(x) = p1(x). Note that this
inequality demonstrates that the Kullback-Leibler dis-
tance is non-negative. To apply the log-sum inequality,
note that the joint probability function for population’s
combined output is given by

pY(y; α) =
∫ N∏

n=1

pYn |X (yn | x)pX (x ; α) dx .
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The KL distance between the noncooperative popula-
tion’s responses to two stimulus conditions α0 and α1

equals

DY(N ) (α1 ‖ α0)

=
∫ [∫ N∏

n=1

pYn |X (yn | x)pX (x ; α1) dx

]

× log

∫ ∏
n pYn |X (yn | x) pX (x ; α1) dx∫ ∏
n pYn |X (yn | x) pX (x ; α0) dx

dy

Using the log-sum inequality with respect to the
integral over the input X upper-bounds this dis-
tance and demonstrates the data processing theo-
rem: DY(N ) (α1 ‖ α0) ≤ DX (α1 ‖ α0). Applying the log-
sum inequality to the integral over YN , we find that
DY(N ) (α1 ‖ α0) > DY(N−1) (α1 ‖ α0), with strict inequal-
ity arising as long as the individual neuron KL distances
are not zero. Thus, as the population size increases, the
KL distance strictly increases. Note that in this proof,
homogeneity is not required: for any noncooperative
population, homogeneous or not, the KL distance at
the output increases with population size. Because the
population distance cannot exceed the input distance,
the output distance approaches some limit as the popu-
lation grows. The question becomes what is the limit?
A more detailed analysis (Sinanović and Johnson,
2004) shows that for any population, homogeneous or
not, the population distance achieves its upper bound,
making the information transfer ratio approach one
asymptotically. Consequently, populations of a diverse
or similar character can provide perfect information
fidelity.
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Notes

1. We use the term “dependence” rather than “correlation” deliber-
ately. Both terms mean that population outputs are not statisti-
cally independent of each other. Uncorrelated quantities can be
statistically dependent, which makes correlation a weak form of
statistical dependence.

2. A result known as de Bruijn’s identity relates entropy and Fisher
information (Cover and Thomas, 1991; Kang and Sompolinksy,
2001), but its utility is not obvious.

3. The correlation coefficient in the two-neuron Bernoulli model
does capture all of the statistical dependence. If ρ = 0, the occur-
rence of spikes in the two neurons are statistically independent
events. Note that some combinations of correlation coefficient ρ

and spike probabilities p1, p2 are not permitted as they would
yield negative probabilities for the population’s probability func-
tion.

4. The example illustrated in Fig. 2 does exhibit synergy, but we
could not determine whether a noncooperative population could
yield the spike probability and correlation values in the synergy
region.
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