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Abstract—In the design of distributed quantization systems one in-
evitably confronts two types of constraints—those imposed by a dis-
tributed system’s structure and those imposed by how the distributed
system is optimized. Structural constraints are inherent properties of
any distributed quantization system and are normally summarized
by functional relationships defining the inputs and outputs of their
component quantizers. The use of suboptimal optimization methods
are often necessitated by the computational complexity encountered in
distributed problems. This correspondence briefly explores the impact
and interplay of these two types of constraints in the context of distributed
quantization for detection. We introduce two structures that exploit
inter-quantizer communications and that represent extremes in terms of
their structural constraints. We then develop a sequential optimization
scheme that maximizes the Kullback-Leibler divergence, takes advantage
of statistical dependencies in the distributed system’s output variables and
leads to simple parameterizations of the component quantization rules.
We present an illustrative example from which we draw insights into
how these constraints influence the quantization boundaries and affect
performance relative to lower and upper bounds.

Index Terms—Quantization for detection, sequential optimization,
Kullback-Leibler divergence, distributed detection.

I. I NTRODUCTION

Structure is often imposed on unconstrained vector quantization
problems to reduce the encoding and decoding complexity [1]. In
distributed or decentralizedquantization systems, where a set of
spatially separated quantizers act collectively to quantize an input
vector [2], structure plays a similar role in that it often eases
processing complexity; however, a distributed system’s structure is
an inherent property of the system and not one artificially imposed
to reduce complexity. That said, structural constraints often make the
joint optimization of a distributed quantization system’s component
quantizers difficult or even intractable. For example, determining the
optimal decision (quantization) rules in a standard distributed detec-
tion problem (which can be thought of as a distributed quantization
problem) is known to be NP-complete [3]. Thus, while a distributed
quantizer’s structure maydecreaseencoding/decoding complexity
it may simultaneouslyincrease the computational complexity of
its optimization. This dichotomy frequently forces designers to use
suboptimal methods to determine a distributed system’s quantization
rules. In these cases, a quantizer’s performance (in comparison
to its centralized counterpart) suffers from constraints imposed by
a suboptimal optimization scheme, as well as those imposed by
a distributed system’s structure. This correspondence investigates
the impact of these two types of constraints in the context of a
distributed quantization for detection problem, where a distributed
quantizer is designed such that a downstream detector is optimized [4,
5]. We consider two simple distributed quantization structures that
sequentially process their inputs and share information among their
constituent quantizers (Fig. 1). We then present a sequential optimiza-
tion method that, like other sequential schemes [6], largely avoids
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the computational complexity of finding a globally optimal solution
and that takes into account some of the statistical dependencies
among the output variables. Because the structures considered here
operate sequentially, there is a non-trivial interplay between their
structural constraints and the constraints imposed by the sequential
optimization.

In the input-broadcastsystem (Fig. 1), the quantizers sequentially
broadcast their real-valued observation to all succeeding quantizers
before quantizing their own observation; that is, themth quantizer
broadcasts its data to all quantizersk, k > m before quantizing its
observation. In contrast, the quantizers in theoutput-broadcastsystem
first quantize their observations and then broadcast the quantized
output to all succeeding quantizers. Thus, any particular quantizer in
the input-broadcast structure has access to all preceding observations,
whereas a quantizer in the output-broadcast structure processes one
observation andm − 1 quantized outputs. In both structures, a
detector receives all quantized outputs and ultimately (perhaps only
after receiving a sequence of outputs) makes a decision about the
hypothesized distribution of the inputs. Here, we restrict the outputs
of the output-broadcast system to be binary so that the structures
represent extremes in terms of the communication rate among the
quantizers and so that the systems’ structural constraints are ac-
centuated. We recognize that an input-broadcast system centralizes
all of the observations at the last quantizer, and hence could make
an optimal centralized decision without a follow-on detector. We
analyze the input-broadcast system primarily because it represents
an ideal case where there is no communication rate constraint on the
transmissions.

We optimize the distributed structures with respect to the Kullback-
Leibler (KL) divergence which is well-known to be the optimal
asymptotic exponential error rate for Neyman-Pearson type tests [7,
p. 77]. Thus maximizing this quantity at the output of the distributed
system, maximizes the potential asymptotic error decay rate of the
detector.

II. PROBLEM FORMULATION

For ease of presentation, we restrict attention to structures with
two quantizers. LetX = (X1, X2) denote the input data and
Y = (Y1, Y2) the quantizers’ outputs. AssumeX is a real-
valued random vector, andY a binary-valued random vector:
X ∈ R2,Y ∈ {0, 1} × {0, 1}. Let pX and pY denote the joint
probability density function and the joint probability mass function
of X andY, respectively. LetpXm , m = 1, 2, denote the marginal
densities ofpX, and pYm m = 1, 2, the marginal probability mass
functions ofpY. The realizationXm = xm represents the input to
themth quantizer andYm = ym represents the corresponding output.
The ordering of the quantizers is arbitrary, but it is assumed known
and fixed. We shall concisely write the probabilityPr(Y1 = y1, Y2 =
y2) asp(y1, y2).

A. Quantization rules

The outputs in both the input- and output-broadcast systems are
described by the following mappings.

y1 = φ1(x1) : R→ {0, 1},
y2 = φ2(x1, x2) : R2 → {0, 1}

)
input-broadcast (1)

y1 = ψ1(x1) : R→ {0, 1},
y2 = ψ2(x2, y1) : R× {0, 1} → {0, 1}

)
output-broadcast (2)

In the input-broadcast system,y2 is a function of two real-valued
variables, whereas in the output-broadcast system,y2 is a function
of one real-valued and one binary-valued variable.
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Fig. 1. Broadcast structures. In the input broadcast system, the real-valued observationsxm (solid lines) are broadcast to the other quantizers while the
quantized outputsym (dashed lines) are transmitted to the detector. In the output-broadcast system, quantized outputs are broadcast to all succeeding quantizers
and to the detector. The squares represent the detectors.

An alternative description of these quantization rules can be given
in terms of binary partitions. ForA ⊂ Rn, we define a binary partition
π to be a pair of disjoint sets{A, Ā} whereA ∪ Ā = Rn, Ā denoting
the complement set. Letπ1 = {A1, Ā1} be a binary partition ofR
andπ2 = {A2, Ā2} a partition ofR2. Then, for the input-broadcast
system, the quantization rules are defined by

y1 = φ1(x1) =

(
0 if x1 ∈ Ā1

1 if x1 ∈ A1

(3)

y2 = φ2(x1, x2) =

(
0 if (x1, x2) ∈ Ā2

1 if (x1, x2) ∈ A2.
(4)

Defining the output-broadcast system in terms of binary partitions is
more involved. Becausey1 can assume one of two values, the second
quantizer has the freedom to use one partition wheny1 = 0 and
an entirely different partition wheny1 = 1. Thus, the quantization
rule ψ2 consists of two binary partitions (ofR), not one. Letting
ν1 = {B1, B̄1}, ν2,0 = {B2,0, B̄2,0}, and ν2,1 = {B2,1, B̄2,1} be
binary partitions ofR, we have

y1 = ψ1(x1) =

(
0 if x1 ∈ B̄1

1 if x1 ∈ B1

(5)

y2 = ψ2(x2, y1 = i) =

(
0 if x2 ∈ B̄2,i

1 if x2 ∈ B2,i

, i = 0, 1. (6)

The above functional relationships constitute to what we refer as
the structural constraintsof the input- and output-broadcast system.
These constraints stipulate (restrict) the quantities on which the
quantizers operate, and thus determine the links among the quantizers.
Here, the only structural difference between the input- and output-
broadcast systems is the communication rate between the quantizers.
For the input-broadcast system the rate is infinite and for the output-
broadcast system the rate is one bit/observation.

Broadcast structures have received little attention in the quantiza-
tion for detection or distributed detection literature. While various
authors have touched on various aspects of distributed quantization
for noncommunicativestructures [8, 9], none to our knowledge have
considered broadcast structures. The vast majority of the distributed
detection formulations also center on noncommunicative (parallel)
structures (see [10] and references therein), however, there are two
notable exceptions. First, Hashemi and Rhodes [11] investigated a
two-stage distributed detection system that is essentially equivalent to
the input-broadcast structure. Their system disallowed inter-quantizer
communications, but processed temporal data in much the same way
an input-broadcast system processes spatial data. Thus by interchang-
ing the spatial and temporal domains, the structures’ mathematical

descriptions are nearly the same. However, unlike here, Hashemi
and Rhodes used a Bayes criterion instead of the divergence and
assumed that all observations (in both space and time) are statistically
independent. Moreover, they optimized their system using a distinctly
different approach than the one proposed here (see Section III for
details). Second, serial architectures [10] are very similar to the
output-broadcast structure; however, these systems take the output of
the last quantizer as the decision of the system, whereas an output-
broadcast structure bases its decision onall outputs. (This difference
is most appreciable for systems with more than two quantizers.)

B. Kullback-Leibler divergence

The KL divergence is a member of the class distance measures
which quantify the “dissimilarity” between probability distributions.
For two probability density functionsp(0)

X andp
(1)
X , the KL divergence

betweenp(1)
X relative top

(0)
X is defined as the expected value of the

negative log-likelihood ratio with respect top(0)
X ,

D(p
(0)
X ‖p(1)

X ) := E0[− log(L)] =

Z
p
(0)
X (x) log

p
(0)
X (x)

p
(1)
X (x)

dx, (7)

whereL denotes the likelihood ratio,p(1)
X (x)/p

(0)
X (x), and the choice

of the logarithm’s base is arbitrary. To ensure the existence of the
integral, we assume that the two probability measures associated
with X are absolutely continuous with respect to each other. When
p
(j)
X , j = 0, 1, are probability mass functions, the integral in (7)

becomes a summation. Here, the relevance of the KL divergence
stems from Stein’s Lemma [7, p. 77], a well-known result that relates
the divergence to the asymptotic performance of a detector. In words,
Stein’s Lemma says that an optimal Neyman-Pearson detector’s error
probability decays exponentially in the number of observations, with
the asymptotic exponential decay rate equal to the divergence between
the distributions characterizing the detector’s inputs.

C. Problem setting

We assume the inputsX are distributed in one of two ways:
H0 : X ∼ p

(0)
X , H1 : X ∼ p

(1)
X and address the problem

of maximizing the output divergenceD(p
(0)
Y ‖p(1)

Y ) over the set of
all quantization rulesφ1, φ2 and ψ2, ψ2 for the input- and output-
broadcast structures, respectively. We assume the input divergence is
finite and that the joint distribution ofpX is completely known under
both hypotheses. We are not directly concerned with the operation
of the detector, but in the context of our problem, the divergence
between the distributed systems’ output distributions represent the
detector’s best asymptotic error decay rate. Therefore,D(p

(0)
Y ‖p(1)

Y )
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governs how well the detector can assimilate quantizer outputs and
optimally process them. In addition, our use of the KL divergence
as the quantity to be optimized implies that the detector uses the
quantizers’ results in a particular way. Rather than making a decision
each time the quantizers produce an output vector, the detector oper-
ates on a long sequence of quantizer outputsYl, l = 1, 2, . . ., before
making a decision. Here,Yl is the quantized output corresponding to
the inputXl for l = 1, 2, . . .. This scenario corresponds to situations
when quantizer processing occurs frequently, and the detector can
afford to assimilate several quantizer outputs before making its own.
Note this mode of decision making is different than that of the
standard distributed detection problem where each sensor’s output is
often considered a local decision on the hypothesis. We assume we
have aniid sequence of input vectorsXl that allows for statistical
dependencies (spatial dependencies) betweenX1,l and X2,l for a
given l. Because we require the structures operate on one input vector
at a time, the temporal indexl is irrelevant and will be suppressed.

III. STRUCTURE OPTIMIZATIONS

Because we can always factor the joint output distributions,

p(j)(y) = p(j)(y1)p
(j)(y2|y1), j = 0, 1 (8)

we can write the output divergence as a sum of two component
divergences

D(p
(0)
Y ‖p(1)

Y ) = D(p
(0)
Y1
‖p(1)

Y1
) +D(p

(0)

Y2|Y1
‖p(1)

Y2|Y1
). (9)

The form of (9) suggests a natural, albeit suboptimal, sequential
approach to maximize the joint output divergence; first maximize
D(p

(0)
Y1
‖p(1)

Y1
) over ψ1 (φ1), then given the resulting quantization

rule, maximizeD(p
(0)

Y2|Y1
‖p(1)

Y2|Y1
) over ψ2 (φ2). This strategy treats

the maximization of the joint divergence as a separable optimization
over the quantization rules when in fact the divergence terms on the
right-hand side of (9) are generally coupled. It is for this reason that
this approach is suboptimal. It does, however, have the advantage of
taking into account some of the statistical dependencies among the
outputs.

For broadcast structures with small numbers of quantizers, we
can increase the complexity of the above approach, improve its
performance, but still maintain tractability. Rather than sequentially
maximizing the divergences on the right-hand side of (9) with the
goal of determining the optimizing partitions, we can sequentially
maximize them with the intent of onlyparameterizinga class of
partitions. Then, if such parameterizations exist, we can jointly
optimize the output divergenceD(p

(0)
Y ‖p(1)

Y ) over the set of all valid
parameters. Thus, this alternative approach first attempts to define a
parametric class of partitions, and then searches for the best partition
(quantization rule) within that class. By jointly optimizing over the
parameters, we partially mitigate the effect of initially treating the
maximization of the joint divergence as a separable optimization.

Note that this approach generally does not yield person-by-person
optimal (PBPO) solutions1 which are often sought in distributed
detection problems [10, 11]. Using a PBPO approach, one would
determineψ1 (φ1) by maximizing thejoint divergenceD(p

(0)
Y ‖p(1)

Y )
while holding ψ2 (φ2) fixed, and likewise determineψ2 (φ2) while
holdingψ1 (φ1) fixed. Thus, a PBPO approach does not parameterize
the observation space through sequentially maximizing the marginal
and conditional divergences in (9). A PBPO approach is not used here
because it suffers from essentially the same intractability as finding
the global solution [12].

1A set of quantization rules is person-by-person optimal if the overall
system performance cannot be improved by adjusting a single quantization
rule while all other rules are held fixed. Person-by-person optimality is a
necessary (but not a sufficient) condition for global optimality.

A. Output-broadcast

We begin with the first quantizer in isolation and ask what type of
binary partition of the outcome space ofX1 maximizesD(p

(0)
Y1
‖p(1)

Y1
).

Tsitsiklis showed in [13, Proposition 4.1] that a likelihood ratio
partition, that is a partition defined by thresholding the likelihood
ratio, is the maximizing partition,

ν1 : B1 = {x1 ∈ R|L(x1) > τ1}, L(x1) =
p(1)(x1)

p(0)(x1)
. (10)

This means thatν1 is simply parameterized by the thresholdτ1.
We next consider maximizingD(p

(0)

Y2|Y1
‖p(1)

Y2|Y1
) to derive a para-

meterization the second quantizer’s quantization rule while holding
ψ1 fixed. By definition, [7],D(p

(0)

Y2|Y1
‖p(1)

Y2|Y1
) equals,

X
y1

p(0)(y1)

"X
y2

p(0)(y2|y1) log
p(0)(y2|y1)

p(1)(y2|y1)

#
=

p(0)(Y1 = 0)D(p
(0)

Y2|Y1=0‖p(1)

Y2|Y1=0)

+ p(0)(Y1 = 1)D(p
(1)

Y2|Y1=1‖p(1)

Y2|Y1=1)

(11)

We see from (11) that the conditional divergence is an average
of two component divergences between the Bernoulli distributions
p(j)(y2|y1 = i), i, j = 0, 1. Note thatD(p

(0)

Y2|Y1=0‖p(1)

Y2|Y1=0) is

only conditioned on the event{Y1 = 0} andD(p
(1)

Y2|Y1=1‖p(1)

Y2|Y1=1)

only on {Y1 = 1}. Therefore,D(p
(0)

Y2|Y1=0‖p(1)

Y2|Y1=0) is only
associated with the partition that is used wheny1 = 0, and
D(p

(1)

Y2|Y1=1‖p(1)

Y2|Y1=1) is only associated with the partition that
is used wheny1 = 1. We can thus apply Tsitsiklis’ likelihood
ratio partitioning result to each component divergence separately and
conclude thatν2,0 and ν2,1 can each be parameterized by a single
threshold, with the partition sets

ν2,i : B2,i = {x2 ∈ R|L(x2|y1 = i) > τ2,i}, (12)

L(x2|y1 = i) =
p(1)(x2|y1 = i)

p(0)(x2|y1 = i)
, i = 0, 1. (13)

Summarizing, our sequential optimization approach transforms the
maximization of the joint output divergence over a general set of
quantization rulesψ1, ψ2 into a maximization of over just three
threshold parametersτ1, τ2,0, τ2,1. When the likelihood ratios are
all monotonic, each partition can be described by a single threshold
on aninput observation, as opposed to a threshold on the likelihood
ratio.

B. Input-broadcast

For the input-broadcast structure, the parameterization ofφ1 is
exactly the same as that for the output-broadcast structure. Therefore,
we know thatπ1 is a likelihood ratio partition parameterized by a
single thresholdη1,

π1 : A1 = {x1 ∈ R|L(x1) > η1}, L(x1) =
p(1)(x1)

p(0)(x1)
. (14)

For the maximization ofD(p
(0)

Y2|Y1
‖p(1)

Y2|Y1
) over φ2, we begin by

consideringp(j)(y2=0|y1=0) expressed as
Z

R2
p(j)(y2 = 0|y1 = 0,x) p(j)(x|y1 = 0) dx, (15)

wherex = (x1, x2). The first term in the integrand is the probability
of the event{Y2 =0} conditioned on the joint event{Y1 =0, X1 =
x1, X2=x2}. The second term in the integrand of (15) is the joint
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density of (X1, X2) conditioned on{Y1 = 0}. From (3) and the
properties of conditional densities, we have

p(j)(x|y1 = 0) = p(j)�x|(x1, x2) ∈ Ā1 × R
�

=

8
><
>:

p(j)(x)

Pr
�
Ā1 × R; Hj

� , if (x1, x2) ∈ Ā1 × R

0 otherwise.

Thus, p(j)(x|y1 =0) only has support on̄A1 × R. For example, if
Ā1 is the semi-infinite interval(−∞, 1], then p(j)(x|y1 = 0) only
has support on the semi-infinite plane bounded by the vertical line
x1 = 1. The integral in (15) therefore reduces to

Z

Ē2,y1=0

p(j)�x|(x1, x2) ∈ Ā1 × R
�

dx, (16)

whereĒ2,y1=0 = (Ā1×R)∩Ā2 andĒ2,y1=0 ⊂ Ā2. We can similarly
write

p(j)(y2=0|y1=1) =

Z

Ē2,y1=1

p(j)�x|(x1, x2) ∈ A1 × R
�

dx,

(17)
where Ē2,y1=1 = (A1 × R) ∩ Ā2 and Ē2,y1=1 ⊂ Ā2. Recalling
S2’s quantization rule for the input structure (4), expressions (16)
and (17) imply thatĀ2 = Ē2,y1=0 ∪ Ē2,y1=1. This means that the
partition π2 is composed of four disjoint sets whose pairwise unions
equalA2 and Ā2: π2 = {E2,y1=0 ∪ E2,y1=1, Ē2,y1=0 ∪ Ē2,y1=1}.
Moreover, becauseA1 andĀ1 are disjoint,Ē2,y1=0 andĒ2,y1=1 are
also disjoint. Thus, the two component divergences appearing in the
expression of the conditional divergence (11) can be independently
optimized in much the same way as they were in the output-broadcast
system. We can maximizeD(p

(0)

Y2|Y1=0‖p(1)

Y2|Y1=0) over E2,y1=0 and

maximizeD(p
(0)

Y2|Y1=1‖p(1)

Y2|Y1=1) over E2,y1=1. Again, by applying
Tsitsiklis’ likelihood ratio partitioning result, we conclude thatπ2

can be parameterized by two threshold parametersη2,0 andη2,1, i.e.

π2 : A2 = E2,y1=0 ∪ E2,y1=1, where (18)

E2,y1=i = {x ∈ Ā1 × R|L(x|y1 = i) > η2,i}, (19)

L(x|y1 = i) =
p(1)(x|y1 = i)

p(0)(x|y1 = i)
, i = 0, 1. (20)

Therefore, like the output-broadcast structure, we transformed the
maximization ofD(p

(0)
Y ‖p(1)

Y ) over φ1, φ2 into a maximization over
three threshold parameters:η1, η2,0, η2,1. In contrast to the output-
broadcast structure, the partitioning sets of the second quantizer
(A2, Ā2) are subsets ofR2 notR1. The extra dimension adds a degree
of freedom to the partitioning sets (leading to improved performance),
but generally makes it more difficult to relate the likelihood ratio
thresholds directly to the observations.

Note that the partitionsπ1 andπ2 in (14) and (18) look very much
like the PBPO partition Hashemi and Rhodes derived in [11] for their
two-stage distributed detection system. But, as pointed out in [14],
their results are incorrect for a PBPO approach. We re-emphasize
that our approach is not PBPO.

IV. GAUSSIAN EXAMPLE

Consider the distributed hypothesis test,H0 : X ∼ N (0, Σ), H1 :
X ∼ N (m, Σ), where under both hypotheses the inputsX1, X2 each
have unit variance and are correlated with correlation coefficientρ.

A. Output-broadcast

For this example, it is well-known that the likelihood ratios
defining the partitioning sets in (10) and (12) are monotonic. We
can therefore re-parameterizeψ1 and ψ2 using three thresholds to

which the observations can be directly compared; denoted here by
ξ1, ξ2,0, andξ2,1. Settingρ = 0.9, we jointly optimizeD(p

(0)
Y ‖p(1)

Y )
over ξ1, ξ2,0, andξ2,1 using standard numerical methods. Fig. 2
depicts the resulting overall partition.

B. Input-broadcast

As with the output-broadcast structure, the likelihood ratio that
characterizes the first quantizer’s quantization rule is monotonic.
Therefore, the threshold parameterη1 can be replaced by another
threshold parameterγ1 which can be directly compared to the obser-
vation X1. To relate the second quantizer’s threshold parameters to
thresholds on the observations, we consider the conditional likelihood
ratios appearing in (20). Fory1 = 0, we have

p(j)(x|y1 = 0) =
IĀ1×R

2πcj |Σ|1/2
exp

�
−1

2
δ
′
Σ−1δ

�
(21)

whereI is the indicator function,cj = Pr(Ā1×R; Hj), Σ =
�

1 ρ
ρ 1

�
,

δ = x underH0, andδ = x−m underH1. Forming the likelihood
ratio and simplifying the inequality in (19) yieldsE2,y1=0 =

�
x ∈

Ā1 × R | x2 > b0 − x1

	
, whereb0 = 1 + (1 + ρ) ln (c0η2,0/c1).

Thus, E2,y1=0 is defined by a line in the left half plane (left of
the partitioning linex1 = γ1) with slope equal to−1 and y-
intercept equal tob0. Because the slope is constant, we are able
to parameterizeE2,y1=0 by b0. The companion partitioning set
E2,y1=1 similarly can be characterized by a y-intercept. In particular,
we have E2,y1=1 =

�
x ∈ A1 × R | x2 > b1 − x1

	
, where

b1 = 1 + (1 + ρ) ln (c
′
0η2,1/c

′
1) and c

′
j = Pr(A1 × R; Hj).

Hence, the likelihood ratio threshold parameterization of the input-
broadcast quantization rules is equivalent to a parameterization with
one threshold parameterγ1 and two y-intercept parametersb0, b1.
With m = (1, 1) andρ = 0.9, we jointly solve for the maximizing
parameters (again using standard numerical techniques) and show the
resulting overall partition in Fig. 2.

C. Discussion

Most visible in Fig. 2 is the impact of the infinite rate on the
link between the first and second quantizers in the input-broadcast
system. The structural freedom afforded by the infinite rate permits
the partitioning boundaries ofφ2 to have nonzero slopes, whereas
the partitioning boundaries ofψ2 are constrained to have zero
slope. The misalignment of the boundaries acrossφ′1s (ψ′1s) vertical
cut is, however, a direct by-product of the sequential optimization
and not caused by structural constraints. It reflects the fact that
the second quantizer is optimized with respect to the conditional
divergenceD(p

(0)

Y2|Y1
‖p(1)

Y2|Y1
) instead of, say, the marginal divergence

D(p
(0)
Y2
‖p(1)

Y2
) which, incidentally, would force the alignment of the

boundaries. Moreover, note that thenumberof vertical boundaries in
Fig. 2 is also a by-product of the sequential optimization. Maximizing
D(p

(0)
Y1
‖pY1) to determineφ1 and ψ1 results in a likelihood ratio

thresholding rule, and because the likelihood ratio is monotonic in
this case, there is only asingle vertical boundary. The structural
constraints only insist that the boundaries be orthogonal to the
axes; they do not restrict the number of boundaries. If one jointly
optimizes the quantizers and eliminates the constraints imposed
by the sequential optimization, very different partitions emerge; in
particular, partitions that donot derive from thresholding likelihood
ratios [2]. In addition, the ordering of the sequential optimization has
a definite effect on the partition. Ifφ2 (ψ2) were optimized first, the
vertical boundaries in Fig. 2 would become horizontal andφ1 (ψ1)
would be composed of two component quantization rules, much like
φ2 (ψ2) is described in Section II. In this example, the ordering makes
no difference because of the Gaussian distribution’s symmetry, but
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Fig. 2. Optimized partitions of the observation space with Gaussian inputs whenρ = 0.9 andm = (1, 1). The elliptical curves are contours of equiprobability
for the underlining input distributions. Because of an output-broadcast structure’s structural constraints, each partitioning line must be orthogonal to the axes.
In comparison, the input-broadcast system’s structural constraints are weaker and therefore the partitioning lines of the second quantizer can have a nonzero
slope. Both partitions suffer from the effects of the sequential optimization.

in general, different orderings yield different performances. How one
should order the quantizers in any given situation is largely an open
problem [15].

The left panel of Fig. 3 shows the output divergence of the input-
and output-broadcast systems as a function ofρ, along with two upper
and one lower bounds. It follows from the divergence’s invariance
property [7, pp. 18-22] that the input divergenceD(p

(0)
X ‖p(1)

X )
serves as an upper bound to any transformation (quantization) of
the inputs, and here represents the optimal asymptotic error decay
rate of a detector that has direct access to both observationsX1

and X2. The divergence of an optimal centralized likelihood ratio
quantizer (LRQ) [13] also serves as an upper bound because such
a system is free from any structural or optimization constraints, the
presence of which would only decrease the divergence. The optimal
LRQ’s divergence, unlike the input divergence, takes into account
the inherent loss in divergence due to quantization and represents the
decay rate of a detector that operates on the output of an optimal
centralized quantizer. Thus, any performance gap between a LRQ’s
benchmark and that of the input- or output broadcast systems is
only caused by structural constraints and suboptimal optimization.
The lower bound shown in Fig. 2 represents a worst-case scenario
in terms of both structural constraints and optimization technique.
Specifically, we consider a noncommunicative system in which there
is no inter-quantizer communications (most stringent structure) and
an optimization technique that only locally maximizes the divergence.
That is, each quantization rule is found by optimizing the divergence
between the marginal output distributions,D(p

(0)
Ym
‖p(1)

Ym
), m = 1, 2.

Note this optimization approach completely ignores statistical depen-
dencies and hence the bound is constant for all values ofρ.

To better judge performance, we normalize the divergences by the
optimal centralized LRQ’s divergence and plot the resulting curves
in the right hand panel of Fig. 3. Because we normalize by the
optimal centralizedquantizer, the graph shows the percentage loss
in terms of divergence dueonly to structural constraints and those
caused by sequentially optimizing. On the one hand, these plots
indicate that the performance gain is greatest when the correlation
between the observations is negative. That is, the divergence would
increase the most if one were to increase the communication rate
between the quantizers (or equivalently change a distributed system’s
structure) when the correlation is negative. On the other hand,
the percentage loss isleast when the observations are positively

correlated. This means that for, sayρ = 0.9, it is nearly as easy
to discriminate between the output distributionsp

(j)
Y when only

one bit is communicated than when a real-valued observation is
communicated. As one would expect, the input-broadcast system
never performs worse than the output-broadcast system because the
latter is a special case of the former (assuming that the input-
broadcast system’s second quantizer has knowledge ofφ1). Also of
interest, is the performance atρ = 1 because this case represents the
situation where the quantizers have a common input. The presence
of a common input causes the input- and output-broadcast structures
to coincide (again assuming that the second quantizer has knowledge
of the first quantizer’s quantization rule), and therefore they achieve
the same performance at this point. Furthermore, because of the
monotonicity of the likelihood ratios, both structures achieve the same
performance as an optimal centralized LRQ atρ = 1.

V. CONCLUDING REMARKS

Designers of distributed vector quantization systems will, more
often than not, face choices and make tradeoffs concerning a system’s
structure and the methods with which to optimize it. It is evident
from the above example that the degree of impact can vary greatly
depending on the circumstances. Thus, understanding how both
structure and optimization techniques constrain the overall problem
in any given situation is fundamental to making prudent and effective
design choices. The following summarizes our observations.

• With finite rate communication links, structural constraintsonly
imply that the partition boundaries are orthogonal to the axes.

• Sequential optimization leads to likelihood ratio thresholding
quantization rules (parameterizations) that reduce complexity,
but automatically fix the number and locations of the partitioning
boundaries. Note that the globally optimal quantization rules are
not, in general, likelihood ratio thresholding rules [2].

• Sequential optimization creates a sensitivity to the order in
which the component quantizers are optimized.

• A common input dissolves the structural difference between the
input- and output-broadcast systems.

One shortfall of our sequential optimization scheme is that it
becomes computationally expensive when jointly optimizing a large
number of partitioningparametersbecause the number of parameters
over which to maximize grows exponentially with the number of
quantizers. In these cases, a more feasible approach would be to
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Fig. 3. The panel on the left shows the output divergence of the input- and output-broadcast structures as a function of the correlation coefficient. The
performance of these structures are upper bounded by the input divergence and the divergence of an optimal centralized likelihood ratio quantizer (LRQ).
The lower bound represents the performance of a noncommunicative structure whose component quantizers are optimized individually. The panel on the right
shows the performance curves normalized by the LRQ’s performance.

optimize a broadcast structure as was first suggested in Section III:
sequentially maximize the divergences on the right-hand side of (9)
to determine each quantizer’s quantization rule instead of sequentially
maximizing them to find a parametric class of partitions. This
optimization boils down to a sequence of maximizations that each
only involve a single parameter.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their helpful and
constructive comments.

REFERENCES

[1] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 1992.

[2] M. A. Lexa and D. H. Johnson, “Joint optimization of distributed
quantization system for classification,” inProc. IEEE Data Compression
Conf., J. Storer and M. Marcellin, Eds. IEEE Computer Society, Mar
2007, pp. 363–372.

[3] J. Tsitsiklis and M. Athans, “On the complexity of decentralized decision
making and detection problems,”IEEE Trans. Auto. Control, vol. AC-30,
no. 5, pp. 440–446, May 1985.

[4] H. V. Poor and J. B. Thomas, “Applications of Ali-Silvey distance
measures in the design of generalized quantizers for binary decision
systems,”IEEE Trans. on Communications, vol. 25, no. 9, pp. 893–900,
Sep 1977.

[5] S. Kassam,Signal Detection in Non-Gaussian Noise. Springer-Verlag,
1988.

[6] R. Balasubramanian, C. A. Bouman, and J. P. Allebach, “Sequential
scalar quantization of vectors: An analysis,”IEEE Trans. Image Process-
ing, vol. 4, no. 9, pp. 1282–1295, Sep 1995.

[7] S. Kullback,Information Theory and Statistics. New York: Wiley, 1959.
[8] T. Flynn and R. M. Gray, “Encoding of correlated observations,”IEEE

Trans. Info. Th., vol. 33, no. 6, pp. 773–787, Nov 1987.
[9] M. Longo, T. D. Lookabaugh, and R. M. Gray, “Quantization for de-

centralized hypothesis testing under communication constraints,”IEEE
Trans. Info. Th., vol. 36, no. 2, pp. 241–255, Mar 1990.

[10] R. Viswanathan and P. Varshney, “Distributed detection with multiple
sensors: Part I-Fundamentals,”Proc. of the IEEE, vol. 85, no. 1, pp.
54–63, Jan 1997.

[11] H. Hashemi and I. Rhodes, “Decentralized sequential detection,”IEEE
Trans. Info. Th., vol. 35, no. 3, pp. 509–520, May 1989.

[12] V. Veeravalli, T. Basar, and H. Poor, “Decentralized sequential detection
with a fusion center performing the sequential test,”IEEE Trans. Info.
Th., vol. 39, no. 2, pp. 433–442, Mar 1993.

[13] J. Tsitsiklis, “Extremal properties of likelihood-ratio quantizers,”IEEE
Trans. Comm., vol. 41, no. 4, pp. 550–558, Apr 1993.

[14] V. Veeravalli, “Comments on “Decentralized Sequential Detection”,”
vol. 38, no. 4, pp. 1428–1429, Jul 1992.

[15] J. Papastavrou and M. Athans, “On optimal distributed decision archi-
tectures in a hypothesis testing environment,”IEEE Trans. on Automatic
Control, vol. 8, no. 37, pp. 1154–1169, Aug 1992.


