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Distributed Structures, Sequential Optimization, and the computational complexity of finding a globally optimal solution

Quantization for Detection and that takes into account some of the statistical dependencies
among the output variables. Because the structures considered here
Michael A. Lexa,Student Member, IEEE operate sequentially, there is a non-trivial interplay between their
and Don H. Johnsorfellow, IEEE structural constraints and the constraints imposed by the sequential
optimization.

) o o ) In the input-broadcastsystem (Fig. 1), the quantizers sequentially

Abstract—In the design of distributed quantization systems one in- .o, qcast their real-valued observation to all succeeding quantizers
evitably confronts two types of constraints—those imposed by a dis- - . o . X .
tributed system's structure and those imposed by how the distributed P€fore quantizing their own observation; that is, thé" quantizer
system is optimized. Structural constraints are inherent properties of broadcasts its data to all quantizérsk > m before quantizing its
any distributed quantization system and are normally summarized observation. In contrast, the quantizers in tlgput-broadcassystem
by functional relationships defining the inputs and outputs of their st quantize their observations and then broadcast the quantized
component quantizers. The use of suboptimal optimization methods . . . . .
are often necessitated by the computational complexity encountered in OUIPUI to all succeeding quantizers. Thus, any partlcqlar quantlze!’ n
distributed problems. This correspondence briefly explores the impact the input-broadcast structure has access to all preceding observations,
and interplay of these two types of constraints in the context of distributed whereas a quantizer in the output-broadcast structure processes one
quantization for detection. We introduce two structures that exploit gpservation andm — 1 quantized outputs. In both structures, a

inter-quantizer communications and that represent extremes in terms of . : :
their structural constraints. We then develop a sequential optimization detector receives all quantized outputs and ultimately (perhaps only

scheme that maximizes the Kullback-Leibler divergence, takes advantage after receiving a sequence of outputs) makes a decision about the
of statistical dependencies in the distributed system’s output variables and hypothesized distribution of the inputs. Here, we restrict the outputs
leads to simple parameterizations of the component quantization rules. of the output-broadcast system to be binary so that the structures
We present an illustrative example from which we draw insights into ohasent extremes in terms of the communication rate among the
how these constraints influence the quantization boundaries and affect . d h h , | .
performance relative to lower and upper bounds. guantizers and so t e_lt the systems structural constraints are ac-
centuated. We recognize that an input-broadcast system centralizes
all of the observations at the last quantizer, and hence could make
an optimal centralized decision without a follow-on detector. We

analyze the input-broadcast system primarily because it represents
|. INTRODUCTION an ideal case where there is no communication rate constraint on the

transmissions.

Structure s often imposed qn unconstralngd vector qu.antlzatlonwe optimize the distributed structures with respect to the Kullback-
problems to reduce the encoding and decoding complexity [1]. |n

L : 2 eibler (KL) divergence which is well-known to be the optimal
distributed or decentralizedjuantization systems, where a set o . .
. . 4 X . —asymptotic exponential error rate for Neyman-Pearson type tests [7,
spatially separated quantizers act collectively to quantize an inpu S . . L
o ; . . 77]. Thus maximizing this quantity at the output of the distributed
vector [2], structure plays a similar role in that it often eases

: : L System, maximizes the potential asymptotic error decay rate of the
processing complexity; however, a distributed system’s structure dgtector P ymp y

an inherent property of the system and not one artificially impose
to reduce complexity. That said, structural constraints often make the
joint optimization of a distributed quantization system’s component
quantizers difficult or even intractable. For example, determining theFor ease of presentation, we restrict attention to structures with
optimal decision (quantization) rules in a standard distributed detéd®o gquantizers. LetX = (X1, X.) denote the input data and
tion problem (which can be thought of as a distributed quantizatidh = (Y1,Y2) the quantizers’ outputs. AssumX is a real-
problem) is known to be NP-complete [3]. Thus, while a distribute#alued random vector, and a binary-valued random vector:
quantizer's structure maylecreaseencoding/decoding complexity X € R*,Y € {0,1} x {0,1}. Let px and py denote the joint

it may simultaneouslyincrease the computational complexity of probability density function and the joint probability mass function
its optimization. This dichotomy frequently forces designers to usé X andY, respectively. Lepx,,, m = 1,2, denote the marginal
suboptimal methods to determine a distributed system’s quantizatidensities ofpx, and py,, m = 1,2, the marginal probability mass
rules. In these cases, a quantizers performance (in comparidgnctions ofpy. The realizationX,, = z,, represents the input to

to its centralized counterpart) suffers from constraints imposed BEEmth quantizer and’,, = y., represents the corresponding output.
a suboptimal optimization scheme, as well as those imposed bge ordering of the quantizers is arbitrary, but it is assumed known
a distributed system’s structure. This correspondence investiga@sl fixed. We shall concisely write the probabilRy(Y:1 = y1, Y2 =

the impact of these two types of constraints in the context of 1) asp(y1,y2).

distributed quantization for detection problem, where a distributed

quantizer is designed such that a downstream detector is optimizedd4,Quantization rules

5. we (_:on5|der two swn_pl_e distributed quar?tlzatlon_structures thaFThe outputs in both the input- and output-broadcast systems are
sequentially process their inputs and share information among th&'erscribed by the following mappings
constituent quantizers (Fig. 1). We then present a sequential optimiza- '
tion method that, like other sequential schemes [6], largely avoids y1 = ¢1(z1): R — {0,1},

Index Terms—Quantization for detection, sequential optimization,
Kullback-Leibler divergence, distributed detection.

Il. PROBLEM FORMULATION
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(a) Input-broadcast (b) Output-broadcast

Fig. 1. Broadcast structures. In the input broadcast system, the real-valued observatigsslid lines) are broadcast to the other quantizers while the
quantized outputg,,, (dashed lines) are transmitted to the detector. In the output-broadcast system, quantized outputs are broadcast to all succeeding quantizers
and to the detector. The squares represent the detectors.

An alternative description of these quantization rules can be giveescriptions are nearly the same. However, unlike here, Hashemi
in terms of binary partitions. Fod C R", we define a binary partition and Rhodes used a Bayes criterion instead of the divergence and
7 to be a pair of disjoint setA, A} whereA U A = R", A denoting assumed that all observations (in both space and time) are statistically
the complement set. Let; = {A4;, A1} be a binary partition oR  independent. Moreover, they optimized their system using a distinctly
andm, = {A2, A2} a partition of R, Then, for the input-broadcast different approach than the one proposed here (see Section Il for

system, the quantization rules are defined by details). Second, serial architectures [10] are very similar to the
. - output-broadcast structure; however, these systems take the output of
= d1(z1) = 0 !f 7 €A (3) the last quantizer as the decision of the system, whereas an output-
Lif zy € Ay broadcast structure bases its decisioratiroutputs. (This difference
0if (z1,22) € As is most appreciable for systems with more than two quantizers.)

Yo = ¢o(21,12) = 4)

1if (wl,xg) € As.

- . . . B. Kullback-Leibler divergence
Defining the output-broadcast system in terms of binary partitions is

more involved. Becausg can assume one of two values, the second 1€ KL di_vergenf:e_ is a m_erwber of the class distance measures
quantizer has the freedom to use one partition when= 0 and which quantify ‘t.he dlsglmllarlty be(g\gveen eg?bablllty d!strlbutlons.

an entirely different partition whep, = 1. Thus, the quantization 7O WO pfg?ab'“t_y dens%fgnctlo.qsx andpx ', the KL divergence
rule v, consists of two binary partitions (dR), not one. Letting betweenpy’ relative topy’ is defined as the expected value of the

-~ & - . . . . . 0
v = {B1,B1}, v2.0 = {Bao, Bao}, andvay = {Bs1, Bo,} be hegative log-likelihood ratio with respect 147,

binary partitions ofR, we have _— A o P9 (x)
. - D(px llpx’) = Eo[—log(L)] =  px (x)log 55— dx, (7)
Yy = 1/)1(1‘1) = 01if z1 € By (5) Px (X)
1if 2z, € By (1)

whereL denotes the likelihood ratigy, (x)/pgg)(x), and the choice
of the logarithm’s base is arbitrary. To ensure the existence of the
integral, we assume that the two probability measures associated

. ) . . with X are absolutely continuous with respect to each other. When
The above functional relationships constitute to what we refer %Sj) j = 0,1, are probability mass functions, the integral in (7)
X - bt} 1

the structural constraintf the input- and output-broadcast systeMpacomes a summation. Here. the relevance of the KL divergence

These_ constraints stipulate (restriqt) the quantities on which _tg?ems from Stein's Lemma [7, p. 77], a well-known result that relates
quantizers operate, and thus determine the links among the quantizgfs.jiyergence to the asymptotic performance of a detector. In words,
Here, the only structural difference between the input- and oUtPWeirys | emma says that an optimal Neyman-Pearson detector’s error
broadcast systems is the communication rate between the quantizgisyapijity decays exponentially in the number of observations, with
For the input-broadcast system the rate is infinite and for the outpyts, asymptotic exponential decay rate equal to the divergence between

broadcast system the rate is one _blt/ob_servanon._ ) _the distributions characterizing the detector’s inputs.
Broadcast structures have received little attention in the quantiza-

tion for detection or distributed detection literature. While various
authors have touched on various aspects of distributed quantizat%n
for noncommunicativstructures [8, 9], none to our knowledge have We assume the inputX are distributed in one of two ways:
considered broadcast structures. The vast majority of the distributed : X ~ p§2>, H : X ~ p§§> and address the problem
detection formulations also center on noncommunicative (parall@) maximizing the output divergenc@(pg)npg})) over the set of
structures (see [10] and references therein), however, there are dlloquantization ruless:, @2 and vy, 12 for the input- and output-
notable exceptions. First, Hashemi and Rhodes [11] investigatedraadcast structures, respectively. We assume the input divergence is
two-stage distributed detection system that is essentially equivalenfitote and that the joint distribution gfx is completely known under

the input-broadcast structure. Their system disallowed inter-quantibatth hypotheses. We are not directly concerned with the operation
communications, but processed temporal data in much the same whyhe detector, but in the context of our problem, the divergence
an input-broadcast system processes spatial data. Thus by interchaegveen the distributed systems’ output distributions represent the
ing the spatial and temporal domains, the structures’ mathematidakector's best asymptotic error decay rate. TherefDr(@,%?)Hpﬁ))

0 if ZBQEBQi
= fB, =1) = ) ’ ,7::0,1. 6
Y2 = Pa(z2, 51 = 1) Lif 22 € Bas (6)

Problem setting
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governs how well the detector can assimilate quantizer outputs ahd Output-broadcast
optimally process them. In addition, our use of the KL divergence
as the quantity to be optimized implies that the detector uses
quantizers’ results in a particular way. Rather than making a decisi?
each time the quantizers produce. an output vector, the detector O%%rr'tition, that is a partition defined by thresholding the likelihood
ates on a long sequence of quantizer outdts! = 1, 2, .. ., before ratio, is the maximizing partition

making a decision. Heréy; is the quantized output corresponding to ' '
the inputX; for [ = 1,2, .... This scenario corresponds to situations
when quantizer processing occurs frequently, and the detector can”

afford to assimilate several quantizer outputs before making its own. o ]

Note this mode of decision making is different than that of th&NiS means that, is simply parameterlzedlby the thresheid
standard distributed detection problem where each sensor’s output i¥Ve next consider maximizin® (p§?),, Hpgfz)\yl) to derive a para-
often considered a local decision on the hypothesis. We assume faterization the second quantizer's quantization rule while holding
have aniid sequence of input vectoiX, that allows for statistical %1 fixed. By definition, [71,D(p{)) . IIpy;)y,) equals,

dependencies (spatial dependencies) betw&en and X, ; for a "

We begin with the first quantizer in isolation and ask what type of
IRary partition of the outcome space &f maximizesD(p(YOl) ||p§,11)).
Hitsiklis showed in [13, Proposition 4.1] that a likelihood ratio

P (z1)
1:B1 = {xl S R‘L(l‘l) > 7’1}7 L(.T1) = m (10)

givenl. Because we require the structures operate on one input vector > (0) > (0) 1 P (yaly1) _
. e ) P (Y1) (y2lyn) log s =
at a time, the temporal indekis irrelevant and will be suppressed. " Vo D (y2]y1)
' 11)
(0) _ (0) (1) (
Ill. STRUCTURE OPTIMIZATIONS P (Y1 = 0)D(py, |y, —o Py, v; —0)
. . (0) _ (1) (1)
Because we can always factor the joint output distributions, +p (i =1) D(pYz\lealYz\Yl:l)
(4) — @ (4) P
P (y) =7 (y)p” (2ly1), J = 0,1 (8) we see from (11) that the conditional divergence is an average
we can write the output divergence as a sum of two compone®t two component divergences between the Bernoulli distributions
i @) = 4),4,5 = 0,1. Note thatD(p.?) o i
divergences P (y2lyr = i), 4,J ;1. Note thatD(py. )y, _ollPy, |y, =0) iS
0y (1 0 0 only conditioned on the everty; = 0} andD(p'") S
DO 1) = DO 1) + DOy ity © O s = 0) APy v [Pty
he f ‘ | albeit subootimal only on {Y1 = 1}. Therefore, D(py, |y, _ollPy,|v,—0) is only
The form of (9) suggests a natural, albeit suboptimal, sequentigsociated with the partition that is used when — 0, and

approach to maximize the joint output divergence; first maximizB( (1) (1) ) is only associated with the partition that

0 1 . . - Y: Y=1||py yi=1
D(py) lpy;) over 7(/(’]1) (¢1)('l)then given the resulting quantization;g ",cag' whengji '— 1. We can thus apply Tsitsiklis' likelihood

rule, maximizeD(py, y, IPy,)|y, ) OVer2 (¢2). This strategy treats ratio partitioning result to each component divergence separately and

the maximization of the joint divergence as a separable optimizatigBnclude that o and v21 can each be parameterized by a single
over the quantization rules when in fact the divergence terms on Hfigeshold, with the partition sets

right-hand side of (9) are generally coupled. It is for this reason that

this approach is suboptimal. It does, however, have the advantage of voi: Bai = {x2 € R|L(x2|ly1 = 1) > T2}, (12)
gahlilggtsmto account some of the statistical dependencies among the Ll =) = pD (walyr = ’L:)v i— oL (13)
: PO (zalyr = 1)

For broadcast structures with small numbers of quantizers, we
can increase the complexity of the above approach, improve itsSummarizing, our sequential optimization approach transforms the
performance, but still maintain tractability. Rather than sequentialfpaximization of the joint output divergence over a general set of
maximizing the divergences on the right-hand side of (9) with thguantization rulesy, . into a maximization of over just three
goal of determining the optimizing partitions, we can sequentialareshold parameters;, 2,0, 72,1. When the likelihood ratios are
maximize them with the intent of onlparameterizinga class of all monotonic, each partition can be described by a single threshold
partitions. Then, if such parameterizations exist, we can joint§n aninput observationas opposed to a threshold on the likelihood
optimize the output divergenc®(p,’ |Ip$;’) over the set of all valid ratio.
parameters. Thus, this alternative approach first attempts to define a
parametric class of partitions, and then searches for the best partition
(quantization rule) within that class. By jointly optimizing over theb: Input-broadcast
parameters, we partially mitigate the effect of initially treating the For the input-broadcast structure, the parameterizatiow;ofs
maximization of the joint divergence as a separable optimization. exactly the same as that for the output-broadcast structure. Therefore,
Note that this approach generally does not yield person-by-persgg know thatr; is a likelihood ratio partition parameterized by a
optimal (PBPO) solutiorts which are often sought in distributed single thresholdy,
detection problems [10,11]. Using a PBPO approach, one would

. T . . (1)
determiney (¢1) by maximizing thejoint dlvergenceD(p$)||p$)) T Ay = {21 € R|L(z1) > m)}, L(z1) = p (361). (14)
while holding 1, (¢2) fixed, and likewise determings, (¢2) while PO (z1)

holding 1 (¢1) fixed. Thus, a PBPO approach does not parameterize o ©) o )

the observation space through sequentially maximizing the marginaf 0" the maximization oD (py.y, [Py,|y,) over ¢z, we begin by

and conditional divergences in (9). A PBPO approach is not used héagsideringp”) (yo=0|y: =0) expressed as

because it suffers from essentially the same intractability as finding z

the global solution [12]. . PP (y2 = 0lyr = 0,x) p (x|y1 = 0) dx, (15)
R

1A set of quantization rules is person-by-person optimal if the overall _ ) . . . o
system performance cannot be improved by adjusting a single quantiza?YXHereX = (21, 22). The f'r_SF term in the mtegrand is the probability
rule while all other rules are held fixed. Person-by-person optimality is & the event{Y>=0} conditioned on the joint eventy1 =0, X; =

necessary (but not a sufficient) condition for global optimality. x1,X2=x2}. The second term in the integrand of (15) is the joint
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density of (X1, X2) conditioned on{Y; = 0}. From (3) and the which the observations can be directly compared,; denoted here by
properties of conditional densities, we have &1,&2,0, and&s 1. Settingp = 0.9, we jointly optimizeD(p )||p(1))
over £1,82,0, andé&z,1 using standard numerical methods. Fig. 2

() _ _ ) A
P (xlyr = 0) = g x|(z1,22) € A1 xR depicts the resulting overall partition.

(4) _
2%, if (.’E1,$2)€A1 x R
= >Pr A1 xR, Hj B. Input-broadcast
- 0 otherwise As with the output-broadcast structure, the likelihood ratio that

characterizes the first quantizer's quantization rule is monotonic.
Therefore, the threshold parameter can be replaced by another
threshold parametey; which can be directly compared to the obser-
atlon X;. To relate the second quantizer’'s threshold parameters to
thresholds on the observations, we consider the conditional likelihood

Thus, p¥ (x|y1 =0) only has support om; x R. For example, if
A, is the semi-infinite interval—oo, 1], then p¥) (x|y1 = 0) only
has support on the semi-infinite plane bounded by the vertical line
x1 = 1. The |Zntegral in (15) therefore reduces to

p(j> x|(z1,22) € A1 x R dx, (16) ratios appearing in (20). Fay; = 0, we have
E2,'y1=0 Ix 1
(7) _ Ay xR 1

_ _ _ _ _ o pY(x 0 ————exp —=0 X 0 21
whereEs y,—o = (A1 xR)NAz andFE» , o C A>. We can similarly (xlyr = 0) = 2me;|X|1/2 2 e1)
write Z where! is the indicator functiong; = Pr(A, xR; H;), S = |7,
PP (y2=0ly1=1) = Y x|(z1,22) € Al xR dx, ) =x unde_rHo_, endd =x-m l_Jnd_erHl. Fc_;rmmg the likelihood
B,y 1 ratio and simplifying the inequality in (19) yieldBs ,,—0 = x €

_ _ _ _ (17) Al X R| Ty > byg — 21 , Wherebo =1+ (1 + p) In (COT]Q’O/Cl).
where E ;=1 = (A1 x R) N Az and B2 ,=1 C A». Recalling Thus, Es,,—o is defined by a line in the left half plane (left of
S2's quantization rule for the input structure (4), expressions (1fe partitioning linexz: = ~1) with slope equal to—1 and y-
and (17) imply thatd, = Es -0 U E2 4, —1. This means that the intercept equal tahy. Because the slope is constant, we are able
partition 72 is composed of four disjoint sets whose pairwise union® parameterizeEs ,,—o by bo. The companion partitioning set
equal A2 and Az: 12 = {E2y,=0 U B2y, =1, E2,y,=0 U E2y,=1}.  E,,,—; similarly can be characterized by a y-intercept. In particular,
Moreover, becausd; and A; are disjoint,fs,,, =0 and F2 ;=1 are  we have F>,,—1 = x € A; x R| T2 > by — z1 , where
also disjoint. Thus, the two component divergences appearing in the — 1 + (1+ p)ln (cgm 1/cll) and cJ = Pr(A: x R; Hj).
expression of the conditional divergence (11) can be independerftfénce, the likelihood ratio threshold parameterization of the input-
optimized in much the same way as they were in the output-broadcpgiadcast quantization rules is equivalent to a parameterization with
system. We can maX'”“Z@(Py)\yl opr;\yl o) OverEzy,—o and  one threshold parameter; and two y-intercept parametets, b; .
maX|m|zeD(pY vy = 1||pY2|Y1 1) over Es o, —1. Again, by applying With m = (1,1) andp = 0.9, we jointly solve for the maximizing
Tsitsiklis' likelihood ratio partitioning result, we conclude that parameters (again using standard numerical techniques) and show the
can be parameterized by two threshold paramefessandr. 1, i.e.  resulting overall partition in Fig. 2.

5 ma i Ay = Egylzogfzyl:l, Yvhere 2198) C. Discussion
2= = {x € 1(?) | (X|y% =1) > "2k, (19) Most visible in Fig. 2 is the impact of the infinite rate on the
L(x|yy = i) = P (Xly=14) —0.1. (20) link between the first and second quantizers in the input-broadcast
0 (x[y1 = 1) system. The structural freedom afforded by the infinite rate permits

Therefore, like the output-broadcast structure, we transformed ¢ partitioning boundaries af. to have nonzero slopes, whereas
maximization ofD(p >||p<1>) over ¢1, 2 into a maximization over the partitioning boundaries ofs; are constrained to have zero
three threshold parameters;, 1.0, 72.1. In contrast to the output- Slope. The misalignment of the boundaries ackgiss (11 s) vertical
broadcast structure, the partitioning sets of the second quantigéf is, however, a direct by-product of the sequential optimization
(As, As) are subsets d&? notR'. The extra dimension adds a degre@nd not caused by structural constraints. It reflects the fact that
of freedom to the partitioning sets (leading to improved performancélle second quantizer is optimized with respect to the conditional
but generally makes it more difficult to relate the likelihood ratu&lvergenc@(pg‘ylHp%)‘yl) instead of, say, the marginal divergence
thresholds directly to the observations. D(p{)||p$)) which, incidentally, would force the alignment of the

Note that the partitions; andm, in (14) and (18) look very much boundaries. Moreover, note that themberof vertical boundaries in
like the PBPO partition Hashemi and Rhodes derived in [11] for thefftig. 2 is also a by-product of the sequential optimization. Maximizing
two-stage distributed detection system. But, as pointed out in [14},(p$1)|\py1) to determine¢; and ¢: results in a likelihood ratio
their results are incorrect for a PBPO approach. We re-emphasikeesholding rule, and because the likelihood ratio is monotonic in

that our approach is not PBPO. this case, there is only aingle vertical boundary. The structural
constraints only insist that the boundaries be orthogonal to the
IV. GAUSSIAN EXAMPLE axes; they do not restrict the number of boundaries. If one jointly

Consider the distributed hypothesis tel§t, : X ~ A/(0, %), H; : optimizes the quantizers and eliminates the constraints imposed

X ~ N(m, ¥), where under both hypotheses the inpits X» each by the sequential optimization, very different partitions emerge; in
have unit \;ariance and are correlated with correlation coeffigient particular, partitions that daot derive from thresholding likelihood
ratios [2]. In addition, the ordering of the sequential optimization has

a definite effect on the partition. b2 (¢)2) were optimized first, the
vertical boundaries in Fig. 2 would become horizontal @nd(1)

For this example, it is well-known that the likelihood ratioswould be composed of two component quantization rules, much like
defining the partitioning sets in (10) and (12) are monotonic. W&, (2) is described in Section Il. In this example, the ordering makes
can therefore re-parameterizia and - using three thresholds to no difference because of the Gaussian distribution’s symmetry, but

A. Output-broadcast
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Fig. 2. Optimized partitions of the observation space with Gaussian inputs whe®.9 andm = (1, 1). The elliptical curves are contours of equiprobability

for the underlining input distributions. Because of an output-broadcast structure’s structural constraints, each partitioning line must be orthogonal to the axes.
In comparison, the input-broadcast system’s structural constraints are weaker and therefore the partitioning lines of the second quantizer can have a nonzerc
slope. Both partitions suffer from the effects of the sequential optimization.

in general, different orderings yield different performances. How orwrrelated. This means that for, say= 0.9, it is nearly as easy
should order the quantizers in any given situation is largely an optm discriminate between the output distributiopg) when only
problem [15]. one bit is communicated than when a real-valued observation is

The left panel of Fig. 3 shows the output divergence of the inpucf_ommunicated. As one would expect, the input-broadcast system

and output-broadcast systems as a function, afong with two upper never performs worse than the output-broadcast system because the

and one lower bounds. It follows from the divergence’s invariandt?tterd S a speue}l case gf the formﬁr (ell(ssunlngg tha]:'to\lthe ;nput—
property [7, pp. 18-22] that the input divergendé(pgg)npg?) broadcast SKSteme secon qlfm'éer as Epwe ga pfAlso o h
serves as an upper bound to any transformation (quantization)'%tFreSt' Is the performance at= 1 because this case represents the

the inputs, and here represents the optimal asymptotic error de gyatlon wher.e the quantizers .have a common input. The presence
rate of a detector that has direct access to both observafians of ‘@ common input causes the input- and output-broadcast structures

and X». The divergence of an optimal centralized likelihood ratid® coincide (again assuming that the second quantizer has knowledge

quantizer (LRQ) [13] also serves as an upper bound because SBEHﬂe first quantizer's quantiz_ation _rule), and therefore they achieve
a system is free from any structural or optimization constraints, tlllrée same _performa_nce_ at thls_pomt. Furthermore, b_ecause of the
presence of which would only decrease the divergence. The Opmﬂéqnotomcny of the Ilkel_lhood ratlosz both structures achieve the same
LRQ’s divergence, unlike the input divergence, takes into accoﬁ?rformance as an optimal centralized LRGpat 1.

the inherent loss in divergence due to quantization and represents the

decay rate of a detector that operates on the output of an optimal V. CONCLUDING REMARKS

centralized quantizer. Thus, any performance gap between a LRQ'®esigners of distributed vector quantization systems will, more
benchmark and that of the input- or output broadcast systemsof$en than not, face choices and make tradeoffs concerning a system'’s
only caused by structural constraints and suboptimal optimizatiastructure and the methods with which to optimize it. It is evident
The lower bound shown in Fig. 2 represents a worst-case scendr@m the above example that the degree of impact can vary greatly
in terms of both structural constraints and optimization techniquéepending on the circumstances. Thus, understanding how both
Specifically, we consider a noncommunicative system in which theseructure and optimization techniques constrain the overall problem
is no inter-quantizer communications (most stringent structure) aimdany given situation is fundamental to making prudent and effective
an optimization technique that only locally maximizes the divergenceesign choices. The following summarizes our observations.

That is, each quantization rule is found by optimizing the divergence, wjith finite rate communication links, structural constraiatsy

. L. . 0 1
between the marginal output d|5t”bUt'0ﬂ9(P_§/m Hpgf,i):m_ =12 imply that the partition boundaries are orthogonal to the axes.
Note this optimization approach completely ignores statistical depen-, Sequential optimization leads to likelihood ratio thresholding
dencies and hence the bound is constant for all valugs of quantization rules (parameterizations) that reduce complexity,

To better judge performance, we normalize the divergences by the but automatically fix the number and locations of the partitioning
optimal centralized LRQ's divergence and plot the resulting curves boundaries. Note that the globally optimal quantization rules are
in the right hand panel of Fig. 3. Because we normalize by the Not, in general, likelihood ratio thresholding rules [2].
optimal centralizedquantizer, the graph shows the percentage losse Sequential optimization creates a sensitivity to the order in
in terms of divergence duenly to structural constraints and those ~ Which the component quantizers are optimized.
caused by sequentially optimizing. On the one hand, these plote A common input dissolves the structural difference between the
indicate that the performance gain is greatest when the correlation input- and output-broadcast systems.
between the observations is negative. That is, the divergence woul®ne shortfall of our sequential optimization scheme is that it
increase the most if one were to increase the communication rgcomes computationally expensive when jointly optimizing a large
between the quantizers (or equivalently change a distributed systemsnber of partitioningparametersecause the number of parameters
structure) when the correlation is negative. On the other hammjer which to maximize grows exponentially with the number of
the percentage loss ieast when the observations are positivelyquantizers. In these cases, a more feasible approach would be to
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The panel on the left shows the output divergence of the input- and output-broadcast structures as a function of the correlation coefficient. The

performance of these structures are upper bounded by the input divergence and the divergence of an optimal centralized likelihood ratio quantizer (LRQ).
The lower bound represents the performance of a noncommunicative structure whose component quantizers are optimized individually. The panel on the right
shows the performance curves normalized by the LRQ'’s performance.

optimize a broadcast structure as was first suggested in Section [1E] J. Papastavrou and M. Athans, “On optimal distributed decision archi-
sequentially maximize the divergences on the right-hand side of (9)
to determine each quantizer's quantization rule instead of sequentially
maximizing them to find a parametric class of partitions. This
optimization boils down to a sequence of maximizations that each
only involve a single parameter.
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