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Abstract
The capacity defines the ultimate fidelity limits of information transmission by any system.
We derive the capacity of parallel Poisson process channels to judge the relative effectiveness
of neural population structures. Because the Poisson process is equivalent to a Bernoulli
process having small event probabilities, we infer the capacity of multi-channel Poisson
models from their Bernoulli surrogates. For neural populations wherein each neuron has
individual innervation, inter-neuron dependencies increase capacity, the opposite behavior of
populations that share a single input. We use Shannon’s rate-distortion theory to show that
for Gaussian stimuli, the mean-squared error of the decoded stimulus decreases exponentially
in both the population size and the maximal discharge rate. Detailed analysis shows that
population coding is essential for accurate stimulus reconstruction. By modeling multi-
neuron recordings as a sum of a neural population, we show that the resulting capacity is
much less than the population’s, reducing it to a level that can be less than provided with two
separated neural responses. This result suggests that attempting neural control without spike
sorting greatly reduces the achievable fidelity. In contrast, single-electrode neural stimulation
does not incur any capacity deficit in comparison to stimulating individual neurons.

Keywords: information capacity, point process, neural populations, neural prosthetics

Introduction

From an information theoretic viewpoint, a neuron can be seen as a communica-

tions channel: a neuron decodes the information expressed by its inputs, processes

it and somehow represents that information in its spike-train output, just like the
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ubiquitous communication system described in Shannon’s (1948) paper.

Information theory has been used in a variety of ways to evaluate neural

coding schemes (Bialek et al. 1993; Rieke et al. 1993, 1999; Strong et al. 1998;

Johnson et al. 2001; Schneidman et al. 2001) by quantifying how much information

can be transferred with specific neural codes. While this approach may provide

insight into neural coding strategies, Shannon’s information theory tells us that

channel capacity expresses the ultimate ability of a communication channel to

transfer information. Capacity determines the greatest possible fidelity to which

information, digital or not, can be extracted by any means, regardless of the

transmission scheme, of the signal being conveyed and how we define fidelity.

The central issue thus becomes calculating the capacity, a frequently difficult,

if not impossible, task.

To study the information transfer properties of neural systems, we model

stochastic spike trains as point processes (Snyder 1975; Johnson 1996). Kabanov

(1978) derived the capacity of any single point process channel with constrained

minimal and maximal instantaneous rates. Kabanov’s derivation showed that the

capacity of any point process cannot exceed the Poisson process’s capacity. Johnson

(2007) presents an argument why all other point processes have a strictly smaller

capacity and describes how the non-Poisson capacity can be computed from the

Poisson capacity. Thus, despite being a relatively noisy point process (Johnson

1996), the Poisson process represents the maximally effective point process channel.

Though the Poisson process is at best an approximate model for neural spike trains,

the capacity results for the Poisson channel provide an upper bound on how

effectively any point process model represents information.

While Kabanov’s single point process capacity result is of some interest in

neuroscience applications, what would be much more relevant is to have some idea

of the effectiveness of population codes by determining how much population

coding boosts capacity beyond that provided by a single neuron. Unfortunately,

extending the single point process capacity results to several point processes, the

so-called vector point process case, is very difficult, especially when exploring the

effect on capacity of dependencies that would arise from lateral connections among

neurons, what we call connection-induced dependencies. For most point processes,

including the Poisson, the joint probability function cannot easily be written, which

presents a major stumbling block to calculating information theoretic quantities.

Our approach circumvents this problem by noticing that, in the limit of small

binwidths, a discrete-time Bernoulli process becomes statistically equivalent to a

Poisson process: at each moment, either one event or no event occurs, statistically

independent of what occurred at other times, with the probability of an event

occurring being very small. The same limiting approach applies to vector Bernoulli

processes as well, yielding in the limit the well-defined infinitely divisible vector

Poisson process (Johnson and Goodman 2007). In this paper, we calculate the

capacity of the vector Bernoulli process, even those incorporating interprocess

dependencies, and evaluate the result in the small binwidth limit; in this way, we

find the vector Poisson process capacity without needing the joint distribution

function.

Using this approach, we can compute the capacity for several population models

depicted in Figure 1. The only special case that yields a general answer is the

simplest, shown in panel (a): M statistically independent point processes, each of

14 D. H. Johnson and I. N. Goodman
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which has its own input signal statistically independent from the others. Simple

manipulations using only the properties of mutual information show that in this

case, the total capacity C(M) equals to the sum of the component capacities:

CðMÞ ¼ �mCð1Þm , where C(1) is the single-channel capacity found by Kabanov. This

result serves as the baseline against, which we compare the capacity for the other

cases. Case (b) shows a population that has a common input, which creates

a conditionally independent population response: only if the stimulus is provided

are the individual responses independent of each other. Case (c and d) shows

populations that have connection-induced dependencies, which makes the

responses conditionally and unconditionally dependent. The goal is to investigate

the information-theoretic consequences of these simple population structures.

We begin by describing known capacity results for the single point process

channel and the probability model for jointly defined Poisson processes. Next, we

define a model for jointly defined Bernoulli processes and show its equivalence in

the small-binwidth limit to an important class of jointly defined Poisson processes.

We use this model to derive the information capacity of the population structures

shown in Figure 1, and furthermore, show how aggregating (summing) the outputs

of a population affects the capacity. Finally, we show how to interpret capacity

results in terms of the ultimate fidelity to, which information can be extracted from a

population response. In particular, our capacity calculations for simple models of

neural prostheses have important implications for the ultimate capabilities of these

devices.

Background

The point process channel produces a sequence of events Nt that encodes an input

signal Xt with its intensity �ðt;HtÞ. The quantity Nt denotes the number of events

that have occurred since observations began, usually taken to be the time origin

t¼ 0. The intensity �ðt;HtÞ represents how the instantaneous event rate depends on

Y1

Y2

YM

X

(d) 
Common input  

dependent channels

Y1

Y2

YM

X

(b) 
Common input  

independent channels

(c) 
Independent input  

dependent channels

Y1

Y2

YM

X1

X2

XM

Y1

Y2

YM

X1

X2

XM

(a) 
Independent

Figure 1. Several configurations of parallel channels for vector and common input cases are
shown. Each block generates a Poisson process having an instantaneous rate equal to its
input. We model these generators here as small-probability limits of Bernoulli process
generators. The arrows between blocks symbolically represent the presence of statistical
dependencies among the generators, creating a connection-induced dependence among the
outputs. Each Poisson generator in (c, d) is assumed to interact with all others, not just
between adjacent pairs as the simple graphics might suggest.

Capacity of the vector Poisson channel 15
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the input Xt and on the process’s history Ht: when and how many events occurred

before time t. For a regular point process, the intensity controls the probability of

events occurring in a small time interval �t:

Pr Nt, tþ�t ¼ 1 Htj
� �

¼ �ðt;HtÞ�t,

Pr Nt, tþ�t > 1 Htj
� �

¼ oð�tÞ:
ð1Þ

The notation Nt1, t2 denotes the number of events that occur in the time interval

[t1, t2[. In the latter expression, lim�t!0 o(�t)/�t¼ 0, meaning that the probability

of more than one event in a small interval decreases more rapidly than linearly. For a

Poisson process, the intensity does not depend on previous events, and we write the

intensity as an instantaneous rate function, �ðt;HtÞ ¼ �ðtÞ. For more statistically

complex point processes, the event rate depends on when previous events occurred.

For example, in neural discharge models that incorporate refractory effects, the

probability of a spike occurring at any time depends on when the previous one

occurred, and possibly on earlier ones as well (Johnson 1996).

We define the capacity of the point process channel as

C ¼ lim
T!1

max
p Xf0�t<T gð Þ:�ðt;Ht ÞC

1

T
I Xf0�t<T g; Nf0�t<T g

� �
: ð2Þ

In words, capacity is the maximal asymptotic time-averaged mutual information

between the input signal Xt, which represents a stimulus encoded into the point

process’s intensity, and the point process Nt itself. Here, the input is assumed to

be a stationary process. The maximization occurs with respect to all stimulus

probability distributions that allow the resulting intensity to lie in the constraint

class C. In this way, the intensity constraint class implicitly places constraints on the

input. The constraints reflect the characteristics of the point process channel under

study and usually strongly affect capacity results. In this paper we focus on

constraints on the maximal and average intensities of the point process, defined

as maxt �ðt;HtÞ and E½�ðt;HtÞ�, respectively. For a stationary Poisson process,

wherein �(t) is a constant, these quantities are equal; for stationary non-Poisson

processes, they can differ substantially. Poisson or not, a recording that expresses

precise spike timing means it has a large maximal rate and vice versa. In all

point-process capacity calculations, the minimal and maximal rates are

constrained; if the maximal rate were not constrained, the capacity would be

infinite. Other constraints, such as a constraint on the average rate, can be added if

the channel limits average rate in addition to maximal rate. Note that neuron

models containing no inherent variability when the input is deterministic, like

integrate-and-fire models, have an infinite maximal rate, and consequently infinite

capacity.

Kabanov (1978; also see Brémaud 1981; Davis 1980) derived the capacity of the

single point process channel when the minimal and maximal intensities are

constrained according to �min � �ðt;HtÞ � �max,

Cð1Þ ¼
�min

ln 2

1

e

�max

�min

� ��max=ð�max��minÞ

� ln
�max

�min

� ��max=ð�max��minÞ
" #

:

The division by ln 2 leaves the capacity with units of bits/s, and we adopt this

convention throughout this paper. The capacity is achieved by a Poisson process

16 D. H. Johnson and I. N. Goodman
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whose instantaneous rate is given by a random telegraph wave – the rate randomly

switches between its minimal and maximal values – with the probability of being

at the maximal rate at any given time equaling 1/e. In most cases of interest in

neuroscience, the appropriate minimal-rate constraint is zero, which greatly

simplifies the capacity formula,

lim
�min!0

Cð1Þ ¼
�max

e ln 2
, ð3Þ

which means the capacity-achieving signal has an average rate of �max/e.

Kabanov’s derivation showed that the capacity of any point process satisfying the

minimal and maximal intensity constraints cannot exceed the Poisson process’s

capacity. For example, a dead time-modified Poisson process has a capacity equal to

1=ð1þ �max�Þ� �max=e ln 2 (Johnson, 2007). Imposing additional constraints cannot

increase capacity. For example, if in addition to maximal rate, we constrain the

average rate to be less than �, the capacity C
ð1Þ

is smaller unless � � �max=e (Davis

1980).

lim
�min!0

C
ð1Þ
¼

�

ln 2
ln
�max

�
, � �

�max

e

�max

e ln 2
, � >

�max

e

8>><>>: ð4Þ

This result illustrates that capacity expressions and computed values can change

substantially when the constraint class is modified.

To generalize the single point process result to population channels, we need a

model for jointly defined point processes. Unfortunately, the joint probability

distribution for a vector point process is unwieldy at the best, especially when

incorporating inter-process dependencies. We can construct a vector Poisson

process, however, for the special case in, which the collection has the statistical

property known as infinite divisibility (Daley and Vere-Jones 1988), meaning it can

be decomposed continually into sums of independent vector Poisson processes.

This property puts the joint Poisson process distribution function on a par with the

jointly Gaussian distribution. Using a method that generalizes Holgate’s (1964) way

of creating a bivariate Poisson distribution, forming M jointly infinitely divisible

Poisson processes requires the superposition of collections of no more than 2M
� 1

statistically independent building-block Poisson processes (Johnson and Goodman

2007). For example, to construct a pair of dependent Poisson processes, we need

three building block processes, which we denote by B1,t, B2,t, B3,t that have

instantaneous rate functions v1(t), v2(t), v3(t), respectively. We form the pair

according to the superposition

N1, t ¼ B1, t þ B3, t

N2, t ¼ B2, t þ B3, t:

All of the dependence between the constructed processes is expressed by the events

produced by B3,t, which occur in both of the constructed processes. Consequently,

correlations between the processes are non-negative, and only occur instantaneously

when the common process produces an event. More detail on this construction

can be found in a companion paper (Johnson and Goodman 2007).

Capacity of the vector Poisson channel 17
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Although constructing vector Poisson processes having dependencies is

straightforward using this method, the joint probability function still cannot easily

be written, which presents a major stumbling block to calculating information

theoretic quantities. We circumvent this problem by noticing that the definition of a

Poisson process represents a special case of Equation 1, wherein the probability of

an event occurring in the interval [t, tþ�t[ equals �(t)�t for sufficiently small

binwidth �t. ‘‘Sufficiently small’’ means that �(t)�t is not only less than one (so that

it is a meaningful probability), but much smaller than one. The fact that a Poisson

process’s intensity does not depend on its history means that event probabilities are

statistically independent from bin to bin. Furthermore, the probability of multiple

events within a single bin is of second-order and can be ignored. All in all, in the

limit of small binwidth, the discrete-time Bernoulli process becomes statistically

equivalent to a Poisson process: at each moment, either one event or no event

occurs, statistically independent of what occurred at other times, with the

probability of an event occurring being very small. The same limiting procedure

applies to jointly defined Bernoulli processes as well, yielding an infinitely divisible

vector Poisson process in the limit (Johnson and Goodman 2007). As we shall show,

it is much easier to compute capacities for the vector Bernoulli process, even when

interprocess dependencies are incorporated. Our approach amounts to computing

the capacity first for the Bernoulli process model, then evaluating the vanishingly

small binwidth limit to infer the capacity of the vector Poisson channel. This

approach is justified because of the smoothness properties of mutual information,

which essentially allows us to evaluate well-behaved limits in any order.

Results

The Bernoulli channel

A Bernoulli process Y(n) equals either zero or one at each bin index n, and

the resulting value is statistically independent of what occurs at any other bins.

We let X(n) denote the probability that the Bernoulli channel output equals one

at bin n.

P Y ðnÞ
��XðnÞ� �

¼
XðnÞ, Y ðnÞ ¼ 1

1�XðnÞ, Y ðnÞ ¼ 0

(

We consider the Bernoulli probability X(n) to be stochastic as well, resulting in what

can be called a doubly stochastic Bernoulli process. The unconditional output

probability distribution has a simple expression.

P½Y ðnÞ� ¼
X , Y ðnÞ ¼ 1

1�X , Y ðnÞ ¼ 0

(
ð5Þ

Here, X ¼ E½XðnÞ�, the expected value of the input process, taken here to be

stationary. We further assume that the input consists of statistically independent

values from bin to bin. Consequently, the statistical descriptions of both the input

18 D. H. Johnson and I. N. Goodman
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and the output Bernoulli process do not depend on n, so we suppress the

dependence on bin index hereafter to simplify the notation.

The mutual information between a channel’s input and its output can be written

in several equivalent forms (Cover and Thomas 2006).

IðX; Y Þ ¼

Z
pX ,Y ðx, yÞ log

pX ,Y ðx, yÞ

pX ðxÞpY ðyÞ
dxdy

¼

Z
pX ,Y ðx, yÞ log

pY jX yjxð Þ

pY ðyÞ
dxdy

¼ HðY Þ �HðY XÞ
�� ð6Þ

Here, H(Y) denotes the entropy of the random variable appearing in its argument:

HðY Þ ¼ �
R

pY ðyÞ log pY ðyÞdy. Evaluating the mutual information expression (6) for

a doubly stochastic Bernoulli channel yields

IðX; Y Þ ¼ E½X log X þ ð1�XÞ logð1�XÞ� �X log X � ð1�XÞ logð1�XÞ: ð7Þ

Calculation of the required expected value can be analytically difficult. That said,

under minimal and maximal probability constraints xmin�X� xmax, we found

by using the Arimoto-Blahut algorithm (Cover and Thomas 2006) that the

capacity-achieving input probability distribution consists of impulses (probability

masses) situated at the extremes of the input’s possible values. Assuming the

input forces the Bernoulli probability to be within the interval [0, xmax], this

capacity-achieving input probability distribution has the form

pX ðxÞ ¼ q�ðx� xmaxÞ þ ð1� qÞ�ðxÞ, ð8Þ

with �(x) denoting a Dirac delta-function and q the probability the input is not zero.

This input probability distribution allows easy evaluation of the expected value

in (7). If we want to calculate the capacity only under the maximal probability

constraint, we maximize this result with respect to the parameter q.

eC ¼ max
q
fqxmax log xmax þ qð1� xmaxÞ logð1� xmaxÞ

� qxmax log qxmax � ð1� qxmaxÞ logð1� qxmaxÞg ð9Þ

Here, eC denotes the capacity for each bin. We will eventually divide this capacity

by the binwidth to obtain a result having units of bits/s: Cð1Þ ¼ eC=�t. The capacity-

achieving probability qC equals

qC ¼
ð1� xmaxÞ

1=xmax

1� xmax þ xmaxð1� xmaxÞ
1=xmax

,

and the resulting expression for the capacity is complicated but easily found. Since

the Bernoulli process approaches the Poisson process only in the limit of small

binwidths, we focus on the asymptotic case where xmax! 0. Calculations show that

limxmax!0 qC ¼ 1=e and that the capacity is

eC ¼ xmax

e ln 2
þ oðxmaxÞ bits,

Capacity of the vector Poisson channel 19
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where o(xmax) denotes terms of higher order than linear. If we take xmax¼ �max�t,

the capacity per unit time in the small-binwidth limit equals

Cð1Þ ¼
�max

e ln 2
bits=s, ð10Þ

the same expression as (3) for the point-process channel capacity under rate-range

constraints when the minimal rate equals zero.

If we want to impose an average rate constraint as well, note that the average value

of the capacity-achieving input distribution is X ¼ qxmax. Thus the probability q

controls the average value of the input. To find the capacity under both maximal

and average input constraints, we simply set q in (9) to the value X=xmax so long as

q < 1/e. Echoing the previous analysis, setting xmax¼ �max�t and letting �t! 0, we

find that with q ¼ �=�max, the average-rate-constrained point process capacity of (4)

results.

In either case, the capacity-achieving probability distribution corresponds to

a discrete-time telegraph wave switching randomly between zero and the

maximal probability. With only a maximal rate constraint, the probability of

being in the maximal-probability state equals 1/e, mimicking the continuous-

time answer for point processes. Because the Poisson process and the

Bernoulli process become statistically indistinguishable as the binwidth and

the Bernoulli probability approach zero, the agreement of capacity results

justifies our claim that we indeed can use a Bernoulli model to find the

Poisson channel’s capacity.

Capacity of the vector Bernoulli channel

We are now in a position to calculate the capacity of the population structures

shown in Figure 1 using a vector Bernoulli process model.

Conditionally independent outputs. This special case, exemplified by Figure 1(a)

and (b), has no dependencies among the outputs save for that induced by the input

signals. Here,

P YjXð Þ ¼
YM
m¼1

P Ym Xjð Þ, ð11Þ

where X represents the vector of inputs. The unconditional joint output probability

distribution equals

PðYÞ ¼

Z YM
m¼1

P Ym X ¼ xjð ÞpXðxÞdx: ð12Þ

Only when the inputs are statistically independent, as in Figure 1(a), does this

expression factor, leaving the outputs statistically independent as well. Otherwise,

the outputs are (unconditionally) statistically dependent. When each Bernoulli

channel shares a common input, we replace X by the scalar X in Equations (11)

and (12).

20 D. H. Johnson and I. N. Goodman
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To find the mutual information, we use (6). Assuming the outputs are

conditionally independent as in (11), the conditional entropy term equals the

expected value of each output’s conditional entropy,

H Y Xjð Þ ¼ EX

X
m

H Ym Xjð Þ

" #

¼ EX

X
m

X
ym

�PYm Xj ym Xjð Þ log PYm Xj ym Xjð Þ

" #
:

The conditional entropy H Y Xjð Þ for the common-input case can be easily found,

especially when the input has the probability distribution given in (8). Simple

calculations reveal that

H Y Xjð Þ ¼ �Mq � xmax log xmax þ ð1� xmaxÞ logð1� xmaxÞð Þ: ð13Þ

The first term in the expression for mutual information, the entropy of the joint

output H(Y), does not equal the sum of the component entropies because the

common input makes the outputs statistically dependent on each other. However,

the joint probability distribution is easily found when the input has the form of (8).

Letting mnz ¼ �mym be the number of non-zero outputs, this joint distribution is

given by the following.

P ðY1 ¼ 1,Y2 ¼ 0, . . . ,YM ¼ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mnznon-zero terms

¼
qð1� xmaxÞ

M
þ ð1� qÞ, mnz ¼ 0

qxmnz
maxð1� xmaxÞ

M�mnz , mnz ¼ 1, . . . ,M

(

The joint entropy consequently equals

HðY Þ ¼ �½qð1� xmaxÞ
M
þ ð1� qÞ� log½qð1� xmaxÞ

M
þ ð1� qÞ�

�
XM

mnz¼1

M
mnz

	 

qxmnz

maxð1� xmaxÞ
M�mnz log qxmnz

maxð1� xmaxÞ
M�mnz

� �
, ð14Þ

and the mutual information equals the difference of (14) and (13). Focusing on the

asymptotic case xmax! 0, we find that

IðX; Y Þ ¼Mð�q log qÞ � xmax þ oðxmaxÞ:

Ignoring the higher order term, the maximizing value of q, qC, equals 1/e, the same

value as in the single-output case. If an average rate constraint is imposed as well,

the capacity is found by setting q ¼ �=�max. Under either constraint, we conclude

that the capacity of conditionally independent parallel Poisson channels having

common inputs equals that obtained when the outputs are statistically independent.

CðMÞ ¼M
�max

e ln 2
¼MCð1Þ

C
ðMÞ
¼M

�

ln 2
ln
�max

�min

¼MC
ð1Þ
, � <

�max

e

The dependence induced by the common input does not affect the capacity

of conditionally independent Bernoulli channels in the small event-probability

limit and therefore, by inference, conditionally independent Poisson channels

Capacity of the vector Poisson channel 21
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have the same property. This result may seem surprising, until one

recognizes that independent Poisson processes driven by a common input

act like a single Poisson process having a rate equal to the sum of the

individual rates. As capacity is proportional to maximal discharge rate, the

capacity results should agree.

Conditionally dependent outputs. We have already shown how output dependence

induced by a common input does not affect the capacity of a population. However,

statistical dependencies among the outputs can also occur because of inter-channel

interactions, depicted in Figure 1(c) and (d), which give rise to connection-induced

dependencies. As before, we can use the limiting behavior of the vector Bernoulli

channel to infer whether these dependencies reduce or increase channel capacity

compared to the independent case.

The joint probability function for a Bernoulli random vector can be written

in several equivalent forms. The most convenient is the Sarmanov-Lancaster

expansion (Goodman 2004; Johnson and Goodman 2007). For example,

when M¼ 2, the conditional joint distribution can be written as

P Y1,Y2 Xjð Þ ¼ P Y1 Xjð ÞP Y2 Xjð Þ: 1þ �ð2Þ12

Y1 � E Y1 Xj½ �ð Þ Y2 � E Y2 Xj½ �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

Y1 Xj �
2
Y2 Xj

q
264

375
In this case, the coefficient �ð2Þ12 equals the simple correlation coefficient between the

pair of Bernoulli random variables Y1 and Y2. When M¼ 3, the term inside the

square brackets consists of three pairwise dependency terms with coefficients �ð2Þ12 ,

�ð2Þ13 and �ð2Þ23 like the one above, along with a third-order dependency term that has

the form

�ð3Þ123

Y1 � E Y1 Xj½ �ð Þ Y2 � E Y2 Xj½ �ð Þ Y3 � E Y3 Xj½ �ð Þ

�2
Y1 Xj �

2
Y2 Xj �

2
Y3 Xj

	 
2=3
:

The somewhat unusual denominator is required to make �ð3Þ123 equal the

cumulant correlation coefficient, a quantity that arises from evaluating the

cumulants of the probability generating functional for the vector Poisson process

(Johnson and Goodman 2007). In this paper, we only consider the case of

complete symmetry in the dependence structure: all second-order dependence

parameters equal some value �(2), all third-order parameters equal some other

value �(3), etc. In that case, the cumulant correlation coefficients obey the

following inequalities:XM
k¼2

�ðkÞð�1Þk
M � 1

k� 1

� �
� 1,

XM
k¼m

�ðkÞð�1Þkþm M �m

k�m

� �
� 0, m ¼ 2, . . . ,M: ð15Þ

In particular, the above inequalities imply that cumulant correlation coefficients of

all orders are non-negative, less than one and smaller than all lower-order cumulant

correlation coefficients: 0� �(kþ1)
� �(k)

� 1, k¼ 2, . . . , M� 1. Furthermore,

22 D. H. Johnson and I. N. Goodman
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if no building block processes of order higher than two are present, which makes

�(3)
¼ 0, �(4)

¼ 0, . . . , the second-order correlation coefficient cannot be bigger than

1/(M – 1).

The resulting mutual information expressions are complex, but we were able to

compute them with the aid of the symbolic manipulation software MATHEMATICA.

Consider first the case of two dependent Bernoulli channels (cumulant correlation

coefficient �(2) [having a common input. Just as before, assuming the input has the

probability distribution given in (8) and evaluating the asymptotic behavior as

xmax! 0, we obtain

IðX; Y1,Y2Þ ¼ ð2� �
ð2ÞÞð�q log qÞ � xmax þ oðxmaxÞ:

Consequently, we infer that the capacity of the two-component, common-input,

vector Poisson channel equals

Cð2Þ ¼ ð2� �ð2ÞÞ
�max

e ln 2
¼ ð2� �ð2ÞÞCð1Þ,

a quantity decreasing linearly with increasing correlation. A similar result applies

to the average-rate constrained capacity as well. At the extreme �(2)
¼ 0, we

obtain the conditionally independent result; when �(2)
¼ 1, the channels are

totally dependent and function like a single channel.

More generally, when we have M conditionally dependent Bernoulli event

generators driven by a common input, the capacity for any M is achieved when the

optimizing input has qC¼ 1/e and equals

CðMÞ ¼ M �
XM
k¼2

M

k

� �
ð�1Þk�ðkÞ

 !
Cð1Þ:

Because of the pecking order established by the inequality relationships

among cumulant correlation coefficients, the capacity ranges between MC(1)

(when all the cumulant correlation coefficients are zero) and C(1), which occurs

when the cumulant correlation coefficients all equal one, modeling a completely

redundant population (each component has exactly the same event pattern as all

the others). In between these extremes, capacity decreases as the population’s

correlation coefficients increase. For example, if �(k)
¼ 0, k4 2 and �(2)

¼ 1/(M� 1)

(the largest allowable value for pairwise dependence when all higher order

dependencies are zero), capacity equals (M/2)C(1), half of its maximal value.

Thus, for large populations, small pairwise correlations can dramatically reduce

capacity. Figure 2 illustrates how increasing correlation diminishes capacity of

Poisson channels having common inputs.

We can elaborate the common-input model to allow different maximal event

probabilities, akin to considering component Poisson processes that have different

maximal rates, and different cumulant correlation coefficients. We modify the

common-input model by inserting an attenuation factor am for each channel’s event

probability.

P Ym Xj½ � ¼
amX , Ym ¼ 1

1� amX , Ym ¼ 0
0 � am � 1

�

Capacity of the vector Poisson channel 23
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)

M=2

Separate inputs

Single, common input

M=3

r(2)

M=4

Figure 2. Capacity varies with population size M and with the dependence parameters. The
capacity for M¼ 2, 3, 4 are plotted as a function of �(2) for two scenarios: the common-input
case and the separate-input case. The vertical axis is the capacity normalized by its zero-
dependence value (MC(1)). The broad spread for M¼ 3 and M¼ 4 occur because cumulant
correlation coefficients of order higher than two are present in these situations; the range of
capacity values for each �(2) represent how much capacity can vary as the other cumulant
correlation coefficients range over their allowable values.
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As before, the input’s values range over the interval [0, xmax], but each channel now

has a smaller event probability determined by its attenuation. As with our previous

results, the capacity-achieving input distribution is again bi-valued as expressed by

(8), with qC¼ 1/e regardless of the values for the cumulant correlation coefficients

and the attenuations. The capacity equals

CðMÞ ¼
XM
m¼1

am �
XM
k¼2

ð�1Þk
XM

m1¼k,...,mk¼k
m1<���<mk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am1
� � � amk

k
p

�ðkÞm1,...,mk

0B@
1CACð1Þ,

where, the cumulant correlation coefficients must be non-negative but obey

a much more complicated version of the inequalities in (15). The

combination of correlation coefficients and attenuations that maximize

capacity occur when the channels are identical and conditionally indepen-

dent: am¼ 1, �(k)
¼ 0. We conclude that statistical dependence among event

generators always decreases capacity for vector Poisson processes having a

common input.

Now consider the case of dependent channels with separate inputs. Again, for

initial simplicity we consider the special case of two channels (M¼ 2). Symmetry

considerations suggest that the mutual information is maximized by identically

distributed inputs, which we take to equal the bi-valued distribution expressed

by (8). Calculations show that independent inputs maximize mutual information

regardless of the value of �(2). The resulting expression for mutual information as

xmax! 0 is

IðX1,X2; Y1,Y2Þ ¼ 2q qð1� �ð2ÞÞ logð1� �ð2ÞÞ � ð1� q�ð2ÞÞ logð1� q�ð2ÞÞ � log q
� �
� xmax þ oðxmaxÞ

To calculate the capacity, we need to maximize with respect to q, the sole

remaining parameter of the input distribution. Evaluating the derivative of

the mutual information with respect to q results in a transcendental equation for

qC, rendering impossible an analytic expression of the result. Numeric

optimization shows that qC depends on �(2), monotonically increasing from 1/e

for �(2)
¼ 0 to 0.575 as �(2)

! 1. Consequently, we could not find an expression

for the capacity, but could numerically evaluate it. Surprisingly, the capacity

increases with �(2), equaling 1.43 times its �(2)
¼ 0 value when �(2)

¼ 1 (Figure 2).1

Similar results occur in the average-rate constrained case when we set

q ¼ �=�max.

For larger populations, the results are qualitatively similar. Mutual information

increases as correlation increases, the opposite behavior of the common-input cases

wherein dependence decreases capacity. In more detail, we found that values for qC

and capacity depend on the dimension M of the vector channel. In the separate-

input case, the percentage increase of the capacity at maximal correlation increases

with the number of channels. This percentage increase seems to saturate at some

value less than 100%: the increases for M¼ 2, 3, 4, 5 are 43.3, 67.5, 78.2, and

83.2%, respectively.

Capacity of the vector Poisson channel 25
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Aggregate population behavior

Another interesting case arises when we sum the outputs of the separate-input or

common-input systems shown in Figure 1(c) and (d) to produce a single output:

Y¼�mYm. The summation, which amounts to a superposition of the component

Bernoulli processes, models unsorted extracellular recordings made with a single-

electrode and EEG recordings that represent the superposition of many neural

signals.

Intuitively, aggregating the outputs should decrease the mutual information;

indeed, by the Data processing inequality, I(X; Y)� I(X; Y) (Cover and

Thomas 2006). Using our Bernoulli approximation approach, we can determine

to what extent considering only aggregate behavior reduces the capacity of a

population. Note that the capacity achieving input does not necessarily consist

of statistically independent inputs when the outputs are aggregated. However,

we constrain the inputs to be independent to determine the effect of

aggregation with all other things being equal. We make the simplifying

assumption that the probability distribution of each input has the form of

(8), which means that some inputs are identically zero and others equal xmax.

Letting mnz represent the number of non-zero inputs, PðmnzÞ ¼ ð
M
mnz
Þ�

qmnzð1� qÞM�mnz . The probability distribution of the summed output conditioned

on mnz non-zero input probabilities equals

P Y jmnzð Þ ¼
mnz

Y

� �
xY

maxð1� xmaxÞ
mnz�Y

"
1þ

Xmnz

k¼2

�ðkÞ
Xk

l¼0

mnz � Y

k� l

� �
Y

l

� �

�ð�1Þk�lx1�l
maxð1� xmaxÞ

l�kþ1

#
, Y ¼ 0, . . . ,mnz:

Using this expression, we can find the capacity for the output-summed channel

in the separate-input case. Again, the optimizing value qC can only be found

numerically and depends on the cumulant correlation coefficients. As expected,

Figure 4 shows that dependence results in higher capacity than when the coefficients

are zero. As the size of the population grows, the aggregated-output capacity differs

more and more from unaggregated values. When statistically independent channels

X1

X2

XM

Y

XM−1

(a)

X1

X2

XM

XM−1

Y1

Y2

(b)

Figure 3. The simplest aggregation model shown on the left sums the population response
into a single signal. More complicated models use multiple recordings from subpopulations.
The diagram on the right shows two recordings made from subpopulations, each of size
M� 1. Our capacity results show that the most effective subpopulation grouping for two
recordings sums 2M/3 neural responses.

26 D. H. Johnson and I. N. Goodman



D
ow

nl
oa

de
d 

B
y:

 [R
ic

e 
U

ni
ve

rs
ity

] A
t: 

18
:1

5 
27

 F
eb

ru
ar

y 
20

08
 

are separately received, we have shown the capacity to be C(M)
¼MC(1), which

grows without bound as the population increases in size. When aggregated, the

capacity cannot be larger than 1.58C(1) when the channels are independent.

Consequently, not separating an aggregate recording into its constituents greatly

reduces the information that can be gleaned, with the aggregate information flow

in the conditionally independent case being substantially less than what two

component channels can sustain.

This sharp capacity decrease can be mitigated by forming multiple aggregations

(Figure 3), each of which is obtained from a subpopulation; this situation can be

seen as an idealized model for unsorted multi-electrode recordings. Assume we

aggregate outputs from L equal-sized subpopulations that have overlapping

membership in the conditionally independent case. Calculations similar to those

leading to the single-aggregation result show that the subpopulation size that

maximizes capacity is M �L/(2L� 1) whereas equal non-overlapping subpopulations

have a maximal size of M/L. Thus, recorded subpopulations must overlap

substantially to maximize capacity. For large populations with no connection-

induced dependencies, the capacity becomes (2L� 1) 1.58C(1), indicating that

multiple aggregated recordings can greatly increase capacity, equaling the single-

aggregation capacity multiplied by a factor of about twice the number of recordings.

This asymptotic result breaks down when the factor (2L� 1) 1.58 approaches M.

1 2 3 4 5 6 7
1

2

3

4

5

6

7

M

C
(M

) /C
(1

)

Aggregation: ρ = 0

Aggregation: ρ = 1

No aggregation

Figure 4. The normalized capacity C(M)/C(1) of the aggregated population grows slowly with
population size M regardless of whether the population is conditionally independent (o¼ 0)
or completely dependent (o¼ 1). The long tick mark on the right indicates the asymptotic
value (1.577) of the normalized capacity in the conditionally independent case. Here, o is the
vector of cumulant correlation coefficients. The unaggregated normalized capacities for these
cases are M (indicated by the dashed line) and �(o)M, �(o) < 2, respectively.

Capacity of the vector Poisson channel 27



D
ow

nl
oa

de
d 

B
y:

 [R
ic

e 
U

ni
ve

rs
ity

] A
t: 

18
:1

5 
27

 F
eb

ru
ar

y 
20

08
 

Discussion

Capacity and information processing in neurons

As we noted in the Introduction, capacity determines the maximal fidelity of

information about a channel’s inputs that can be extracted from its outputs. Most

often, Shannon’s channel capacity is used to characterize digital communication

systems; using capacity to study neural channels, which are not digital, requires

careful consideration of exactly how Shannon’s results apply in this context.

Figure 5 shows a communications model of the prototypical neural processing

schema. A stimulus signal S is encoded into the signal X, which could be the

culmination of multiple layers of neural processing. The encoded signal X serves as

the input to a system for further processing and/or relaying. This system could be a

single neuron, a population of neurons, or several layers of neural systems. It has

two goals: (1) process its inputs to extract salient features; and (2) jointly represent

the result in the discharge pattern occurring in its outputs. Because neural patterns

are inherently noisy, the representational stage introduces randomness into the

processed result. Using communications theory jargon, the system serves as a

channel. The channel’s output is a spike-train signal Y, which serves as the input to

a decoder that infers as best it can what the stimulus was and produces a stimulus

estimate bS. Although a stimulus estimate may not explicitly be produced in an

actual neural system, the ability of the channel to transmit information about the

stimulus is characterized by how well the stimulus could be estimated from Y. The

key to this analysis is the capacity of the channel relating X and Y. When X and Y

have discrete values, Shannon’s Noisy Channel Coding Theorem states that the

channel’s input can be decoded without error if the information rate is less than

capacity. Thus, for digital communication problems, capacity defines a sharp

boundary: communication rates less than capacity offer perfect fidelity while higher

rates must suffer the smallest possible fidelity.

Spike trains, modeled as point processes, contain both discrete- (how many spikes

occur) and continuous- (when the spikes occur) valued quantities. Consequently, to

examine neural coding schemes in their full generality by including spike timing,

the Noisy Channel Coding Theorem does not apply. Instead, the significance of

capacity becomes evident only when viewed in the context of another of Shannon’s

classic results: rate-distortion theory. Shannon defined the rate-distortion function,

which measures how accurately a source must be encoded to achieve a specified

degree of error (Berger 1971). In the model shown in Figure 5, the encoded signal

encoder

XS Y

system

S

decoder

R(D)

C

D

R(D)

Dmin Dmax

C

Figure 5. The communication system model is shown, along with the rate-distortion curve for
a single source. Capacity is derived from the mutual information between channel input and
output; the rate-distortion function arises from the mutual information between the stimulus
and its estimate. The channel capacity dictates the minimal distortion achievable by any
estimator.
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S is transmitted and/or processed to produce the estimate bS. The quality of bS is

characterized by the error or distortion dðS,bSÞ between the signal and its estimate.

The theory is quite general, as the signals can be defined in continuous- or discrete-

time and can have continuous- and/or discrete-valued components. In addition,

rate-distortion theory subsumes any choice for the distortion measure; thus, for

example, a particular distortion measure could account for how well the salient

features have been extracted and represented. The only restriction on the choice of

dðS,bSÞ is that D ¼ E½dðS,bSÞ�, the average distortion, is well-defined. The rate-

distortion function RðDÞ is defined to be the minimal mutual information between

the signal and its estimate when the average distortion is no greater than D.

To characterize how well a specific source S (as described by its probability

distribution) can be encoded, the minimization is calculated with respect to all

conditional distributions pðbS Sj Þ, regardless of how the signal is encoded, corrupted,

and processed.

RðDÞ ¼ min
�ðbS Sj Þ:D�D

IðS;bSÞ:
The value of RðDÞ, known as the rate, measures the quality of the encoding system:

the greater the rate, the more information about the signal is conveyed and the

smaller the distortion. Although rate has units of bits (or bits/s if a time-average is

used in the definition), rate-distortion functions can be meaningfully calculated for

all situations, even those where physical bits play no role. For example, if the

stimulus were a bandlimited Gaussian random process having power � with highest

frequency W and if the average distortion were mean-squared error, the rate-

distortion function is given by (Berger 1971, Chap. 4):

RðDÞ ¼W log
P

D
, D � P : ð16Þ

This example is depicted in Figure 5 and illustrates the behavior shared by all rate-

distortion functions: they are always strictly convex and strictly decreasing, equaling

zero at some maximal distortion Dmax (Berger 1971). In this Gaussian example,

Dmax¼P. Zero rate means that nothing about the signal is encoded, leaving the

estimation system to make an intelligent guess based on the input’s properties. For

example, if the signal is a random variable and the distortion measures mean-

squared error, using the signal’s expected value as the estimate minimizes the data-

ignorant estimator’s distortion. No rational system should yield a distortion larger

than Dmax.

Figure 5 illustrates the importance of capacity in the context of rate-distortion

theory. More general than the Noisy Channel Coding Theorem, Shannon’s rate-

distortion theory states that if a communication channel or a processing system

having capacity C intervenes between an encoder and decoder, the point at which

capacity equals the rate-distortion function defines the smallest achievable distortion

Dmin : C ¼ RðDminÞ. Since this result holds for any source and any distortion

function, capacity dictates the ultimate limit to which a communication system can

convey information about any source signal regardless of how error is quantified.

And, as all rate-distortion functions are smooth and decreasing, a smaller capacity

must lead to larger distortions (i.e., reduced fidelity), regardless of how distortion is

defined. Said another way, capacity, in concert with the rate-distortion function,

Capacity of the vector Poisson channel 29
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determines the ultimate capabilities that any given encoding and processing system

can have.

To determine what effect the population capacities might have on perceptual

accuracy, we would need the rate-distortion function that incorporates perceptual

distortion measures and makes use of the properties of naturally occurring stimuli.

Rate-distortion calculations are notoriously difficult to make; the Gaussian stimulus

result (16) for mean-squared error distortion is one of the few known. For this case,

Equation (16) says that the smallest achievable distortion decreases exponentially in

the capacity (Figure 6) regardless of the type of channel that intervenes:

Dmin ¼ Dmaxe�C=W :

Substituting our capacity results for the vector Poisson channel, we obtain

Dmin ¼ Dmax exp �
�ðqÞM�max

e �W

� 
: ð17Þ

As Figure 6 shows, if the total capacity simply equaled the stimulus bandwidth, the

best possible distortion would be no greater than about one-third of that obtained by

simply guessing. When the channel consists of a single Poisson process generator,

capacity (in bits/s) equals �max/1.88, which means to achieve this modest level of

fidelity, the maximal rate would need to be almost twice the stimulus bandwidth.

Thus, the maximal rate needs to be several times the bandwidth to obtain significant

distortion reductions. For example, visual signals having a bandwidth of about

30 Hz would require a maximal firing rate well over 100 Hz for a single neuron to

represent accurately temporal stimulus changes. In the auditory system, the

situation is much worse. Auditory-nerve fibers having a center frequency of 1 kHz

have a bandwidth of about 500 Hz; thus, a single neuron would need to be capable

of a maximal discharge rate of several thousand spikes/s.

0 1 2 3 4 5 6
10−2

10−1

100

C/W (bits/s/Hz)

D
m

in
/D

m
ax

Figure 6. The smallest possible mean-squared distortion (normalized by the maximal
distortion) decreases exponentially with the ratio of the capacity and the Gaussian stimulus’s
bandwidth. The plot shows how large the capacity-to-signal-bandwidth ratio needs to be to
produce small distortions. For example, to reduce distortion by a factor of ten, C/W needs to
be about three.
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The analysis indicates that population coding is essential for accurate stimulus

reconstruction. For all the population structures we considered here, capacity is

proportional to population size. The quantity �(q), plotted in Figure 2, multiplies

the population size and captures how capacity depends on connection-induced

dependence as summarized by the vector q¼ {�(2), . . . , �(M)} of cumulant

correlation coefficients. When the population’s outputs are conditionally indepen-

dent so that there is no connection-induced dependence, q¼ 0 and �(0)¼ 1,

regardless of the input innervation pattern. In this simple case, individually

innervated populations do not necessarily encode information better than ones that

have shared innervation. However, connection-induced dependence among the

population’s members changes the story. When the population has a common

input, �(q) decreases with increasing connection-induced dependence, becoming

as small as 1/M, which erases the capacity gain afforded by the population. In the

separate-input case, �(q)4 1, meaning connection-induced dependence effectively

magnifies the population size. Somewhat surprisingly, the effect of �(q) on the

capacity (and therefore, the minimal achievable distortion) increases with

population size: larger populations obtain a greater percentage increase in capacity

at maximal correlation. Thus, depending on the input innervation pattern,

connection-induced dependence can facilitate or hinder the ability of a population

to express information accurately.

Application to neural prostheses

Interest in the aggregated-output case stems from classic work on analyzing EEG

recordings and current work in neural-activity-driven control of prosthetic devices.

In many cases, extracellular recordings are not teased apart into individual neural

activities; instead, the summed activity is used as a surrogate for population

activity (Andersen et al. 2004). Extracellular recordings can thus be modeled as

a superposition of individual neural activity patterns followed by a filtering operation

that converts pooled event streams into analog recordings. As long as the filtering

operation satisfies mild technical conditions, mutual information will not decrease

because of it. However, subsequently added noise would decrease the mutual

information. Our capacity results for aggregated populations thus represent the

largest possible capacities afforded by noise-free recordings.

Aggregating conditionally independent population responses into L recordings

results in a greatly reduced capacity, and consequently the smallest-possible

distortion must increase. In the large-population, Gaussian-source case,

Dmin ¼ Dmax exp
�1:58ð2L� 1Þ�max

e �W

� 
:

If the population contains connection-induced dependencies, the argument of

the exponential may be somewhat larger. Increasing the number of aggregated

recordings made from a population increases the capacity proportionally, but only if

they summarize well-chosen sub-populations. In any of these cases, the distortion

no longer depends on the population size, but on the number of electrodes used to

acquire summed extracellular signals. Thus, the usefulness of unsorted data, both

for providing interpretative insights and achieving precise control operations, must

be greatly reduced in comparison to sorted or intracellular recordings.

Capacity of the vector Poisson channel 31



D
ow

nl
oa

de
d 

B
y:

 [R
ic

e 
U

ni
ve

rs
ity

] A
t: 

18
:1

5 
27

 F
eb

ru
ar

y 
20

08
 

The aggregated-output capacity results sharply differ with the complementary

situation, in which a single input is common to each population constituent. From a

neural prosthetics viewpoint, this situation models an electrical stimulation device

that drives many nearby neurons with a single current source. When there are no

connection-induced dependencies between neurons, providing a single input to a

population does not reduce capacity from its individual-input value.

Model limitations

Strictly speaking, the capacity results derived here apply only to Poisson processes,

not point processes in general. Since actual neural systems clearly do not obey

Poisson statistics, this may appear to limit the applicability of our results to the

understanding of actual neural coding. However, as Kabanov (1978) showed,

the Poisson process’s capacity applies to any other single point process restricted to

the same minimal and maximal rates. In fact, we can show that single non-Poisson

channels have a strictly smaller capacity than a Poisson channel having the same

maximal instantaneous rate (Johnson 2007), and we conjecture that our results for

vector Poisson channels apply to more general point process channels in the same

way: whatever the capacities may be for jointly non-Poisson processes, they cannot

exceed the values derived here. Thus we believe, but have not proved, that actual

neural systems can only have capacities smaller than or equal to the values

derived here.

The two basic input models we considered describe extremes of innervation, from

a single input driving every neuron to individual innervation. If no connection-

induced dependence is present, the capacities at these extremes are the same. It

is tempting to infer that without connection-induced dependence, the innervation

pattern does not affect the capacity. However, more complicated innervation

patterns not captured by our model (for example, when each neuron can receive

multiple inputs) may well result in different capacities. When connection-induced

dependence is present, our analysis did reveal differences in how the innervation

pattern affects capacity. Nevertheless, we still cannot speculate on the interplay

between capacity and innervation for more complicated models of population

innervation.

The capacity-achieving instantaneous rate variations that ubiquitously achieve

capacity are random telegraph waves that swing between the minimal (zero) and

the maximal rate extremes. Information theoretical results suggest that channel

codes that provide the most effective interface to a channel should have empirical

amplitude distributions that mimic the capacity-achieving distribution (Shamai

(Shitz) and Verdú 1977). Recorded neural rates do not resemble random

telegraph waves, but such observations do not necessarily mean that neural

codes are informationally inefficient. Deviations from the simple situations used

here – population innervation, varying individual and joint neural behaviors

and the non-Poisson nature of discharge patterns – could easily require

different capacity achieving inputs. However, if our speculation is correct, the

results presented here still provide an upper bound on the capacity in any

situation.
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Note

[1] Although differing in detail, the capacity of additive Gaussian noise channels also

increases with increasing correlation among the channels in the independent-input

case.
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