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Chapter 1

Introduction

MANY signals have a stochastic structure or at least some stochastic component. Some of these signals are
a nuisance: noise gets in the way of receiving weak communication signals sent from deep space probes

and interference from other wireless calls disturbs cellular telephone systems. Many signals of interest are
also stochastic or modeled as such. Compression theory rests on a probabilistic model for every compressed
signal. Measurements of physical phenomena, like earthquakes, are stochastic. Statistical signal processing
algorithms work to extract the good despite the “efforts” of the bad.

This course covers the two basic approaches to statistical signal processing: estimation and detection. In
estimation, we want to determine a signal’s waveform or some signal aspect(s). Typically the parameter or
signal we want is buried in noise. Estimation theory shows how to find the best possible optimal approach
for extracting the information we seek. For example, designing the best filter for removing interference
from cell phone calls amounts to a signal waveform estimation algorithm. Determining the delay of a radar
signal amounts to a parameter estimation problem. The intent of detection theory is to provide rational
(instead of arbitrary) techniques for determining which of several conceptions—models—of data generation
and measurement is most “consistent” with a given set of data. In digital communication, the received signal
must be processed to determine whether it represented a binary “0” or “1”; in radar or sonar, the presence
or absence of a target must be determined from measurements of propagating fields; in seismic problems,
the presence of oil deposits must be inferred from measurements of sound propagation in the earth. Using
detection theory, we will derive signal processing algorithms which will give good answers to questions such
as these when the information-bearing signals are corrupted by superfluous signals (noise).

In both areas, we seek optimal algorithms: For a given problem statement and optimality criterion, find
the approach that minimizes the error. In estimation, our criterion might be mean-squared error or the absolute
error. Here, changing the error criterion leads to different estimation algorithms. We have a technical version
of the old adage “Beauty is in the eye of the beholder.” In detection problems, we might minimize the
probability of making an incorrect decision or ensure the detector maximizes the mutual information between
input and output. In contrast to estimation, we will find that a single optimal detector minimizes all sensible
error criteria. In detection, there is no question what “optimal” means; in estimation, a hundred different
papers can be written titled “An optimal estimator” by changing what optimal means. Detection is science;
estimation is art.

To solve estimation and/or detection problems, we need to understand stochastic signal models. We begin
by reviewing probability theory and stochastic process (random signal) theory. Because we seek to minimize
error criteria, we also begin our studies with optimization theory.

1
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Chapter 2

Probability and Stochastic
Processes

2.1 Foundations of Probability Theory
2.1.1 Basic Definitions

The basis of probability theory is a set of events—sample space—and a systematic set of numbers—
probabilities—assigned to each event. The key aspect of the theory is the system of assigning probabilities.
Formally, a sample space is the set Ω of all possible outcomes ωi of an experiment. An event is a collection
of sample points ωi determined by some set-algebraic rules governed by the laws of Boolean algebra. Letting
A and B denote events, these laws are

A∪B = {ω : ω ∈ A or ω ∈ B} (union)
A∩B = {ω : ω ∈ A and ω ∈ B} (intersection)

A = {ω : ω 6∈ A} (complement)

A∪B = A∩B .

The null set /0 is the complement of Ω. Events are said to be mutually exclusive if there is no element common
to both events: A∩B = /0.

Associated with each event Ai is a probability measure Pr[Ai], sometimes denoted by πi, that obeys the
axioms of probability.

• Pr[Ai]≥ 0
• Pr[Ω] = 1
• If A∩B = /0, then Pr[A∪B] = Pr[A]+Pr[B].

The consistent set of probabilities Pr[·] assigned to events are known as the a priori probabilities. From the
axioms, probability assignments for Boolean expressions can be computed. For example, simple Boolean
manipulations (A∪B = A∪ (AB) and AB∪AB = B) lead to

Pr[A∪B] = Pr[A]+Pr[B]−Pr[A∩B] .

Suppose Pr[B] 6= 0. Suppose we know that the event B has occurred; what is the probability that event
A also occurred? This calculation is known as the conditional probability of A given B and is denoted by
Pr[A|B]. To evaluate conditional probabilities, consider B to be the sample space rather than Ω. To obtain a
probability assignment under these circumstances consistent with the axioms of probability, we must have

Pr[A|B] =
Pr[A∩B]

Pr[B]
.

3
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The event is said to be statistically independent of B if Pr[A|B] = Pr[A]: the occurrence of the event B does
not change the probability that A occurred. When independent, the probability of their intersection Pr[A∩B]
is given by the product of the a priori probabilities Pr[A] ·Pr[B]. This property is necessary and sufficient for
the independence of the two events. As Pr[A|B] = Pr[A∩B]/Pr[B] and Pr[B|A] = Pr[A∩B]/Pr[A], we obtain
Bayes’ Rule.

Pr[B|A] =
Pr[A|B] ·Pr[B]

Pr[A]

2.1.2 Random Variables and Probability Density Functions

A random variable X is the assignment of a number—real or complex—to each sample point in sample space;
mathematically, X : Ω 7→ R. Thus, a random variable can be considered a function whose domain is a set and
whose range are, most commonly, a subset of the real line. This range could be discrete-valued (especially
when the domain Ω is discrete). In this case, the random variable is said to be symbolic-valued. In some
cases, the symbols can be related to the integers, and then the values of the random variable can be ordered.
When the range is continuous, an interval on the real-line say, we have a continuous-valued random variable.
In some cases, the random variable is a mixed random variable: it is both discrete- and continuous-valued.

The probability distribution function or cumulative can be defined for continuous, discrete (only if an
ordering exists), and mixed random variables.

PX (x)≡ Pr[X ≤ x] .

Note that X denotes the random variable and x denotes the argument of the distribution function. Probabil-
ity distribution functions are increasing functions: if A = {ω : X(ω)≤ x1} and B = {ω : x1 < X(ω)≤ x2},
Pr[A∪B] = Pr[A]+Pr[B] =⇒ PX (x2) = PX (x1)+Pr[x1 < X ≤ x2],∗ which means that PX (x2)≥ PX (x1),
x1 ≤ x2.

The probability density function pX (x) is defined to be that function when integrated yields the distribution
function.

PX (x) =
∫ x

−∞

pX (α)dα

As distribution functions may be discontinuous when the random variable is discrete or mixed, we allow den-
sity functions to contain impulses. Furthermore, density functions must be non-negative since their integrals
are increasing.

2.1.3 Function of a Random Variable

When random variables are real-valued, we can consider applying a real-valued function. Let Y = f (X); in
essence, we have the sequence of maps f : Ω 7→R 7→R, which is equivalent to a simple mapping from sample
space Ω to the real line. Mappings of this sort constitute the definition of a random variable, leading us to
conclude that Y is a random variable. Now the question becomes “What are Y ’s probabilistic properties?”.
The key to determining the probability density function, which would allow calculation of the mean and
variance, for example, is to use the probability distribution function.

For the moment, assume that f (·) is a monotonically increasing function. The probability distribution of
Y we seek is

PY (y) = Pr[Y ≤ y]
= Pr[ f (X)≤ y]

= Pr[X ≤ f−1(y)] (*)

= PX
(

f−1(y)
)

∗What property do the sets A and B have that makes this expression correct?
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Equation (*) is the key step; here, f−1(y) is the inverse function. Because f (·) is a strictly increasing function,
the underlying portion of sample space corresponding to Y ≤ y must be the same as that corresponding to
X ≤ f−1(y). We can find Y ’s density by evaluating the derivative.

py(y) =
d f−1(y)

dy
pX
(

f−1(y)
)

The derivative term amounts to 1/ f ′(x)|x=y.
The style of this derivation applies to monotonically decreasing functions as well. The difference is

that the set corresponding to Y ≤ y now corresponds to X ≥ f−1(x). Now, PY (y) = 1−PX
(

f−1(y)
)
. The

probability density function of a monotonic increasing or decreasing function of a random variable is
found according to the formula

py(y) =

∣∣∣∣∣ 1
f ′
(

f−1(y)
) ∣∣∣∣∣ pX

(
f−1(y)

)
.

Example
Suppose X has an exponential probability density: pX (x) = e−xu(x), where u(x) is the unit-step func-
tion. We have Y = X2. Because the square-function is monotonic over the positive real line, our
formula applies. We find that

pY (y) =
1

2
√

y
e−
√

y, y > 0 .

Although difficult to show, this density indeed integrates to one.

2.1.4 Expected Values

The expected value of a function f (·) of a random variable X is defined to be

E[ f (X)] =
∫

∞

−∞

f (x)pX (x)dx .

Several important quantities are expected values, with specific forms for the function f (·).

• f (X) = X .
The expected value or mean of a random variable is the center-of-mass of the probability density func-
tion. We shall often denote the expected value by mX or just m when the meaning is clear. Note that
the expected value can be a number never assumed by the random variable (pX (m) can be zero). An
important property of the expected value of a random variable is linearity: E[aX ] = aE[X ], a being a
scalar.

• f (X) = X2.
E[X2] is known as the mean squared value of X and represents the “power” in the random variable.

• f (X) = (X−mX )2.
The so-called second central difference of a random variable is its variance, usually denoted by σ2

X . This
expression for the variance simplifies to σ2

X = E[X2]−E2[X ], which expresses the variance operator
var[·]. The square root of the variance σX is the standard deviation and measures the spread of the
distribution of X . Among all possible second differences (X − c)2, the minimum value occurs when
c = mX (simply evaluate the derivative with respect to c and equate it to zero).

• f (X) = Xn.
E[Xn] is the nth moment of the random variable and E

[
(X−mX )n

]
the nth central moment.
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• f (X) = e juX .
The characteristic function of a random variable is essentially the Fourier Transform of the probability
density function.

E
[
e jνX]≡ΦX ( jν) =

∫
∞

−∞

pX (x)e jνx dx

The moments of a random variable can be calculated from the derivatives of the characteristic function
evaluated at the origin.

E[Xn] = j−n dnΦX ( jν)
dνn

∣∣∣∣
ν=0

2.1.5 Jointly Distributed Random Variables

Two (or more) random variables can be defined over the same sample space: X : Ω 7→ R, Y : Ω 7→ R. More
generally, we can have a random vector (dimension N) X : Ω 7→RN . First, let’s consider the two-dimensional
case: X = {X ,Y}. Just as with jointly defined events, the joint distribution function is easily defined.

PX ,Y (x,y)≡ Pr[{X ≤ x}∩{Y ≤ y}]

The joint probability density function pX ,Y (x,y) is related to the distribution function via double integration.

PX ,Y (x,y) =
∫ x

−∞

∫ y

−∞

pX ,Y (α,β )dα dβ or pX ,Y (x,y) =
∂ 2PX ,Y (x,y)

∂x∂y

Since limy→∞ PX ,Y (x,y) = PX (x), the so-called marginal density functions can be related to the joint density
function.

pX (x) =
∫

∞

−∞

pX ,Y (x,β )dβ and pY (y) =
∫

∞

−∞

pX ,Y (α,y)dα

Extending the ideas of conditional probabilities, the conditional probability density function pX |Y (x|Y = y)
is defined (when pY (y) 6= 0) as

pX |Y (x|Y = y) =
pX ,Y (x,y)

pY (y)

Two random variables are statistically independent when pX |Y (x|Y = y) = pX (x), which is equivalent to the
condition that the joint density function is separable: pX ,Y (x,y) = pX (x) · pY (y).

For jointly defined random variables, expected values are defined similarly as with single random vari-
ables. Probably the most important joint moment is the covariance:

cov[X ,Y ]≡ E[XY ]−E[X ] ·E[Y ], where E[XY ] =
∫

∞

−∞

∫
∞

−∞

xypX ,Y (x,y)dxdy .

Related to the covariance is the (confusingly named) correlation coefficient: the covariance normalized by the
standard deviations of the component random variables.

ρX ,Y =
cov[X ,Y ]

σX σY

When two random variables are uncorrelated, their covariance and correlation coefficient equals zero so
that E[XY ] = E[X ]E[Y ]. Statistically independent random variables are always uncorrelated, but uncorrelated
random variables can be dependent.∗

A conditional expected value is the mean of the conditional density.

E[X |Y ] =
∫

∞

−∞

pX |Y (x|Y = y)dx

∗Let X be uniformly distributed over [−1,1] and let Y = X2. The two random variables are uncorrelated, but are clearly not indepen-
dent.
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Note that the conditional expected value is now a function of Y and is therefore a random variable. Conse-
quently, it too has an expected value, which is easily evaluated to be the expected value of X .

E
[
E[X |Y ]

]
=
∫

∞

−∞

[∫
∞

−∞

xpX |Y (x|Y = y)dx
]

pY (y)dy = E[X ]

More generally, the expected value of a function of two random variables can be shown to be the expected
value of a conditional expected value: E

[
f (X ,Y )

]
= E

[
E[ f (X ,Y )|Y ]

]
. This kind of calculation is frequently

simpler to evaluate than trying to find the expected value of f (X ,Y ) “all at once.” A particularly interesting
example of this simplicity is the random sum of random variables. Let L be a random variable and {X`} a
sequence of random variables. We will find occasion to consider the quantity ∑

L
`=1 X`. Assuming that the each

component of the sequence has the same expected value E[X ], the expected value of the sum is found to be

E[SL] = E
[
E
[
∑

L
`=1 X`|L

]]
= E

[
L ·E[X ]

]
= E[L] ·E[X ]

2.1.6 Random Vectors

A random vector X is an ordered sequence of random variables X = col[X1, . . . ,XL]. The density function of
a random vector is defined in a manner similar to that for pairs of random variables. The expected value of a
random vector is the vector of expected values.

E[X] =
∫

∞

−∞

xpX(x)dx = col
[
E[X1], . . . ,E[XL]

]
The covariance matrix KX is an L×L matrix consisting of all possible covariances among the random vector’s
components.

KX
i j = cov[Xi,X j] = E[XiX∗j ]−E[Xi]E[X∗j ] i, j = 1, . . . ,L

Using matrix notation, the covariance matrix can be written as KX = E
[
(X−E[X])(X−E[X])′

]
. Using this

expression, the covariance matrix is seen to be a symmetric matrix and, when the random vector has no
zero-variance component, its covariance matrix is positive-definite. Note in particular that when the random
variables are real-valued, the diagonal elements of a covariance matrix equal the variances of the components:
KX

ii = σ2
Xi

. Circular random vectors are complex-valued with uncorrelated, identically distributed, real and
imaginary parts. In this case, E

[
|Xi|2

]
= 2σ2

Xi
and E

[
X2

i
]
= 0. By convention, σ2

Xi
denotes the variance of the

real (or imaginary) part. The characteristic function of a real-valued random vector is defined to be

ΦX( jννν) = E
[
e jνννt X

]
.

2.1.7 Single function of a random vector

Just as shown in §2.1.3, the key tool is the distribution function. When Y = f (X), a scalar-valued function
of a vector, we need to find that portion of the domain that corresponds to f (X) ≤ y. Once this region is
determined, the density can be found.

For example, the maximum of a random vector is a random variable whose probability density is usually
quite different than the distributions of the vector’s components. The probability that the maximum is less
than some number µ is equal to the probability that all of the components are less than µ .

Pr[maxX < µ] = PX(µ, . . . ,µ)

Assuming that the components of X are statistically independent, this expression becomes

Pr[maxX < µ] =
dimX

∏
i=1

PXi(µ) ,
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and the density of the maximum has an interesting answer.

pmaxX(µ) =
dimX

∑
j=1

pX j(µ)∏
i6= j

PXi(µ)

When the random vector’s components are identically distributed, we have

pmaxX(µ) = (dimX)pX (µ)P(dimX)−1
X (µ) .

2.1.8 Several functions of a random vector

When we have a vector-valued function of a vector (and the input and output dimensions don’t necessarily
match), finding the joint density of the function can be quite complicated, but the recipe of using the joint
distribution function still applies. In some (intersting) cases, the derivation flows nicely. Consider the case
where Y = AX, where A is an invertible matrix.

PY(y) = Pr[AX≤ y]

= Pr
[
X≤ A−1y

]
= PX

(
A−1y

)
To find the density, we need to evaluate the Nth-order mixed derivative (N is the dimension of the random
vectors). The Jacobian appears and in this case, the Jacobian is the determinant of the matrix A.

pY(y) =
1

|detA|
pX
(
A−1y

)
2.1.9 The Gaussian Random Variable

The random variable X is said to be a Gaussian random variable∗ if its probability density function has the
form

pX (x) =
1√

2πσ2
exp
{
− (x−m)2

2σ2

}
.

The mean of such a Gaussian random variable is m and its variance σ2. As a shorthand notation, this informa-
tion is denoted by x ∼N (m,σ2). The characteristic function ΦX (·) of a Gaussian random variable is given
by

ΦX ( jν) = e jmν · e−σ2ν2/2 .

No closed form expression exists for the probability distribution function of a Gaussian random variable.
For a zero-mean, unit-variance, Gaussian random variable

(
N (0,1)

)
, the probability that it exceeds the value

x is denoted by Q(x).

Pr[X > x] = 1−PX (x) =
1√
2π

∫
∞

x
e−α2/2 dα ≡ Q(x)

A plot of Q(·) is shown in Fig. 2.1. When the Gaussian random variable has non-zero mean and/or non-unit
variance, the probability of it exceeding x can also be expressed in terms of Q(·).

Pr[X > x] = Q
(

x−m
σ

)
, X ∼N (m,σ2)

Integrating by parts, Q(·) is bounded (for x > 0) by

1√
2π
· x

1+ x2 e−x2/2 ≤ Q(x)≤ 1√
2πx

e−x2/2 . (2.1)

∗Gaussian random variables are also known as normal random variables.
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Figure 2.1: The function Q(·) is plotted on logarithmic coordinates. Beyond values of about two, this function
decreases quite rapidly. Two approximations are also shown that correspond to the upper and lower bounds
given by Eq. 2.1.

As x becomes large, these bounds approach each other and either can serve as an approximation to Q(·); the
upper bound is usually chosen because of its relative simplicity. The lower bound can be improved; noting
that the term x/(1 + x2) decreases for x < 1 and that Q(x) increases as x decreases, the term can be replaced
by its value at x = 1 without affecting the sense of the bound for x≤ 1.

1
2
√

2π
e−x2/2 ≤ Q(x), x≤ 1 (2.2)

We will have occasion to evaluate the expected value of exp{aX + bX2} where X ∼N (m,σ2) and a, b
are constants. By definition,

E[eaX+bX2
] =

1√
2πσ2

∫
∞

−∞

exp{ax+bx2− (x−m)2/(2σ
2)}dx

The argument of the exponential requires manipulation (i.e., completing the square) before the integral can be
evaluated. This expression can be written as

− 1
2σ2 {(1−2bσ

2)x2−2(m+aσ
2)x+m2} .

Completing the square, this expression can be written

−1−2bσ2

2σ2

(
x− m+aσ2

1−2bσ2

)2

+
1−2bσ2

2σ2

(
m+aσ2

1−2bσ2

)2

− m2

2σ2

We are now ready to evaluate the integral. Using this expression,

E[eaX+bX2
] = exp

{
1−2bσ2

2σ2

(
m+aσ2

1−2bσ2

)2

− m2

2σ2

}
×

1√
2πσ2

∫
∞

−∞

exp

{
−1−2bσ2

2σ2

(
x− m+aσ2

1−2bσ2

)2
}

dx .
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Let

α =
x− m+aσ2

1−2bσ2

σ√
1−2bσ2

,

which implies that we must require that 1−2bσ2 > 0
(
or b < 1/(2σ2)

)
. We then obtain

E
[
eaX+bX2

]
= exp

{
1−2bσ2

2σ2

(
m+aσ2

1−2bσ2

)2

− m2

2σ2

}
1√

1−2bσ2

1√
2π

∫
∞

−∞

e−
α2
2 dα .

The integral equals unity, leaving the result

E[eaX+bX2
] =

exp
{

1−2bσ2

2σ2

(
m+aσ2

1−2bσ2

)2
− m2

2σ2

}
√

1−2bσ2
,b <

1
2σ2

Important special cases are

1. a = 0, X ∼N (m,σ2).

E[ebX2
] =

exp
{

bm2

1−2bσ2

}
√

1−2bσ2

2. a = 0, X ∼N (0,σ2).

E[ebX2
] =

1√
1−2bσ2

3. X ∼N (0,σ2).

E[eaX+bX2
] =

exp
{

a2σ2

2(1−2bσ2)

}
1−2bσ2

The real-valued random vector X is said to be a Gaussian random vector if its joint distribution function
has the form

pX(x) =
1√

det[2πK]
exp
{
−1

2
(x−m)tK−1(x−m)

}
.

If complex-valued, the joint distribution of a circular Gaussian random vector is given by

pX(x) =
1√

det[πK]
exp
{
−(x−mX )′K−1

X (x−mX )
}

. (2.3)

The vector mX denotes the expected value of the Gaussian random vector and KX its covariance matrix.

mX = E[X] KX = E[XX′]−mX m′X

As in the univariate case, the Gaussian distribution of a random vector is denoted by X∼N (mX ,KX ). After
applying a linear transformation to Gaussian random vector, such as Y = AX, the result is also a Gaussian
random vector (a random variable if the matrix is a row vector): Y ∼N (AmX ,AKX A′). The characteristic
function of a Gaussian random vector is given by

ΦX( jννν) = exp
{

+ jννν tmX −
1
2

ννν
tKXννν

}
.
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From this formula, the Nth-order moment formula for jointly distributed Gaussian random variables is easily
derived.∗

E[X1 · · ·XN ] =

{
∑allPN E[XPN(1)XPN(2)] · · ·E[XPN(N−1)XPN(N)], N even

∑allPN E[XPN(1)]E[XPN(2)XPN(3)] · · ·E[XPN(N−1)XPN(N)], N odd,

where PN denotes a permutation of the first N integers and PN(i) the ith element of the permutation. For
example, E[X1X2X3X4] = E[X1X2]E[X3X4]+E[X1X3]E[X2X4]+E[X1X4]E[X2X3].

2.1.10 The Central Limit Theorem

Let {Xl} denote a sequence of independent, identically distributed, random variables. Assuming they have
zero means and finite variances (equaling σ2), the Central Limit Theorem states that the sum ∑

L
l=1 Xl/

√
L

converges in distribution to a Gaussian random variable.

1√
L

L

∑
l=1

Xl
L→∞−→N (0,σ2)

Because of its generality, this theorem is often used to simplify calculations involving finite sums of non-
Gaussian random variables. However, attention is seldom paid to the convergence rate of the Central Limit
Theorem. Kolmogorov, the famous twentieth century mathematician, is reputed to have said “The Central
Limit Theorem is a dangerous tool in the hands of amateurs.” Let’s see what he meant.

Taking σ2 = 1, the key result is that the magnitude of the difference between P(x), defined to be the
probability that the sum given above exceeds x, and Q(x), the probability that a unit-variance Gaussian random
variable exceeds x, is bounded by a quantity inversely related to the square root of L [26: Theorem 24].

|P(x)−Q(x)| ≤ c · E
[
|X |3

]
σ3 · 1√

L

The constant of proportionality c is a number known to be about 0.8 [41: p. 6]. The ratio of absolute third
moment of Xl to the cube of its standard deviation, known as the skew and denoted by γX , depends only on
the distribution of Xl and is independent of scale. This bound on the absolute error has been shown to be
tight [26: pp. 79ff]. Using our lower bound for Q(·) (Eq. 2.2 {9}), we find that the relative error in the Central
Limit Theorem approximation to the distribution of finite sums is bounded for x > 0 as

|P(x)−Q(x)|
Q(x)

≤ cγX

√
2π

L
e+x2/2 ·

{
2, x≤ 1
1+x2

x , x > 1
.

Suppose we require that the relative error not exceed some specified value ε . The normalized (by the standard
deviation) boundary x at which the approximation is evaluated must not violate

Lε2

2πc2γ2
X
≥ ex2 ·

4 x≤ 1(
1+x2

x

)2
x > 1

.

As shown in Fig. 2.2, the right side of this equation is a monotonically increasing function.

Example

∗E[X1 · · ·XN ] = j−N ∂ N

∂ν1 ···∂νN
ΦX( jννν)

∣∣∣
ννν=0

.
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Figure 2.2: The quantity which governs the limits of validity for numerically applying the Central Limit
Theorem on finite numbers of data is shown over a portion of its range. To judge these limits, we must
compute the quantity Lε2/2πc2γX , where ε denotes the desired percentage error in the Central Limit Theorem
approximation and L the number of observations. Selecting this value on the vertical axis and determining
the value of x yielding it, we find the normalized (x = 1 implies unit variance) upper limit on an L-term sum
to which the Central Limit Theorem is guaranteed to apply. Note how rapidly the curve increases, suggesting
that large amounts of data are needed for accurate approximation.

For example, if ε = 0.1 and taking cγX arbitrarily to be unity (a reasonable value), the upper limit
of the preceding equation becomes 1.6× 10−3L. Examining Fig. 2.2, we find that for L = 10,000, x
must not exceed 1.17. Because we have normalized to unit variance, this example suggests that the
Gaussian approximates the distribution of a ten-thousand term sum only over a range corresponding
to an 76% area about the mean. Consequently, the Central Limit Theorem, as a finite-sample distribu-
tional approximation, is only guaranteed to hold near the mode of the Gaussian, with huge numbers of
observations needed to specify the tail behavior. Realizing this fact will keep us from being ignorant
amateurs.

2.2 Stochastic Processes
2.2.1 Basic Definitions

A random or stochastic process is the assignment of a function of a real variable to each sample point ω

in sample space. Thus, the process X(ω, t) can be considered a function of two variables. For each ω , the
time function must be well-behaved and may or may not look random to the eye. Each time function of
the process is called a sample function and must be defined over the entire domain of interest. For each
t, we have a function of ω , which is precisely the definition of a random variable. Hence the amplitude
of a random process is a random variable. The amplitude distribution of a process refers to the probability
density function of the amplitude: pX(t)(x). By examining the process’s amplitude at several instants, the joint
amplitude distribution can also be defined. For the purposes of this book, a process is said to be stationary
when the joint amplitude distribution depends on the differences between the selected time instants.

The expected value or mean of a process is the expected value of the amplitude at each t.

E[X(t)] = mX (t) =
∫

∞

−∞

xpX(t)(x)dx
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For the most part, we take the mean to be zero. The correlation function is the first-order joint moment
between the process’s amplitudes at two times.

RX (t1, t2) = E[X(t1)X(t2)] =
∫

∞

−∞

∫
∞

−∞

x1x2 pX(t1),X(t2)(x1,x2)dx1 dx2

Since the joint distribution for stationary processes depends only on the time difference, correlation functions
of stationary processes depend only on |t1− t2|. In this case, correlation functions are really functions of
a single variable (the time difference) and are usually written as RX (τ) where τ = t1− t2. Related to the
correlation function is the covariance function KX (τ), which equals the correlation function minus the square
of the mean.

KX (τ) = RX (τ)−m2
X

The variance of the process equals the covariance function evaluated as the origin. The power spectrum of a
stationary process is the Fourier Transform of the correlation function.

SX ( f ) =
∫

∞

−∞

RX (τ)e− j2π f τ dτ

A particularly important example of a random process is white noise. The process X(t) is said to be white
if it has zero mean and a correlation function proportional to an impulse.

E
[
X(t)

]
= 0 RX (τ) =

N0

2
δ (τ)

The power spectrum of white noise is constant for all frequencies, equaling N0/2. which is known as the
spectral height.∗

When a stationary process X(t) is passed through a stable linear, time-invariant filter, the resulting output
Y (t) is also a stationary process having power density spectrum

SY ( f ) = |H( f )|2SX ( f ) ,

where H( f ) is the filter’s transfer function.

2.2.2 The Gaussian Process

A random process X(t) is Gaussian if the joint density of the N amplitudes X(t1), . . . ,X(tN) comprise a
Gaussian random vector. The elements of the required covariance matrix equal the covariance between the
appropriate amplitudes: Ki j = KX (ti, t j). Assuming the mean is known, the entire structure of the Gaussian
random process is specified once the correlation function or, equivalently, the power spectrum are known. As
linear transformations of Gaussian random processes yield another Gaussian process, linear operations such
as differentiation, integration, linear filtering, sampling, and summation with other Gaussian processes result
in a Gaussian process.

2.2.3 Sampling and Random Sequences

The usual Sampling Theorem applies to random processes, with the spectrum of interest being the power
spectrum. If stationary process X(t) is bandlimited—SX ( f ) = 0, | f | > W , as long as the sampling interval
T satisfies the classic constraint T < π/W the sequence X(lT ) represents the original process. A sampled
process is itself a random process defined over discrete time. Hence, all of the random process notions
introduced in the previous section apply to the random sequence X̃(l)≡ X(lT ). The correlation functions of
these two processes are related as

RX̃ (k) = E
[
X̃(l)X̃(l + k)

]
= RX (kT ) .

∗The curious reader can track down why the spectral height of white noise has the fraction one-half in it. This definition is the
convention.
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We note especially that for distinct samples of a random process to be uncorrelated, the correlation func-
tion RX (kT ) must equal zero for all non-zero k. This requirement places severe restrictions on the correlation
function (hence the power spectrum) of the original process. One correlation function satisfying this property
is derived from the random process which has a bandlimited, constant-valued power spectrum over precisely
the frequency region needed to satisfy the sampling criterion. No other power spectrum satisfying the sam-
pling criterion has this property. Hence, sampling does not normally yield uncorrelated amplitudes, meaning
that discrete-time white noise is a rarity. White noise has a correlation function given by RX̃ (k) = σ2δ (k),
where δ (·) is the unit sample. The power spectrum of white noise is a constant: SX̃ ( f ) = σ2.

2.2.4 The Poisson Process

Some signals have no waveform. Consider the measurement of when lightning strikes occur within some
region; the random process is the sequence of event times, which has no intrinsic waveform. Such processes
are termed point processes, and have been shown [83] to have a simple mathematical structure. Define some
quantities first. Let Nt be the number of events that have occurred up to time t (observations are by convention
assumed to start at t = 0). This quantity is termed the counting process, and has the shape of a staircase
function: The counting function consists of a series of plateaus always equal to an integer, with jumps between
plateaus occurring when events occur. Nt1,t2 = Nt2 −Nt1 corresponds to the number of events in the interval
[t1, t2). Consequently, Nt = N0,t . The event times comprise the random vector W; the dimension of this vector
is Nt , the number of events that have occurred. The occurrence of events is governed by a quantity known as
the intensity λ (t;Nt ;W) of the point process through the probability law

Pr[Nt,t+∆t = 1 | Nt ;W] = λ (t;Nt ;W)∆t

for sufficiently small ∆t. Note that this probability is a conditional probability; it can depend on how many
events occurred previously and when they occurred. The intensity can also vary with time to describe non-
stationary point processes. The intensity has units of events/s, and it can be viewed as the instantaneous rate
at which events occur.

The simplest point process from a structural viewpoint, the Poisson process, has no dependence on process
history. A stationary Poisson process results when the intensity equals a constant: λ (t;Nt ;W) = λ0. Thus, in
a Poisson process, a coin is flipped every ∆t seconds, with a constant probability of heads (an event) occurring
that equals λ0∆t and is independent of the occurrence of past (and future) events. When this probability varies
with time, the intensity equals λ (t), a non-negative signal, and a nonstationary Poisson process results.∗

From the Poisson process’s definition, we can derive the probability laws that govern event occurrence.
These fall into two categories: the count statistics Pr[Nt1,t2 = n], the probability of obtaining n events in an
interval [t1, t2), and the time of occurrence statistics pW(n)(w), the joint distribution of the first n event times in
the observation interval. These times form the vector W(n), the occurrence time vector of dimension n. From
these two probability distributions, we can derive the sample function density.

Count statistics. We derive a differentio-difference equation that Pr[Nt1,t2 = n], t1 < t2, must satisfy for
event occurrence in an interval to be regular and independent of event occurrences in disjoint intervals. Let t1
be fixed and consider event occurrence in the intervals [t1, t2) and [t2, t2 +δ ), and how these contribute to the
occurrence of n events in the union of the two intervals. If k events occur in [t1, t2), then n− k must occur in
[t2, t2 +δ ). Furthermore, the scenarios for different values of k are mutually exclusive. Consequently,

Pr[Nt1,t2+δ = n] =
n

∑
k=0

Pr[Nt1,t2 = k,Nt2,t2+δ = n− k]

= Pr[Nt2,t2+δ = 0|Nt1,t2 = n]Pr[Nt1,t2 = n]
+Pr[Nt2,t2+δ = 1|Nt1,t2 = n−1]Pr[Nt1,t2 = n−1]

+ · · ·+
n

∑
k=2

Pr[Nt2,t2+δ = k|Nt1,t2 = n− k]Pr[Nt1,t2 = n− k]

∗In the literature, stationary Poisson processes are sometimes termed homogeneous, nonstationary ones inhomogeneous.
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Because of the independence of event occurrence in disjoint intervals, the conditional probabilities in this
expression equal the unconditional ones. When δ is small, only the first two will be significant to first order
in δ . Rearranging and taking the obvious limit, we have the equation defining the count statistics.

d Pr[Nt1,t2 = n]
dt2

=−λ (t2)Pr[Nt1,t2 = n]+λ (t2)Pr[Nt1,t2 = n−1]

To solve this equation, we apply a z-transform to both sides. Defining the transform of Pr[Nt1,t2 = n] to be
P(t2,z),∗ we have

∂P(t2,z)
∂ t2

=−λ (t2)(1− z−1)P(t2,z)

Applying the boundary condition that P(t1,z) = 1, this simple first-order differential equation has the solution

P(t2,z) = exp
{
−(1− z−1)

∫ t2

t1
λ (α)dα

}
To evaluate the inverse z-transform, we simply exploit the Taylor series expression for the exponential, and
we find that a Poisson probability mass function governs the count statistics for a Poisson process.

Pr[Nt1,t2 = n] =

(∫ t2
t1 λ (α)dα

)n

n!
exp
{
−
∫ t2

t1
λ (α)dα

}
(2.4)

The integral of the intensity occurs frequently, and we succinctly denote it by Λ
t2
t1 . When the Poisson process

is stationary, the intensity equals a constant, and the count statistics depend only on the difference t2− t1.

Time of occurrence statistics. To derive the multivariate distribution of W, we use the count statistics
and the independence properties of the Poisson process. The density we seek satisfies

∫ w1+δ1

w1

. . .
∫ wn+δn

wn

pW(n)(υυυ)dυυυ = Pr
[
W1 ∈ [w1,w1 +δ1), . . . ,Wn ∈ [wn,wn +δn)

]
The expression on the right equals the probability that no events occur in [t1,w1), one event in [w1,w1 +δ1),
no event in [w1 +δ1,w2), etc.. Because of the independence of event occurrence in these disjoint intervals, we
can multiply together the probability of these event occurrences, each of which is given by the count statistics.

Pr
[
W1 ∈ [w1,w1 +δ1), . . . ,Wn ∈ [wn,wn +δn)

]
= e−Λ

w1
t1 ·Λw1+δ1

w1
e−Λ

w1+δ1
w1 · e−Λ

w2
w1+δ1 ·Λw2+δ2

w2
e−Λ

w2+δ2
w2 · · ·Λwn+δn

wn e−Λ
wn+δn
wn

≈

(
n

∏
k=1

λ (wk)δk

)
e−Λ

wn
t1 for small δk

From this approximation, we find that the joint distribution of the first n event times equals

pW(n)(w) =


(

n

∏
k=1

λ (wk)

)
exp
{
−
∫ wn

t1
λ (α)dα

}
, t1 ≤ w1 ≤ w2 ≤ ·· · ≤ wn

0, otherwise

∗Remember, t1 is fixed and can be suppressed notationally.
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Sample function density. For Poisson processes, the sample function density describes the joint distri-
bution of counts and event times within a specified time interval. Thus, it can be written as

pNt1 ,t2 ,W(n;w) = Pr[Nt1,t2 = n|W1 = w1, . . . ,Wn = wn]pW(n)(w)

The second term in the product equals the distribution derived previously for the time of occurrence statistics.
The conditional probability equals the probability that no events occur between wn and t2; from the Poisson
process’s count statistics, this probability equals exp{−Λ

t2
wn}. Consequently, the sample function density for

the Poisson process, be it stationary or not, equals

pNt1 ,t2 ,W(n;w) =

(
n

∏
k=1

λ (wk)

)
exp
{
−
∫ t2

t1
λ (α)dα

}
(2.5)

Properties. From the probability distributions derived on the previous pages, we can discern many struc-
tural properties of the Poisson process. These properties set the stage for delineating other point processes
from the Poisson. They, as described subsequently, have much more structure and are much more difficult to
handle analytically.

The counting process Nt is an independent increment process. For a Poisson process, the
number of events in disjoint intervals are statistically independent of each other, meaning that we have an
independent increment process. When the Poisson process is stationary, increments taken over equi-duration
intervals are identically distributed as well as being statistically independent. Two important results obtain
from this property. First, the counting process’s covariance function KN(t,u) equals σ2 min(t,u). This close
relation to the Wiener waveform process indicates the fundamental nature of the Poisson process in the world
of point processes. Note, however, that the Poisson counting process is not continuous almost surely. Second,
the sequence of counts forms an ergodic process, meaning we can estimate the intensity parameter from
observations.

The mean and variance of the number of events in an interval can be easily calculated from the Poisson
distribution. Alternatively, we can calculate the characteristic function and evaluate its derivatives. The
characteristic function of an increment equals

ΦNt1 ,t2
(ν) = exp

{(
e jν −1

)
Λ

t2
t1

}
The first two moments and variance of an increment of the Poisson process, be it stationary or not, equal

E[Nt1,t2 ] = Λ
t2
t1

E[N2
t1,t2 ] = Λ

t2
t1 +

(
Λ

t2
t1

)2

var[Nt1,t2 ] = Λ
t2
t1

Note that the mean equals the variance here, a trademark of the Poisson process.

Poisson process event times form a Markov process. Consider the conditional density
pWn|Wn−1,...,W1(wn|wn−1, . . . ,w1). This density equals the ratio of the event time densities for the n- and (n−1)-
dimensional event time vectors. Simple substitution yields

pWn|Wn−1,...,W1(wn|wn−1, . . . ,w1) = λ (wn)exp
{
−
∫ wn

wn−1

λ (α)dα

}
,wn ≥ wn−1

Thus, the nth event time depends only on when the (n− 1)th event occurs, meaning that we have a Markov
process. Note that event times are ordered: The nth event must occur after the (n− 1)th, etc.. Thus, the
values of this Markov process keep increasing, meaning that from this viewpoint, the event times form a
nonstationary Markovian sequence. When the process is stationary, the evolutionary density is exponential.
It is this special form of event occurrence time density that defines a Poisson process.
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Inter-event intervals in a Poisson process form a white sequence. Exploiting the previous
property, the duration of the nth interval τn = wn−wn−1 does not depend on the lengths of previous (or future)
intervals. Consequently, the sequence of inter-event intervals forms a “white” sequence. The sequence may
not be identically distributed unless the process is stationary. In the stationary case, inter-event intervals are
truly white—they form an IID sequence—and have an exponential distribution.

pτn(τ) = λ0e−λ0τ ,τ ≥ 0

To show that the exponential density for a white sequence corresponds to the most “random” distribution,
Parzen [77] proved that the ordered times of n events sprinkled independently and uniformly over a given in-
terval form a stationary Poisson process. If the density of event sprinkling is not uniform, the resulting ordered
times constitute a nonstationary Poisson process with an intensity proportional to the sprinkling density.

Doubly stochastic Poisson processes. Here, the intensity λ (t) equals a sample function drawn from
some waveform process. In waveform processes, the analogous concept does not have nearly the impact it
does here. Because intensity waveforms must be non-negative, the intensity process must be nonzero mean
and non-Gaussian. Assume throughout that the intensity process is stationary for simplicity. This model
arises in those situations in which the event occurrence rate clearly varies unpredictably with time. Such
processes have the property that the variance-to-mean ratio of the number of events in any interval exceeds
one. In the process of deriving this last property, we illustrate the typical way of analyzing doubly stochastic
processes: Condition on the intensity equaling a particular sample function, use the statistical characteristics
of nonstationary Poisson processes, then “average” with respect to the intensity process. To calculate the
expected number Nt1,t2 of events in a interval, we use conditional expected values:

E[Nt1,t2 ] = E
[
E[Nt1,t2 |λ (t), t1 ≤ t < t2]

]
= E

[∫ t2

t1
λ (α)dα

]
= (t2− t1) ·E[λ (t)]

This result can also be written as the expected value of the integrated intensity: E[Nt1,t2 ] = E[Λt2
t1 ]. Similar

calculations yield the increment’s second moment and variance.

E[(Nt1,t2)
2] = E[Λt2

t1 ]+E[
(
Λ

t2
t1

)2]

var[Nt1,t2 ] = E[Λt2
t1 ]+var[Λt2

t1 ]

Using the last result, we find that the variance-to-mean ratio in a doubly stochastic process always exceeds
unity, equaling one plus the variance-to-mean ratio of the intensity process.

The approach of sample-function conditioning can also be used to derive the density of the number of
events occurring in an interval for a doubly stochastic Poisson process. Conditioned on the occurrence of a
sample function, the probability of n events occurring in the interval [t1, t2) equals (Eq. 2.4, {15})

Pr [Nt1,t2 = n|λ (t), t1 ≤ t < t2] =

(
Λ

t2
t1

)n

n!
exp
{
−Λ

t2
t1

}
Because Λ

t2
t1 is a random variable, the unconditional distribution equals this conditional probability averaged

with respect to this random variable’s density. This average is known as the Poisson Transform of the random
variable’s density.

Pr [Nt1,t2 = n] =
∫

∞

0

αn

n!
e−α p

Λ
t2
t1
(α)dα
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2.3 Linear Vector Spaces
One of the more powerful tools in statistical communication theory is the abstract concept of a linear vector
space. The key result that concerns us is the representation theorem: a deterministic time function can be
uniquely represented by a sequence of numbers. The stochastic version of this theorem states that a process
can be represented by a sequence of uncorrelated random variables. These results will allow us to exploit the
theory of hypothesis testing to derive the optimum detection strategy.

2.3.1 Basics

Definition A linear vector space S is a collection of elements called vectors having the following properties:

1. The vector-addition operation can be defined so that if x,y,z ∈S :

(a) x+ y ∈S (the space is closed under addition)

(b) x+ y = y+ x (Commutivity)

(c) (x+ y)+ z = x+(y+ z) (Associativity)

(d) The zero vector exists and is always an element of S . The zero vector is defined by x+0 = x.

(e) For each x ∈ S , a unique vector (−x) is also an element of S so that x + (−x) = 0, the zero
vector.

2. Associated with the set of vectors is a set of scalars which constitute an algebraic field. A field is a set
of elements which obey the well-known laws of associativity and commutivity for both addition and
multiplication. If a,b are scalars, the elements x,y of a linear vector space have the properties that:

(a) a · x (multiplication by scalar a) is defined and a · x ∈S .

(b) a · (b · x) = (ab) · x.

(c) If “1” and “0” denotes the multiplicative and additive identity elements respectively of the field of
scalars; then 1 · x = x and 0 · x = 0

(d) a(x+ y) = ax+ay and (a+b)x = ax+bx.

There are many examples of linear vector spaces. A familiar example is the set of column vectors of length
N. In this case, we define the sum of two vectors to be:

x1
x2
...

xN

+


y1
y2
...

yN

=


x1 + y1
x2 + y2

...
xN + yN


and scalar multiplication to be a · col[x1 x2 · · ·xN ] = col[ax1 ax2 · · ·axN ]. All of the properties listed above are
satisfied.

A more interesting (and useful) example is the collection of square integrable functions. A square-
integrable function x(t) satisfies: ∫ Tf

Ti

|x(t)|2dt < ∞ .

One can verify that this collection constitutes a linear vector space. In fact, this space is so important that it
has a special name—L2(Ti,Tf ) (read this as el-two); the arguments denote the range of integration.

Definition Let S be a linear vector space. A subspace T of S is a subset of S which is closed. In other
words, if x,y ∈ T , then x,y ∈S and all elements of T are elements of S , but some elements of S are not
elements of T . Furthermore, the linear combination ax+by∈T for all scalars a,b. A subspace is sometimes
referred to as a closed linear manifold.
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2.3.2 Inner Product Spaces

A structure needs to be defined for linear vector spaces so that definitions for the length of a vector and for
the distance between any two vectors can be obtained. The notions of length and distance are closely related
to the concept of an inner product.

Definition An inner product of two real vectors x,y ∈S , is denoted by 〈x,y〉 and is a scalar assigned to the
vectors x and y which satisfies the following properties:

1. 〈x,y〉= 〈y,x〉
2. 〈ax,y〉= a〈x,y〉, a is a scalar
3. 〈x+ y,z〉= 〈x,z〉+ 〈y,z〉, z a vector.
4. 〈x,x〉> 0 unless x = 0. In this case, 〈x,x〉= 0.

As an example, an inner product for the space consisting of column matrices can be defined as

〈x,y〉= xty =
N

∑
i=1

xiyi .

The reader should verify that this is indeed a valid inner product (i.e., it satisfies all of the properties given
above). It should be noted that this definition of an inner product is not unique: there are other inner product
definitions which also satisfy all of these properties. For example, another valid inner product is

〈x,y〉= xtKy .

where K is an N×N positive-definite matrix. Choices of the matrix K which are not positive definite do not
yield valid inner products (property 4 is not satisfied). The matrix K is termed the kernel of the inner product.
When this matrix is something other than an identity matrix, the inner product is sometimes written as 〈x,y〉K
to denote explicitly the presence of the kernel in the inner product.

Definition The norm of a vector x ∈S is denoted by ‖x‖ and is defined by:

‖x‖= 〈x,x〉1/2 (2.6)

Because of the properties of an inner product, the norm of a vector is always greater than zero unless the
vector is identically zero. The norm of a vector is related to the notion of the length of a vector. For example,
if the vector x is multiplied by a constant scalar a, the norm of the vector is also multiplied by a.

‖ax‖= 〈ax,ax〉1/2 = |a|‖x‖

In other words, “longer” vectors (a > 1) have larger norms. A norm can also be defined when the inner
product contains a kernel. In this case, the norm is written ‖x‖K for clarity.

Definition An inner product space is a linear vector space in which an inner product can be defined for all
elements of the space and a norm is given by equation 2.6. Note in particular that every element of an inner
product space must satisfy the axioms of a valid inner product.
For the space S consisting of column matrices, the norm of a vector is given by (consistent with the first

choice of an inner product)

‖x‖=

(
N

∑
i=1

x2
i

)1/2

.

This choice of a norm corresponds to the Cartesian definition of the length of a vector.
One of the fundamental properties of inner product spaces is the Schwarz inequality.

|〈x,y〉| ≤ ‖x‖‖y‖ (2.7)
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This is one of the most important inequalities we shall encounter. To demonstrate this inequality, consider the
norm squared of x+ay.

‖x+ay‖2 = 〈x+ay,x+ay〉= ‖x‖2 +2a〈x,y〉+a2‖y‖2

Let a =−〈x,y〉/‖y‖2. In this case:

‖x+ay‖2 = ‖x‖2−2
|〈x,y〉|2

‖y‖2 +
|〈x,y〉|2

‖y‖4 ‖y‖
2

= ‖x‖2− |〈x,y〉|
2

‖y‖2

As the left hand side of this result is non-negative, the right-hand side is lower-bounded by zero. The Schwarz
inequality of Eq. 2.7 is thus obtained. Note that equality occurs only when x = −ay, or equivalently when
x = cy, where c is any constant.

Definition Two vectors are said to be orthogonal if the inner product of the vectors is zero: 〈x,y〉= 0.

Consistent with these results is the concept of the “angle” between two vectors. The cosine of this angle is
defined by:

cos(x,y) =
〈x,y〉
‖x‖‖y‖

Because of the Schwarz inequality, |cos(x,y)| ≤ 1. The angle between orthogonal vectors is ±π/2 and the
angle between vectors satisfying Eq. 2.7 with equality (x ∝ y) is zero (the vectors are parallel to each other).

Definition The distance d between two vectors is taken to be the norm of the difference of the vectors.

d(x,y) = ‖x− y‖

In our example of the normed space of column matrices, the distance between x and y would be

‖x− y‖=

[
N

∑
i=1

(xi− yi)2

]1/2

,

which agrees with the Cartesian notion of distance. Because of the properties of the inner product, this
distance measure (or metric) has the following properties:

• d(x,y) = d(y,x) (Distance does not depend on how it is measured.)

• d(x,y) = 0 =⇒ x = y (Zero distance means equality)

• d(x,z)≤ d(x,y)+d(y,z) (Triangle inequality)

We use this distance measure to define what we mean by convergence. When we say the sequence of vectors
{xn} converges to x (xn→ x), we mean

lim
n→∞
‖xn− x‖= 0

2.3.3 Hilbert Spaces

Definition A Hilbert space H is a closed, normed linear vector space which contains all of its limit points:
if {xn} is any sequence of elements in H that converges to x, then x is also contained in H . x is termed the
limit point of the sequence.
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Example
Let the space consist of all rational numbers. Let the inner product be simple multiplication: 〈x,y〉=
xy. However, the limit point of the sequence xn = 1 + 1 + 1/2! + · · ·+ 1/n! is not a rational number.
Consequently, this space is not a Hilbert space. However, if we define the space to consist of all finite
numbers, we have a Hilbert space.

Definition If Y is a subspace of H , the vector x is orthogonal to the subspace Y for every y∈Y , 〈x,y〉= 0.
We now arrive at a fundamental theorem.

Theorem Let H be a Hilbert space and Y a subspace of it. Any element x∈H has the unique decomposition
x = y+z, where y∈Y and z is orthogonal to Y . Furthermore, ‖x−y‖= minv∈Y ‖x−v‖: the distance between
x and all elements of Y is minimized by the vector y. This element y is termed the projection of x onto Y .

Geometrically, Y is a line or a plane passing through the origin. Any vector x can be expressed as the
linear combination of a vector lying in Y and a vector orthogonal to y. This theorem is of extreme importance
in linear estimation theory and plays a fundamental role in detection theory.

2.3.4 Separable Vector Spaces

Definition A Hilbert space H is said to be separable if there exists a set of vectors {φi}, i = 1, . . ., elements
of H , that express every element x ∈H as

x =
∞

∑
i=1

xiφi , (2.8)

where xi are scalar constants associated with φi and x and where “equality” is taken to mean that the distance
between each side becomes zero as more terms are taken in the right.

lim
m→∞

∥∥∥∥∥x−
m

∑
i=1

xiφi

∥∥∥∥∥= 0

The set of vectors {φi} are said to form a complete set if the above relationship is valid. A complete set is
said to form a basis for the space H . Usually the elements of the basis for a space are taken to be linearly
independent. Linear independence implies that the expression of the zero vector by a basis can only be made
by zero coefficients.

∞

∑
i=1

xiφi = 0⇔ xi = 0 , i = 1, . . .

The representation theorem states simply that separable vector spaces exist. The representation of the vector
x is the sequence of coefficients {xi}.

Example
The space consisting of column matrices of length N is easily shown to be separable. Let the
vector φi be given a column matrix having a one in the ith row and zeros in the remaining rows:
φi = col[0, . . . ,0,1,0, . . . ,0]. This set of vectors {φi}, i = 1, . . . ,N constitutes a basis for the space.
Obviously if the vector x is given by x = col[x1 x2 . . .xN ], it may be expressed as:

x =
N

∑
i=1

xiφi
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using the basis vectors just defined.

In general, the upper limit on the sum in Eq. 2.8 is infinite. For the previous example, the upper limit is
finite. The number of basis vectors that is required to express every element of a separable space in terms of
Eq. 2.8 is said to be the dimension of the space. In this example, the dimension of the space is N. There exist
separable vector spaces for which the dimension is infinite.

Definition The basis for a separable vector space is said to be an orthonormal basis if the elements of the
basis satisfy the following two properties:

• The inner product between distinct elements of the basis is zero (i.e., the elements of the basis are
mutually orthogonal).

〈φi,φ j〉= 0 , i 6= j

• The norm of each element of a basis is one (normality).

‖φi‖= 1 , i = 1, . . .

For example, the basis given above for the space of N-dimensional column matrices is orthonormal. For
clarity, two facts must be explicitly stated. First, not every basis is orthonormal. If the vector space is
separable, a complete set of vectors can be found; however, this set does not have to be orthonormal to be
a basis. Secondly, not every set of orthonormal vectors can constitute a basis. When the vector space L2 is
discussed in detail, this point will be illustrated.

Despite these qualifications, an orthonormal basis exists for every separable vector space. There is an ex-
plicit algorithm—the Gram-Schmidt procedure—for deriving an orthonormal set of functions from a complete
set. Let {φi} denote a basis; the orthonormal basis {ψi} is sought. The Gram-Schmidt procedure is:

1. ψ1 = φ1/‖φ1‖.
This step makes ψ1 have unit length.

2. ψ ′2 = φ2−〈ψ1,φ2〉ψ1.
Consequently, the inner product between ψ ′2 and ψ1 is zero. We obtain ψ2 from ψ ′2 forcing the vector
to have unit length.

2′. ψ2 = ψ ′2/‖ψ ′2‖.
The algorithm now generalizes.

k. ψ ′k = φk−∑
k−1
i=1 (ψi,φk)ψi

k′. ψk = ψ ′k/‖ψ ′k‖

By construction, this new set of vectors is an orthonormal set. As the original set of vectors {φi} is a complete
set, and, as each ψk is just a linear combination of φi, i = 1, . . . ,k, the derived set {ψi} is also complete.
Because of the existence of this algorithm, a basis for a vector space is usually assumed to be orthonormal.

A vector’s representation with respect to an orthonormal basis {φi} is easily computed. The vector x may
be expressed by:

x =
∞

∑
i=1

xiφi (2.9)

xi = 〈x,φi〉 (2.10)

This formula is easily confirmed by substituting Eq. 2.9 into Eq. 2.10 and using the properties of an inner
product. Note that the exact element values of a given vector’s representation depends upon both the vector
and the choice of basis. Consequently, a meaningful specification of the representation of a vector must
include the definition of the basis.
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The mathematical representation of a vector (expressed by equations 2.9 and 2.10) can be expressed
geometrically. This expression is a generalization of the Cartesian representation of numbers. Perpendicular
axes are drawn; these axes correspond to the orthonormal basis vector used in the representation. A given
vector is representation as a point in the ”plane” with the value of the component along the φi axis being xi.

An important relationship follows from this mathematical representation of vectors. Let x and y be any
two vectors in a separable space. These vectors are represented with respect to an orthonormal basis by {xi}
and {yi}, respectively. The inner product 〈x,y〉 is related to these representations by:

〈x,y〉=
∞

∑
i=1

xiyi

This result is termed Parseval’s Theorem. Consequently, the inner product between any two vectors can be
computed from their representations. A special case of this result corresponds to the Cartesian notion of the
length of a vector; when x = y, Parseval’s relationship becomes:

‖x‖=

[
∞

∑
i=1

x2
i

]1/2

These two relationships are key results of the representation theorem. The implication is that any inner product
computed from vectors can also be computed from their representations. There are circumstances in which the
latter computation is more manageable than the former and, furthermore, of greater theoretical significance.

2.3.5 The Vector Space L2

Special attention needs to be paid to the vector space L2(Ti,Tf ): the collection of functions x(t) which are
square-integrable over the interval (Ti,Tf ): ∫ Tf

Ti

|x(t)|2 dt < ∞

An inner product can be defined for this space as:

〈x,y〉=
∫ Tf

Ti

x(t)y(t)dt (2.11)

Consistent with this definition, the length of the vector x(t) is given by

‖x‖=
[∫ Tf

Ti

|x(t)|2 dt
]1/2

Physically, ‖x‖2 can be related to the energy contained in the signal over (Ti,Tf ). This space is a Hilbert space.
If Ti and Tf are both finite, an orthonormal basis is easily found which spans it. For simplicity of notation, let
Ti = 0 and Tf = T . The set of functions defined by:

φ2i−1(t) =
(

2
T

)1/2

cos
2π(i−1)t

T

φ2i(t) =
(

2
T

)1/2

sin
2πit

T

(2.12)

is complete over the interval (0,T ) and therefore constitutes a basis for L2(0,T ). By demonstrating a basis,
we conclude that L2(0,T ) is a separable vector space. The representation of functions with respect to this
basis corresponds to the well-known Fourier series expansion of a function. As most functions require an
infinite number of terms in their Fourier series representation, this space is infinite dimensional.
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There also exist orthonormal sets of functions that do not constitute a basis. For example, the set {φi(t)}
defined by:

φi(t) =

{
1
T iT ≤ t < (i+1)T
0 otherwise

i = 0,1, . . .

over L2(0,∞). The members of this set are normal (unit norm) and are mutually orthogonal (no member
overlaps with any other). Consequently, this set is an orthonormal set. However, it does not constitute a basis
for L2(0,∞). Functions piecewise constant over intervals of length T are the only members of L2(0,∞) which
can be represented by this set. Other functions such as e−tu(t) cannot be represented by the {φi(t)} defined
above. Consequently, orthonormality of a set of functions does not guarantee completeness.

While L2(0,T ) is a separable space, examples can be given in which the representation of a vector in this
space is not precisely equal to the vector. More precisely, let x(t) ∈ L2(0,T ) and the set {φi(t)} be defined by
Eq. (2.12). The fact that {φi(t)} constitutes a basis for the space implies:∥∥∥∥∥x(t)−

∞

∑
i=1

xiφi(t)

∥∥∥∥∥= 0

where

xi =
∫ T

0
x(t)φi(t)dt .

In particular, let x(t) be:

x(t) =

{
1 0≤ t ≤ T/2
0 T/2 < t < T

Obviously, this function is an element of L2(0,T ). However, the representation of this function is not equal
to 1 at t = T/2. In fact, the peak error never decreases as more terms are taken in the representation. In the
special case of the Fourier series, the existence of this “error” is termed the Gibbs phenomenon. However, this
“error” has zero norm in L2(0,T ); consequently, the Fourier series expansion of this function is equal to the
function in the sense that the function and its expansion have zero distance between them. However, one of
the axioms of a valid inner product is that if ‖e‖= 0 =⇒ e = 0. The condition is satisfied, but the conclusion
does not seem to be valid. Apparently, valid elements of L2(0,T ) can be defined which are nonzero but have
zero norm. An example is

e =

{
1 t = T/2
0 otherwise

So as not to destroy the theory, the most common method of resolving the conflict is to weaken the definition
of equality. The essence of the problem is that while two vectors x and y can differ from each other and be
zero distance apart, the difference between them is “trivial”. This difference has zero norm which, in L2,
implies that the magnitude of (x− y) integrates to zero. Consequently, the vectors are essentially equal. This
notion of equality is usually written as x = y a.e. (x equals y almost everywhere). With this convention, we
have:

‖e‖= 0 =⇒ e = 0 a.e.

Consequently, the error between a vector and its representation is zero almost everywhere.
Weakening the notion of equality in this fashion might seem to compromise the utility of the theory. How-

ever, if one suspects that two vectors in an inner product space are equal (e.g., a vector and its representation),
it is quite difficult to prove that they are strictly equal (and as has been seen, this conclusion may not be valid).
Usually, proving they are equal almost everywhere is much easier. While this weaker notion of equality does
not imply strict equality, one can be assured that any difference between them is insignificant. The measure
of “significance” for a vector space is expressed by the definition of the norm for the space.
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2.3.6 A Hilbert Space for Stochastic Processes

The result of primary concern here is the construction of a Hilbert space for stochastic processes. The space
consisting of random variables X having a finite mean-square value is (almost) a Hilbert space with inner
product E[XY ]. Consequently, the distance between two random variables X and Y is

d(X ,Y ) =
{
E[(X−Y )2]

}1/2

Now d(X ,Y ) = 0 =⇒ E[(X−Y )2] = 0. However, this does not imply that X = Y . Those sets with probability
zero appear again. Consequently, we do not have a Hilbert space unless we agree X = Y means Pr[X =Y ] = 1.

Let X(t) be a process with E[X2(t)] < ∞. For each t, X(t) is an element of the Hilbert space just defined.
Parametrically, X(t) is therefore regarded as a “curve” in a Hilbert space. This curve is continuous if

lim
t→u

E[
(
X(t)−X(u)

)2] = 0

Processes satisfying this condition are said to be continuous in the quadratic mean. The vector space of
greatest importance is analogous to L2(Ti,Tf ) previously defined. Consider the collection of real-valued
stochastic processes X(t) for which ∫ Tf

Ti
E[X(t)2]dt < ∞

Stochastic processes in this collection are easily verified to constitute a linear vector space. Define an inner
product for this space as:

E[〈X(t),Y (t)〉] = E

[∫ Tf

Ti

X(t)Y (t)dt
]

While this equation is a valid inner product, the left-hand side will be used to denote the inner product
instead of the notation previously defined. We take 〈X(t),Y (t)〉 to be the time-domain inner product as in
Eq. (2.11). In this way, the deterministic portion of the inner product and the expected value portion are
explicitly indicated. This convention allows certain theoretical manipulations to be performed more easily.

One of the more interesting results of the theory of stochastic processes is that the normed vector space
for processes previously defined is separable. Consequently, there exists a complete (and, by assumption,
orthonormal) set {φi(t)}, i = 1, . . . of deterministic (nonrandom) functions which constitutes a basis. A process
in the space of stochastic processes can be represented as

X(t) =
∞

∑
i=1

Xiφi(t) , Ti ≤ t ≤ Tf ,

where {Xi}, the representation of X(t), is a sequence of random variables given by

Xi = 〈X(t),φi(t)〉 or Xi =
∫ Tf

Ti

X(t)φi(t)dt .

Strict equality between a process and its representation cannot be assured. Not only does the analogous
issue in L2(0,T ) occur with respect to representing individual sample functions, but also sample functions
assigned a zero probability of occurrence can be troublesome. In fact, the ensemble of any stochastic process
can be augmented by a set of sample functions that are not well-behaved (e.g., a sequence of impulses) but
have probability zero. In a practical sense, this augmentation is trivial: such members of the process cannot
occur. Therefore, one says that two processes X(t) and Y (t) are equal almost everywhere if the distance
between ‖X(t)−Y (t)‖ is zero. The implication is that any lack of strict equality between the processes (strict
equality means the processes match on a sample-function-by-sample-function basis) is “trivial”.
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2.3.7 Karhunen-Loève Expansion

The representation of the process, X(t), is the sequence of random variables Xi. The choice basis of {φi(t)}
is unrestricted. Of particular interest is to restrict the basis functions to those which make the {Xi} uncorre-
lated random variables. When this requirement is satisfied, the resulting representation of X(t) is termed the
Karhunen-Loève expansion. Mathematically, we require E[XiX j] = E[Xi]E[X j], i 6= j. This requirement can
be expressed in terms of the correlation function of X(t).

E[XiX j] = E

[∫ T

0
X(α)φi(α)dα

∫ T

0
X(β )φ j(β )dβ

]
=
∫ T

0

∫ T

0
φi(α)φ j(β )RX (α,β )dα dβ

As E[Xi] is given by

E[Xi] =
∫ T

0
mX (α)φi(α)dα ,

our requirement becomes∫ T

0

∫ T

0
φi(α)φ j(β )RX (α,β )dα dβ =

∫ T

0
mX (α)φi(α)dα

∫ T

0
mX (β )φ j(β )dβ , i 6= j .

Simple manipulations result in the expression∫ T

0
φi(α)

[∫ T

0
KX (α,β )φ j(β )dβ

]
dα = 0 , i 6= j .

When i = j, the quantity E[X2
i ]−E2[Xi] is just the variance of Xi. Our requirement is obtained by satisfying∫ T

0
φi(α)

[∫ T

0
KX (α,β )φ j(β )dβ

]
dα = λiδi j

or ∫ T

0
φi(α)g j(α)dα = 0 , i 6= j ,

where

g j(α) =
∫ T

0
KX (α,β )φ j(β )dβ .

Furthermore, this requirement must hold for each j which differs from the choice of i. A choice of a function
g j(α) satisfying this requirement is a function which is proportional to φ j(α): g j(α) = λ jφ j(α). Therefore,

∫ T

0
KX (α,β )φ j(β )dβ = λ jφ j(α) .

The {φi} which allow the representation of X(t) to be a sequence of uncorrelated random variables must
satisfy this integral equation. This type of equation occurs often in applied mathematics; it is termed the
eigenequation. The sequences {φi} and {λi} are the eigenfunctions and eigenvalues of KX (α,β ), the covari-
ance function of X(t). It is easily verified that:

KX (t,u) =
∞

∑
i=1

λiφi(t)φi(u)

This result is termed Mercer’s Theorem.
The approach to solving for the eigenfunction and eigenvalues of KX (t,u) is to convert the integral equa-

tion into an ordinary differential equation which can be solved. This approach is best illustrated by an exam-
ple.



Sec. 2.3 Linear Vector Spaces 27

Example
KX (t,u) = σ2 min(t,u). The eigenequation can be written in this case as

σ
2
[∫ t

0
uφ(u)du+ t

∫ T

t
φ(u)du

]
= λφ(t) .

Evaluating the first derivative of this expression,

σ
2tφ(t)+σ

2
∫ T

t
φ(u)du−σ

2tφ(t) = λ
dφ(t)

dt

or σ
2
∫ T

t
φ(u)du = λ

dφ

dt
.

Evaluating the derivative of the last expression yields the simple equation

−σ
2
φ(t) = λ

d2φ

dt2 .

This equation has a general solution of the form φ(t) = Asin σ√
λ

t + Bcos σ√
λ

t. It is easily seen that
B must be zero. The amplitude A is found by requiring ‖φ‖ = 1. To find λ , one must return to the
original integral equation. Substituting, we have

σ
2A
∫ t

0
usin

σ√
λ

udu+σ
2tA

∫ T

t
sin

σ√
λ

udu = λAsin
σ√
λ

t

After some manipulation, we find that

Aλ sin
σ√
λ

t−Aσt
√

λ cos
σ√
λ

T = λAsin
σ√
λ

t ∀t ∈ [0,T ) .

or Aσt
√

λ cos
σ√
λ

T = 0∀t ∈ [0,T ) .

Therefore, σ√
λ

T = (n−1/2)π , n = 1,2, . . . and we have

λn =
σ2T 2

(n−1/2)2π2

φn(t) =
(

2
T

)1/2

sin
(n−1/2)πt

T
.

The Karhunen-Loève expansion has several important properties.

• The eigenfunctions of a positive-definite covariance function constitute a complete set. One can easily
show that these eigenfunctions are also mutually orthogonal with respect to both the usual inner product
and with respect to the inner product derived from the covariance function.

• If X(t) Gaussian, Xi are Gaussian random variables. As the random variables {Xi} are uncorrelated and
Gaussian, the {Xi} comprise a sequence of statistically independent random variables.

• Assume KX (t,u) = N0
2 δ (t−u): the stochastic process X(t) is white. Then∫ N0

2
δ (t−u)φ(u)du = λφ(t)

for all φ(t). Consequently, if λi = N0/2 , this constraint equation is satisfied no matter what choice is
made for the orthonormal set {φi(t)}. Therefore, the representation of white, Gaussian processes con-
sists of a sequence of statistically independent, identically-distributed (mean zero and variance N0/2)
Gaussian random variables. This example constitutes the simplest case of the Karhunen-Loève expan-
sion.
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Problems
2.1 Space Exploration and MTV

Joe is an astronaut for project Pluto. The mission success or failure depends only on the behavior of
three major systems. Joe feels that the following assumptions are valid and apply to the performance of
the entire mission:

• The mission is a failure only if two or more major systems fail.
• System I, the Gronk system, fails with probability 0.1.
• System II, the Frab system, fails with probability 0.5 if at least one other system fails. If no other

system fails, the probability the Frab system fails is 0.1.
• System III, the beer cooler (obviously, the most important), fails with probability 0.5 if the Gronk

system fails. Otherwise the beer cooler cannot fail.

(a) What is the probability that the mission succeeds but that the beer cooler fails?
(b) What is the probability that all three systems fail?
(c) Given that more than one system failed, determine the probability that:

(i) The Gronk did not fail.
(ii) The beer cooler failed.

(iii) Both the Gronk and the Frab failed.
(d) About the time Joe was due back on Earth, you overhear a radio broadcast about Joe while watch-

ing MTV. You are not positive what the radio announcer said, but you decide that it is twice as
likely that you heard ”mission a success” as opposed to ”mission a failure”. What is the probability
that the Gronk failed?

2.2 Probability Density Functions?
Which of the following are probability density functions? Indicate your reasoning. For those that are
valid, what is the mean and variance of the random variable?

(a) pX (x) =
e−|x|

2
(b) pX (x) =

sin2πx
πx

(c) pX (x) =

{
1−|x| |x| ≤ 1
0 otherwise

(d) pX (x) =

{
1 |x| ≤ 1
0 otherwise

(e) pX (x) =
1
4

δ (x+1)+
1
2

δ (x)+
1
4

δ (x−1) (f) pX (x) =

{
e−(x−1) x≥ 1
0 otherwise

2.3 Generating Random Variables
A crucial skill in developing simulations of communication systems is random variable generation.
Most computers (and environments like MATLAB) have software that generates statistically indepen-
dent, uniformly distributed, random sequences. In MATLAB, the function is rand. We want to change
the probability distribution to one required by the problem at hand. One technique is known as the
distribution method.

(a) If PX (x) is the desired distribution, show that U = PX (X) (applying the distribution function to a
random variable having that distribution) is uniformly distributed over [0,1). This result means
that X = P−1

X (U) has the desired distribution. Consequently, to generate a random variable having
any distribution we want, we only need the inverse function of the distribution function.

(b) Why is the Gaussian not in the class of “nice” probability distribution functions?
(c) How would you generate random variables having the hyperbolic secant

pX (x) = (1/2)sech(πx/2), the Laplacian and the Cauchy densities?
(d) Write MATLAB functions that generate these random variables. Again use hist to plot the

probability function. What do you notice about these random variables?



Chap. 2 Problems 29

2.4 Cauchy Random Variables
The random variables X1 and X2 have the joint pdf

pX1,X2(x1,x2) =
1

π2
b1b2

(b2
1 + x2

1)(b
2
2 + x2

2)
,b1,b2 > 0 .

(a) Show that X1 and X2 are statistically independent random variables with Cauchy density functions.

(b) Show that ΦX1( jν) = e−b1|ν |.

(c) Define Y = X1 +X2. Determine pY (y).

(d) Let {Zi} be a set of N statistically independent Cauchy random variables with bi = b, i = 1, . . . ,N.
Define

Z =
1
N

N

∑
i=1

Zi.

Determine pZ(z). Is Z—the sample mean—a good estimate of the expected value E[Zi]?

2.5 The Correlation Coefficient
The random variables X , Y have the joint probability density pX ,Y (x,y). The correlation coefficient
ρX ,Y is defined to be

ρX ,Y ≡
E
[
(X−mX )(Y −my)

]
σX σY

.

(a) Using the Cauchy-Schwarz inequality, show that correlation coefficients always have a magnitude
less than to equal to one.

(b) We would like find an affine estimate of one random variable’s value from the other. So, if we
wanted to estimate X from Y , our estimate X̂ has the form X̂ = aY +b, where a, b are constants to
be found. Our criterion is the mean-squared estimation error: ε2 = E

[
(X̂ −X)2

]
. First of all, let

a = 0: we want to estimate X without using Y at all. Find the optimal value of b.

(c) Find the optimal values for both constants. Express your result using the correlation coefficient.

(d) What is the expected value of your estimate?

(e) What is the smallest possible mean-squared error? What influence does the correlation coefficient
have on the estimate’s accuracy?

2.6 Order Statistics
Let X1, . . . ,XN be independent, identically distributed random variables. The density of each random
variable is pX (x). The order statistics X0(1), ...,X0(N) of this set of random variables is the set that
results when the original one is ordered (sorted).

X0(1)≤ X0(2)≤ ...≤ X0(N)

(a) What is the joint density of the original set of random variables?

(b) What is the density of X0(N), the largest of the set?

(c) Show that the joint density of the ordered random variables is

pX0(1),...,X0(N)(x1, ...,xN) = N!pX (x1) · · · pX (xN)

(d) Consider a Poisson process having constant intensity λ0. N events are observed to occur in the
interval [0,T ). Show that the joint density of the times of occurrence W1, . . . ,WN is the same as the
order statistics of a set of random variables. Find the common density of these random variables.
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2.7 Estimating Characteristic Functions
Suppose you have a sequence of statistically independent, identically distributed random variables
X1, . . . ,XN . From these, we want to estimate the characteristic function of the underlying random vari-
able. One way to estimate it is to compute

Φ̂X ( jν) =
1
N

N

∑
n=1

e jνXn

(a) What is the expected value of the estimate?
(b) Does this estimate converge to the actual characteristic function? If yes, demonstrate how; if not,

why not?

2.8 Kullback-Leibler Distance
Calculate the Kullback-Leibler distance between the following pairs of densities. Use these results to
find the Fisher information for the mean parameter m.

(a) Jointly Gaussian random vectors having the same covariance matrix but dissimilar mean vectors.
(b) Two Poisson random variables having average rates λ0 and λ1. In this example, the observation

time T plays the role of the number of observations.
(c) Two sequences of statistically independent Laplacian random variables having the same variance

but different means.
(d) Deduce from these expressions what the Cramér-Rao bound is for the relevant example in each

case.
(e) Plot the Kullback-Leibler distances for the Laplacian case and for the Gaussian case of statistically

independent random variables. Set the variance equal to σ2 in each case and plot the distances as
a function of m/σ .

2.9 Nonlinearities and Processes
The Gaussian wide-sense stationary random process Xt , having mean zero and correlation function
RX (τ), is squared during signal processing: Yt = X2

t .

(a) Is Yt a wide-sense stationary process? Why or why not?
(b) What is the probability density of Yt?
(c) If it exists, find the power density spectrum of Yt .

2.10 Simple Processes
Determine the mean and correlation function of each of the processes Xt defined below.

(a) Xt is defined by the following equally likely sample functions.

Xt(ω1) = 1 Xt(ω3) = sinπt

Xt(ω2) =−2 Xt(ω4) = cosπt

(b) Xt is defined by Xt = cos(At + θ), where A and θ are statistically independent random variables.
θ is uniformly distributed over [0,2π) and A has the density function

pA(A) =
1

π(1+A2)

2.11 An Elementary Process
The joint density of the amplitudes of a stochastic process Xt at the specific times t = t1 and t = t2
(t2 > t1) is found to be

pXt1 ,Xt2
(x1,x2) =

{
constant x1 > x2 ,0 < x1,x2 < 1
0 otherwise

This joint density is found to be a valid joint density for Xt and Xu when |t−u|= |t2− t1|.
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(a) Find the correlation function RX (t,u) at the times t = t1 and u = t2.
(b) Find the expected value of Xt for all t.
(c) Is this process wide-sense stationary?

2.12 Correlation Functions and Power Spectra

(a) Which of the following are valid correlation functions? Indicate your reasoning.

(i) RX (τ) = e−|τ|− e−2|τ| (ii) RX (τ) =
5sin1000τ

τ

(iii) RX (τ) =

{
1− |τ|T |τ| ≤ T
0 otherwise

(iv) RX (τ) =

{
1 |τ| ≤ T
0 otherwise

(v) RX (τ) = δ (τ)+25 (vi) RX (τ) = δ (τ +1)+δ (τ)+δ (τ−1)

(b) Which of the following are valid power density spectra? Indicate your reasoning.

(i) SX ( f ) =
sinπ f

π f
(ii) SX ( f ) =

(
sinπ f

π f

)2

(iii) SX ( f ) = exp
{
− ( f − f0)2

4

}
(iv) SX ( f ) = e−| f |− e−2| f |

(v) SX ( f ) = 1+0.25e− j2π f (vi) SX ( f ) =

{
1 | f | ≤ 1/T
0 otherwise

2.13 Sampling Stochastic Processes

(a) Let Xt be a wide-sense stationary process bandlimited to W Hz. The sampling interval Ts satisfies
Ts ≤ 1

2W . What is the covariance of successive samples?
(b) Now let Xt be Gaussian. What conditions on Ts will insure that successive samples will be statis-

tically independent?
(c) Now assume the process is not strictly bandmilited to W Hz. This process serves as the input

to an ideal lowpass filter having cutoff frequency W to produce the process Yt . This output is
sampled every 1

2W seconds to yield an approximate representation Zt of the original signal Xt .
Show that the mean-squared value of the sampling error, defined to be ε2 = E[(Xt−Zt)2], is given
by ε2 = 2

∫
∞

W Sx( f )d f .

2.14 Estimating the Mean
Suppose you have stochastic process Yn produced by the depicted system. The input Wn is discrete-time
white noise (not necessarily Gaussian) having zero mean and correlation function RW (l) = σ2

W δ (l).
The system relating Xn to the white-noise input is governed by the difference equation

Xn = aXn−1 +Wn, |a|< 1 .

The quantity m is an unknown constant.

(a) Is the process Yn stationary? Why or why not?
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(b) What is the correlation function of Yn?
(c) We want to estimate the constant m by averaging Yn over a finite time interval: m̂ = 1

N ∑
N−1
n=0 Yn.

What is the expected value and variance of this estimate?

2.15 Estimating a Process’s Amplitude Distribution
Let Xn be a strict-sense stationary discrete-time random process. To estimate the process’s amplitude
distribution, we define a set of amplitude intervals Ai and compute the number of times the values of
the process falls within the interval. Using the indicator function notation,

IA(Xn) =

{
1 Xn ∈ A
0 Xn 6∈ A

the estimate of Pr[Xn ∈ A] is

P̂r[Xn ∈ A] =
1
N

N−1

∑
n=0

IA(Xn) .

(a) What is the probability distribution of this estimate when the process is white noise?
(b) Under what conditions does this estimate converge in the mean-square sense?

(c) What is the correlation coefficient between the estimates P̂r[Xn ∈ Ai] and P̂r[Xn ∈ A j], Ai∩A j = /0,
made from the same set of N observations?

2.16 A Non-Gaussian Process
Let {Xl} denote a sequence of independent, identically distributed random variables. This sequence
serves as the input to a discrete-time system having an input-output relationship given by the difference
equation

Yl = aYl−1 +Xl

(a) If Xl ∼N (0,σ2), find the probability density function of each element of the output sequence
{Yl}.

(b) Show that |ΦXl ( jν)| ≤ ΦXl ( j0) for all choices of ν no matter what the amplitude distribution of
Xl may be.

(c) If Xl is non-Gaussian, the computation of the probability density of Yl can be difficult. On the
other hand, if the density of Yl is known, the density of Xl can be found. How is the characteristic
function of Xl related to the characteristic function of Yl?

(d) Show that if Yl is uniformly distributed over [−1,1), the only allowed values of the parameter a
are those equalling 1/m, m =±2, ±3, ±4, . . . .

2.17 Random-Phase Sinusoids

(a) Show that necessary and sufficient conditions for the stochastic process Xt defined by Xt =
cos(2π f0t +θ) to be wide-sense stationary is that the characteristic function Φθ ( jν) satisfy

Φθ ( j1) = 0 = Φθ ( j2).

NOTE: f0 is a constant and is not a random variable.
(b) Let Xt = Acos(2π f0t)+Bsin(2π f0t), where A and B are random variables and f0 constant. Find

necessary and sufficient conditions for Xt to be wide-sense stationary.
(c) Consider the process defined by:

Xt = Acos(2π f0t)

where A is a random variable and f0 is a constant. Under what conditions is Xt wide-sense sta-
tionary?
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2.18 Properties of Correlation Functions

(a) Show that correlation and covariance functions have the following properties:
1. RX (t,u) = RX (u, t)
2. RX (τ) = RX (−τ)
3. K2

X (t,u)≤ KX (t, t) ·KX (u,u)
4. |KX (t,u)| ≤ 1

2 [KX (t, t)+KX (u,u)]
5. |RX (τ)| ≤ RX (0)

(b) Let Xt be a wide-sense stationary random process. If s(t) is a deterministic function and we define
Yt = Xt + s(t), what is the expected value and correlation function of Yt?

(c) Which of the following are valid correlation functions? Justify your answer.

1. RX (t,u) = e−(t−u)2

2. RX (t,u) = σ2 max(t,u)
3. RX (t,u) = e−(t−u)

4. RX (t,u) = cos t · cosu

2.19 Models for Process Generation
It is desired to generate a wide-sense stationary process with correlation function

RX (τ) = e−|τ|.

Two methods are proposed.

1. Let Xt = Acos(2πFt +θ) where A, F , and θ are statistically independent random variables.
2. Define Xt by:

Xt =
∫

∞

0
h(α)Nt−α dα

where Nt is white and h(t) is the impulse response of the appropriate filter.

(a) Find at least two impulse responses h(t) that will work in method 2.
(b) Specify the densities for A, F , θ in method 1 that yield the desired results.
(c) Sketch sample functions generated by each method. Interpret your result. What are the technical

differences between these processes?

2.20 One Model Fits all?
Let the stochastic process Xt be defined by

Xt = Acos(2πFt +θ)

where A, F , and θ are statistically independent random variables. The random variable θ is uniformly
distributed over the interval [−π,π). The densities of the other random variables are to be determined.

(a) Show that Xt is a wide-sense stationary process.
(b) Is Xt strict-sense stationary? Why or why not?
(c) The inventor of this process claims that Xt can have any correlation function one desires by ma-

nipulating the densities of A and F . Demonstrate the validity of this result and the requirements
these densities must satisfy.

(d) The inventor also claims that Xt can have any first-order density one desires so long as the desired
density is bounded. Show that this claim is also valid. Furthermore, show that the requirements
placed on the densities of A and F are consistent with those found in the previous part.
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(e) Could this process be fruitfully used in simulations to emulate a process having a specific cor-
relation function and first-order density? In other words, would statistics computed from the
simulation results be meaningful? Why or why not?

2.21 Multipath Models
Let Xt be a Gaussian random process with mean mX (t) and covariance function KX (t,u). The process
is passed through the depicted system.

YtXt -

6

+n
-

-

- Delay
τ

Gain
α

(a) Is Yt a Gaussian process? If so, compute the pdf of Yt .
(b) What are the mean and covariance functions of Yt?
(c) If Xt is stationary, is Yt stationary?
(d) Compute the cross-correlation function between Xt and Yt .

2.22 Nonlinear Processing of a Random Process
A stochastic process Xt is defined to be

Xt = cos(2πFt +θ)

where F and θ are statistically independent random variables. The quantity θ is uniformly distributed
over [−π,π) and F can assume one of the values 1, 2, or 3 with equal probability.

(a) Compute the mean and correlation function of Xt .
This process serves as the input to the following system.

Zt -
∫ t

t−1
(·)dt- ×n YtXt -

6

-Delay τ

Note: The signals are multiplied, not summed, at the node located just before the integrator. Yt
and Zt are related by

Yt =
∫ t

t−1
Zα dα

(b) Is the process Zt wide-sense stationary?
(c) What is the expected value and correlation function of Yt?

2.23 Processes and Differential Equations
The white process Xt serves as the input to a system having output Yt . The input-output relationship of
this system is determined by the differential equation

Ẏt +2Yt = Xt

(a) Find the mean and correlation function of Yt .
(b) Compute the cross-correlation function between Xt and Yt .
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(c) Show that the correlation function of Yt obeys a homogeneous version of the differential equation
governing the system for positive values of τ .

ṘY (τ)+2RY (τ) = 0 ,τ > 0

Do not use your answer to part (a) to work this part. Rather, show the validity of this result in a
more general fashion.

2.24 Joint Statistics of a Process and its Derivative
Let Xt be a wide-sense stationary stochastic process. Let Ẋt denote the derivative of Xt .

(a) Compute the expected value and correlation function of Ẋt in terms of the expected value and
correlation function of Xt .

(b) Under what conditions are Ẋt and Xt orthogonal? In other words, when does 〈Ẋ ,X〉 = 0 where
〈Ẋ ,X〉= E[ẊtXt ]?

(c) Compute the mean and correlation function of Yt = Xt − Ẋt .

(d) The bandwidth of the process Xt can be defined by

B2
X =

∫
∞

−∞

f 2SX ( f )d f∫
∞

−∞

SX ( f )d f

Express this definition in terms of the mean and correlation functions of Xt and Ẋt .

(e) The statistic U is used to count the average number of excursions of the stochastic process Xt
across the level Xt = A in the interval [0,T ]. One form of this statistic is

U =
1
T

∫ T

0

∣∣∣∣ d
dt

u(Xt −A)
∣∣∣∣dt

where u(·) denotes the unit step function. Find the expected value of U , using in your final
expression the formula for BX . Assume that the conditions found in part (b) are met and Xt is a
Gaussian process.

2.25 Independent Increment Processes
A stochastic process Xt is said to have stationary, independent increments if, for t1 < t2 < t3 < t4:

• The random variable Xt2 −Xt1 is statistically independent of the random variable Xt4 −Xt3 .

• The pdf of Xt2 −Xt1 is equal to the pdf of Xt2+T −Xt1+T for all t1, t2, T .

The process is identically equal to zero at t = 0 (Pr[X0 = 0] = 1).

(a) What is the expected value and variance of Xt1+t2?
Hint: Write Xt1+t2 = [Xt1+t2 −Xt1 ]+ [Xt1 −X0].

(b) Using the result of part (a), find expressions for E[Xt ] and var[Xt ].
(c) Define ΦXt ( jν) to be the characteristic function of the first-order density of the process Xt . Show

that this characteristic function must be of the form:

ΦXt ( jν) = et· f (ν)

where f (ν) is a conjugate-symmetric function of ν .

(d) Compute KX (t,u).
(e) The process Xt is passed through a linear, time-invariant filter having the transfer function H( f ) =

j2π f . Letting Yt denote the output, determine KY (t,u).
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2.26 Poisson Processes
Let Nt be a Poisson process with intensity λ (t).

(a) What is the expected value and variance of the number of events occurring in the time interval
[t,u)?

(b) Under what conditions is Nt a stationary, independent increment process?
(c) Compute RN(t,u).
(d) Assume that λ (t) = λ0, a constant. What is the conditional density pWn|Wn−1(wn|wn−1)? From this

relationship, find the density of τn, the time interval between Wn and Wn−1.

2.27 Optical Communications
In optical communication systems, a photomultiplier tube is used to convert the arrival of photons into
electric pulses so that each arrival can be counted by other electronics. Being overly clever, a clever Rice
engineer bought a photomultiplier tube from AGGIE PMT, Inc. The AGGIE PMT device is unreliable.
When it is working, each photon is properly converted to an electric pulse. When not working, it has
“dead-time” effects: the conversion of a photon arrival blocks out the conversion of the next photon.
After a photon arrival has been missed, the device converts the next arrival properly. To detect whether
the Aggie device is working properly or not, the clever Rice engineer decides to use results from a
statistical signal processing course he is taking to help him. A calibrated light source is used to give
an average arrival rate of λ photons/sec on the surface of the photomultiplier tube. Photon arrivals are
described by a Poisson process.

(a) Find the density of the time between electric pulses if the AGGIE device has these dead-time
effects.

(b) Can the times of occurrence of electric pulses be well-described by a Poisson process when the
dead-time effects are present? If so, find the parameters of the process; if not, state why.

(c) Assuming the device is as likely to not be working as it is to be working, find a procedure to
determine its mode of operation based on the observation of the time between two successive
electric pulses.

2.28 Warping the Time Axis
In this problem, assume that the process Xt has stationary, independent increments.

(a) Define Yt to be:
Yt = g(t) ·Xh(t)/g(t)

where g(t) and h(t) are deterministic functions and h(t)/g(t) is a strictly increasing function. Find
the mean and covariance functions of Yt .

(b) A stochastic process Xt is said to be a Markov process if, for t1 < t2 < ... < tn−1 < tn, the condi-
tional density of Xtn satisfies:

pXtn |Xt1 ,...,Xtn−1
(Xn|X1, ...,Xn−1) = pXtn |Xtn−1

(Xn|Xn−1).

Show that all independent-increment processes are Markov processes.

2.29 Mean-Square Continuity
Let Xt be a stochastic process with correlation function RX (t,u). Xt is said to be mean-square continuous
if

lim
t→u

E[(Xt −Xu)
2] = 0 , forall t,u .

(a) Show that Xt is mean-square continuous if and only if the correlation function RX (t,u) is contin-
uous at t = u.

(b) Show that if RX (t,u) is continuous at t = u, it is continuous for all t and u.
(c) Show that a zero-mean, independent-increment process with stationary increments is mean-square

continuous.
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(d) Show that a stationary Poisson process is mean-square continuous. Note that this process has no
continuous sample functions, but is continuous in the mean-square sense.

2.30 The Bispectrum
The idea of a correlation function can be extended to higher order moments. For example, the third
order “correlation” function R(3)

X (t1, t2, t3) of a random process Xt is defined to be

R(3)
X (t1, t2, t3) = E[Xt1Xt2 Xt3 ]

(a) Show that if Xt is strict-sense stationary, then the third-order correlation function depends only on
the time differences t2− t1 and t3− t1.

(b) Find the third-order correlation function of Xt = Acos(2π f0t + Θ), where Θ ∼U [−π,π) and A,
f0 are constants.

(c) Let Zt = Xt +Yt , where Xt is Gaussian, Yt is non-Gaussian, and Xt , Yt are statistically independent,
zero-mean processes. Find the third-order correlation function of Zt .

2.31 Martingales
A sequence of random variables X0,X1, . . . ,X`, . . . is said to be a martingale if the conditional expecta-
tion of the “present” value given the entire past satisfies

E[X`|X`−1,X`−2, . . . ,X0] = X`−1 .

(a) Show that the mean of a martingale is a constant. If X` is a zero-mean martingale having a possibly
time-varying variance σ2(`), show that its correlation function is given by

RX (k, `) = σ
2(min(k, `)

)
(b) Let X` = ∑

`
k=0 Wk, where Wk =±1 with equal probability and the sequence {Wk} is mean-square

independent: E[Wk|Wk−1, . . . ,W0] = E[Wk]. Show that X` is a martingale.
(c) An independent increments sequence has the property that first differences are independent ran-

dom variables. Thus, for X` to have independent increments, X`−X`−1 is statistically independent
of X`−1−X`−2. Show that if X` has independent increments, then X`−E[X`] is a martingale. Are
all martingales independent increment processes?

(d) The likelihood ratio is a very important quantity in statistical hypothesis testing and in detection
theory. In such problems, we are trying to decide if the data X0, . . . ,X` = X were produced by
probability law pX|M0(x|M0) or pX|M1(x|M1), where M0 and M1 describe alternative models
for the data generation process. The likelihood ratio is defined to be

ΛL(X)≡
pX|M1(x|M1)
pX|M0(x|M0)

.

Show that under model M0, ΛL(X) is a martingale.

2.32 Shot Noise
Shot noise is noise measured in vacuum tube circuits which is due to the spontaneous emission of
electrons from each tube’s cathode. The electron emission is assumed to be described as a stationary
Poisson process of intensity λ . The impact of each electron on a tube’s anode causes a current to flow
in the attached circuit equal to the impulse response of the circuit. Thus, shot noise is often modeled
as a sequence of impulses (whose times of occurrence are a Poisson process) passing through a linear,
time-invariant system.

(a) What is the correlation function of Xt?
Hint: Relate Xt to the counting process Nt .

(b) Show that for any wide-sense stationary process Xt for which limτ→∞ RX (τ) = 0, the mean of Xt
is zero. Use this result to show that if limτ→∞ RX (τ) exists, the value of the limit equals the square
of the mean of the process.
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(c) Find the power density spectrum of the shot noise process Yt .
(d) Evaluate the mean and variance of Yt .

2.33 Random Telegraph Wave
One form of the random telegraph wave Xt is derived from a stationary Poisson process N0,t having
constant event rate λ .

Xt =

{
+1 N0,t even
−1 N0,t odd

For t < 0, the process is undefined. N0,t denotes the number of events that have occurred in the interval
[0, t) and has a probability distribution given by

Pr[N0,t = n] =
(λ t)n

n!
e−λ t , t ≥ 0 .

Note that Pr[N0,0 = 0]≡ 1.

(a) What is the probability distribution of Xt?
(b) Find the mean and correlation function of Xt .
(c) Is this process wide-sense stationary? stationary in the stricter sense? Provide your reasoning.

2.34 Suppressing Noise
Noise reduction filters are used to reduce, as much as possible, the noise component of a noise-corrupted
signal. Let the signal of interest be described as a wide-sense stationary process Xt . The observed signal
is given by Yt = Xt +Nt , where Nt is a process modeling the noise that is statistically independent of the
signal.

(a) Assuming that the noise is white, find a relationship that the transfer function of the filter must
satisfy to maximize the signal-to-noise ratio (i.e., the ratio of the signal power to the noise power)
in the filtered output.

(b) Compute the resulting signal-to-noise ratio when the signal correlation function is

RX (τ) = σ
2e−a|τ|.

2.35 Analog Communication
The message Mt is to be transmitted using amplitude modulation. The transmitted signal has the form

Xt = (1+Mt)cos(2π f0t +Θ), f0 = constant,Θ∼U(−π,π]

The message is a wide-sense stationary Gaussian process having zero mean. It is bandlimited to W Hz
and statistically independent of the random phase Θ. A few technical details are not quite worked out. . .

(a) For technical reasons, the transmitter needs to clip the message so that it never exceeds 1 in
magnitude. What is the probability that the magnitude of Mt at a randomly chosen time exceeds
1? Express your answer in terms of the mean and correlation function of Mt .

(b) What is the power spectrum of Xt? Assume that the probability of clipping the message is negli-
gible.

(c) A standard receiver multiplies the incoming signal by a sinusoid having a frequency and phase
equal to that of the carrier, then passes the product through an ideal lowpass filter having a cutoff
frequency of W Hz. What is the power spectrum of the receiver’s output? Assume f0�W .
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2.36 Measuring Power Spectra
In practice, one often wants to measure the power density of a stochastic process. For the purposes of
this problem, assume the process Xt is wide-sense stationary, zero mean, and Gaussian. The following
measurement system is proposed.

1
2∆ f

1

H2( f )

−∆ f
f

∆ f

6

-

H1( f )

f
f0− f0

∆ f �-6

-

ZtY 2
tYtXt

---- H2( f )(·)2H1( f )

where H1( f ) is the transfer function of an ideal bandpass filter and H2( f ) is an ideal lowpass. Assume
that ∆ f is small compared to range of frequencies over which SX ( f ) varies.

(a) Find the mean and correlation function of Y 2
t in terms of the second-order statistics of Xt .

(b) Compute the power density spectrum of the process Zt .

(c) Compute the expected value of Zt .

(d) By considering the variance of Zt , comment on the accuracy of this measurement of the power
density of the process Xt .

2.37 Chemistry Experiments
A student in freshman chemistry lab is frustrated; an experiment is not going well and limited time
is available to perform the experiment again. The outcome of each experiment is a Gaussian random
variable X having a mean equal to the value being sought and variance σ2. The student decides to
average his experimental outcomes.

Yl =
1
l

l

∑
k=1

Xk , l = 1,2, . . .

Each outcome Xi is uncorrelated with all other outcomes X j, j 6= i.

(a) Find the mean and correlation function of the stochastic sequence Yl .

(b) Is Yl stationary? Indicate your reasoning.

(c) How large must n be to ensure that the probability of the relative error |(Yl−E[Yl ])/σ | being less
than 0.1 is 0.95?

2.38 Predicting the Stock Market
The price of a certain stock can fluctuate during the day while the true value is rising or falling. To
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facilitate financial decisions, a Wall Street broker decides to use stochastic process theory. The price Pt
of a stock is described by

Pt = Kt +Nt ,0≤ t < 1

where K is the constant our knowledgeable broker is seeking and Nt is a stochastic process describing
the random fluctuations. Nt is a white, Gaussian process having spectral height N0/2. The broker
decides to estimate K according to:

K̂ =
∫ 1

0
Ptg(t)dt

where the best function g(t) is to be found.

(a) Find the probability density function of the estimate K̂ for any g(t) the broker might choose.
(b) A simple-minded estimate of K is to use simple averaging (i.e., set g(t) = constant). Find the value

of this constant which results in E[K̂] = K. What is the resulting percentage error as expressed by√
var[K̂]/|E[K̂]|.

(c) Find g(t) which minimizes the percentage error and yields E[K̂] = K. How much better is this
optimum choice than simple averaging?

2.39 Is DC Present?
To determine the presence or absence of a constant voltage measured in the presence of additive, white
Gaussian noise (spectral height N0/2), an engineer decide to compute the average V̄ of the measured
voltage Vt .

V̄ =
1
T

∫ T

0
Vt dt

The value of the constant voltage, if present, is V0. The presence and absence of the voltage are equally
likely to occur.

(a) Derive a good method by which the engineer can use the average to determine the presence or
absence of the constant voltage.

(b) Determine the probability that the voltage is present when the engineer’s method announces it is.
(c) The engineer decides to improve the performance of his technique by computing the more com-

plicated quantity V given by

V =
∫ T

0
f (t)Vt dt

What function f (t) maximizes the probability found in part (b)?

2.40 Cross-Correlation Functions
Let Xt be a stationary, zero-mean random process that serves as the input to three linear, time-invariant
filters. The power density spectrum of Xt is SX ( f ) = N0/2. The impulse responses of the filters are

h1(t) =

{
1 0≤ t ≤ 1
0 otherwise

h2(t) =

{
2e−t t ≥ 0
0 otherwise

h3(t) =

{√
2sin2πt 0≤ t ≤ 2

0 otherwise

The output of filter i is denoted by Yi(t).

(a) Compute E[Yi(t)] and E[Y 2
i (t)] for i = 1,2,3.
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(b) Compute RXY2(t,u). Interpret your result.

(c) Is there any pair of processes for which E[Yi(t) ·Yj(t)] = 0 for all t?

(d) Is there any pair of processes for which E[Yi(t) ·Yj(u)] = 0 for all t and u?

2.41 Nonlinear Processing
A stationary, zero-mean Gaussian process is passed through a half-wave rectifier, which has an input-
output relationship given by

Yt =

{
Xt Xt ≥ 0
0 Xt < 0

In other words, the output equals the positive-valued amplitudes of the input and is zero otherwise.
YtXt

HWR
Xt

t

Yt

t

(a) What is the mean and variance of Yt? Express your answer in terms of the correlation function of
Xt .

(b) Is the output Yt a stationary process? Indicate why or why not.

(c) What is the cross-correlation function between input and output? Express your answer in terms
of the correlation function of Xt .

2.42 An impulse is associated with the occurrence of each event in a stationary Poisson process. This derived
process serves as the input to a linear, time-invariant filter having transfer function H( f ), which is given
by

H( f ) = 1− e− jπ f T + e− j2π f T ,T = constant .

(a) What is the mean and covariance function of the input to the filter?

(b) What is the mean and covariance function of the output of the filter?

(c) Now let the filter have any impulse response that has duration T (i.e., h(t) = 0, t < 0 and t > T ).
Find the impulse response that yields the smallest possible coefficient of variation v(t). The
coefficient of variation, defined to be the ratio of the process’s standard deviation to its mean at
time t, measures the percentage variation of a positive-valued process.

2.43 Linear Vector Spaces and Random Processes
Do the following classes of stochastic processes constitute a linear vector space? If so, indicate the
proof; if not, show why not.

1. All stochastic processes.

2. All wide-sense stationary processes.

3. All nonstationary stochastic processes.

2.44 Properties of Inner Products
Show that the inner product of two vectors satisfies the following relationships.

(a) |〈x,y〉| ≤ ‖x‖ · ‖y‖, the Schwarz inequality.

(b) ‖x+ y‖ ≤ ‖x‖+‖y‖, the triangle inequality.

(c) ‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2, the parallelogram equality.

(d) Find an expression for the inner product 〈x,y〉 using norms only.
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2.45 Creating an Inner Product
Let x and y be elements of a normed, linear vector space.

(a) Determine whether the following are valid inner products for the indicated space.
1. 〈x,y〉 = xtAy where A is a nonsingular, N×N matrix and x, y are elements of the space of

N-dimensional column matrices.
2. 〈x,y〉= xyt where x, y are elements of the space of N-dimensional column matrices.
3. 〈x,y〉=

∫ T
0 x(t)y(T − t)dt where x, y are finite-energy signals defined over [0,T ].

4. 〈x,y〉 =
∫ T

0 w(t)x(t)y(t)dt where w(t) is a non-negative function and x, y are finite-energy
signals defined over [0,T ].

5. E[XY ] where X and Y are real-valued random variables having finite mean-square values.
6. cov(X ,Y ), the covariance of the real-valued random variables X and Y . Assume that the

random variables have finite mean-square values.
(b) Under what conditions is ∫ T

0

∫ T

0
Q(t,u)x(t)y(u)dt du

a valid inner product for the set of finite-energy functions defined over [0,T ]?

2.46 Inner Products with Kernels
Let an inner product be defined with respect to the positive-definite, symmetric kernel Q.

〈x,y〉Q = xQy

where xQy is the abstract notation for the mapping of the two vectors to a scalar. For example, if x and
y are column matrices, Q is a positive-definite square matrix and

〈x,y〉Q = xtQy .

If x and y are defined in L2, then

〈x,y〉Q =
∫ ∫

x(t)Q(t,u)y(u)dt du.

Let v denote an eigenvector of Q: Qv = λv.

(a) Show that the eigenvectors of a positive-definite, symmetric kernel are orthogonal.

〈vi,v j〉= 0 , i 6= j .

(b) Show that these eigenvectors are orthogonal with respect to the inner product generated by Q.
Consequently, the eigenvectors are orthogonal with respect to two different inner products.

(c) Let Q̃ be the inverse kernel associated with Q. If Q is a matrix, then QQ̃ = I. If Q is a continuous-
time kernel, then ∫

Q(t,u)Q̃(u,v)du = δ (t− v) .

Show that the eigenvectors of the inverse kernel are equal to those of the kernel. How are the
associated eigenvalues of these kernels related to each other?

2.47 Karhunen-Loève Expansions
The purpose of this problem is to derive a general result which describes conditions for an orthonormal
basis to result in an uncorrelated representation of a process. Let X denote a stochastic process which
has the expansion

X =
∞

∑
i=1
〈X ,φi〉φi



Chap. 2 Problems 43

where {φi} denotes a complete, orthonormal basis with respect to the inner product 〈·, ·〉.

〈φi,φ j〉= δi j

The process X may be nonstationary and may have non-zero mean.

(a) To require that the representation be an uncorrelated sequence is equivalent to requiring:

E[〈X ,φi〉〈X ,φ j〉]−E[〈X ,φi〉]E[〈X ,φ j〉] = λiδi j

Show that this requirement implies:

E[X〈X−mX ,φi〉] = λiφi

where mX = E[X ].
(b) Let X be a finite-length stochastic sequence so that it can be considered a random vector. Define

the inner product 〈X ,Y 〉 to be XtY. Show that above equation is equivalent to

KXφφφ = λφφφ .

(c) Let X be a continuous parameter process so that

〈X ,Y 〉=
∫ T

0
XtYt dt

Show that this inner product implies∫ T

0
KX (t,u)φ(u)du = λφ(t).

(d) Again let X be a continuous parameter process. However, define the inner product to be

〈X ,Y 〉=
∫ T

0

∫ T

0
Q(t,u)XtYu dt du.

where Q(t,u) is a non-negative definite function. Find the equivalent relationship implied by the
requirements of the Karhunen-Love expansion. Under what conditions will the φs satisfying this
relationship not depend on the covariance function of X?

2.48 Calculating a Karhunen-Loève Expansion
Let the covariance function of a wide-sense stationary process be

KX (τ) =

{
1−|τ| |τ| ≤ 1
0 otherwise

Find the eigenfunctions and eigenvalues associated with the Karhunen-Love expansion of Xt over (0,T )
with T < 1.
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Chapter 3

Optimization Theory

OPTIMIZATION theory is the study of the extremal values of a function: its minima and maxima. Topics in
this theory range from conditions for the existence of a unique extremal value to methods—both analytic

and numeric—for finding the extremal values and for what values of the independent variables the function
attains its extremes. In this book, minimizing an error criterion is an essential step toward deriving optimal
signal processing algorithms. An appendix summarizing the key results of optimization theory is essential to
understand optimal algorithms.

3.1 Unconstrained Optimization
The simplest optimization problem is to find the minimum of a scalar-valued function of a scalar variable
f (x)—the so-called objective function—and where that minimum is located. Assuming the function is differ-
entiable, the well-known conditions for finding the minima—local and global—are∗

d f (x)
dx

= 0

d2 f (x)
dx2 > 0 .

All values of the independent variable x satisfying these relations are locations of local minima.
Without the second condition, solutions to the first could be either maxima, minima, or inflection points.

Solutions to the first equation are termed the stationary points of the objective function. To find the global
minimum—that value (or values) where the function achieves its smallest value—each candidate extremum
must be tested: the objective function must be evaluated at each stationary point and the smallest selected.
If, however, the objective function can be shown to be strictly convex, then only one solution of d f /dx = 0
exists and that solution corresponds to the global minimum. The function f (x) is strictly convex if, for any
choice of x1, x2, and the scalar a, f (ax1 +(1−a)x2) < a f (x1)+ (1− a) f (x2). Convex objective functions
occur often in practice and are more easily minimized because of this property.

When the objective function f (·) depends on a complex variable z, subtleties enter the picture. If the
function f (z) is differentiable, its extremes can be found in the obvious way: find the derivative, set it equal to
zero, and solve for the locations of the extrema. Of particular interest in signal processing are situations where
this function is not differentiable. In contrast to functions of a real variable, non-differentiable functions of a
complex variable occur frequently. The simplest example is f (z) = |z|2. The minimum value of this function
obviously occurs at the origin. To calculate this obvious answer, a complication arises: the function f (z) = z∗

is not analytic with respect to z and hence not differentiable. More generally, the derivative of a function with
respect to a complex-valued variable cannot be evaluated directly when the function depends on the variable’s
conjugate.
∗The maximum of a function is found by finding the minimum of its negative.

45
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This complication can be resolved with either of two methods tailored for optimization problems. The
first is to express the objective function in terms of the real and imaginary parts of z and find the function’s
minimum with respect to these two variables.† This approach is unnecessarily tedious but will yield the
solution. The second, more elegant, approach relies on two results from complex variable theory. First, the
quantities z and z∗ can be treated as independent variables, each considered a constant with respect to the other.
A variable and its conjugate are thus viewed as the result of applying an invertible linear transformation to the
variable’s real and imaginary parts. Thus, if the real and imaginary parts can be considered as independent
variables, so can the variable and its conjugate with the advantage that the mathematics is far simpler. In this
way, ∂ |z|2/∂ z = z∗ and ∂ |z|2/∂ z∗ = z. Seemingly, the next step to minimizing the objective function is to
set the derivatives with respect to each quantity to zero and then solve the resulting pair of equations. As the
following theorem suggests, that solution is overly complicated.

Theorem If the function f (z,z∗) is real-valued and analytic with respect to z and z∗, all stationary points can
be found by setting the derivative (in the sense just given) with respect to either z or z∗ to zero.

Thus, to find the minimum of |z|2, compute the derivative with respect to either z or z∗. In most cases, the
derivative with respect to z∗ is the most convenient choice.∗ Thus, ∂ (|z|2)/∂ z∗ = z and the stationary point is
z = 0. As this objective function is strictly convex, the objective function’s sole stationary point is its global
minimum.

When the objective function depends on a vector-valued quantity x, the evaluation of the function’s sta-
tionary points is a simple extension of the scalar-variable case. However, testing stationary points as possible
locations for minima is more complicated. The gradient of the scalar-valued function f (x) of a vector x
(dimension N) equals an N-dimensional vector where each component is the partial derivative of f (·) with
respect to each component of x.

∇x f (x) = col
[

∂ f (x)
∂x1

· · · ∂ f (x)
∂xN

]
.

For example, the gradient of xtAx is Ax+Atx. This result is easily derived by expressing the quadratic form
as a double sum (∑i j Ai jxix j) and evaluating the partials directly. When A is symmetric, which is often the
case, this gradient becomes 2Ax.

The gradient “points” in the direction of the maximum rate of increase of the function f (·). This fact
is often used in numerical optimization algorithms. The method of steepest descent is an iterative algorithm
where a candidate minimum is augmented by a quantity proportional to the negative of the objective function’s
gradient to yield the next candidate.

xk = xk−1−α ∇x f (x), α > 0

If the objective function is sufficiently “smooth” (there aren’t too many minima and maxima), this approach
will yield the global minimum. Strictly convex functions are certainly smooth for this method to work.

The gradient of the gradient of f (x), denoted by ∇
2
x f (x), is a matrix where jth column is the gradient of

the jth component of f ’s gradient. This quantity is known as the Hessian, defined to be the matrix of all the
second partials of f (·). [

∇
2
x f (x)

]
i j =

∂ 2 f (x)
∂xi∂x j

The Hessian is always a symmetric matrix.
The minima of the objective function f (x) occur when

∇x f (x) = 0 and ∇
2
x f (x) > 0, i.e., positive definite.

†The multi-variate minimization problem is discussed in a few paragraphs.
∗Why should this be? In the next few examples, try both and see which you feel is “easier”.
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Thus, for a stationary point to be a minimum, the Hessian evaluated at that point must be a positive definite
matrix. When the objective function is strictly convex, this test need not be performed. For example, the
objective function f (x) = xtAx is convex whenever A is positive definite and symmetric.†

When the independent vector is complex-valued, the issues discussed in the scalar case also arise. Because
of the complex-valued quantities involved, how to evaluate the gradient becomes an issue: is ∇z or ∇z∗ more
appropriate? In contrast to the case of complex scalars, the choice in the case of complex vectors is unique.

Theorem Let f (z,z∗) be a real-valued function of the vector-valued complex variable z where the dependence
on the variable and its conjugate is explicit. By treating z and z∗ as independent variables, the quantity pointing
in the direction of the maximum rate of change of f (z,z∗) is ∇z∗ f (z).

To show this result, consider the variation of f given by

δ f = ∑
i

(
∂ f
∂ zi

δ zi +
∂ f
∂ z∗i

δ z∗i

)
= (∇z f )t

δz+(∇z∗ f )t
δz∗

This quantity is concisely expressed as δ f = 2Re
[
(∇z∗ f )′ δz

]
. By the Schwarz inequality, the maximum

value of this variation occurs when δz is in the same direction as (∇z∗ f ). Thus, the direction corresponding
to the largest change in the quantity f (z,z∗) is in the direction of its gradient with respect to z∗. To implement
the method of steepest descent, for example, the gradient with respect to the conjugate must be used.

To find the stationary points of a scalar-valued function of a complex-valued vector, we must solve

∇z∗ f (z) = 0 . (3.1)

For solutions of this equation to be minima, the Hessian defined to be the matrix of mixed partials given by
∇z (∇z∗ f (z)) must be positive definite. For example, the required gradient of the objective function z′Az is
given by Az, implying for positive definite A that a stationary point is z = 0. The Hessian of the objective
function is simply A, confirming that the minimum of a quadratic form is always the origin.

3.2 Constrained Optimization
Constrained optimization is the minimization of an objective function subject to constraints on the possible
values of the independent variable. Constraints can be either equality constraints or inequality constraints.
Because the scalar-variable case follows easily from the vector one, only the latter is discussed in detail here.

3.2.1 Equality Constraints

The typical constrained optimization problem has the form

min
x

f (x) subject to g(x) = 0 ,

where f (·) is the scalar-valued objective function and g(·) is the vector-valued constraint function. Strict
convexity of the objective function is not sufficient to guarantee a unique minimum; in addition, each com-
ponent of the constraint must be strictly convex to guarantee that the problem has a unique solution. Because
of the constraint, stationary points of f (·) alone may not be solutions to the constrained problem: they may
not satisfy the constraints. In fact, solutions to the constrained problem are often not stationary points of the
objective function. Consequently, the ad hoc technique of searching for all stationary points of the objective
function that also satisfy the constraint do not work.

The classical approach to solving constrained optimization problems is the method of Lagrange multipli-
ers. This approach converts the constrained optimization problem into an unconstrained one, thereby allowing

†Note that the Hessian of xt Ax is 2A.
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Figure 3.1: The thick line corresponds to the contour of the val-
ues of x satisfying the constraint equation g(x) = 0. The thinner
lines are contours of constant values of the objective function
f (x). The contour corresponding to the smallest value of the
objective function just tangent to the constraint contour is the
solution to the optimization problem with equality constraints.

g(x)=0

use of the techniques described in the previous section. The Lagrangian of a constrained optimization prob-
lem is defined to be the scalar-valued function

L(x,λλλ ) = f (x)+λλλ
tg(x).

Essentially, the following theorem states that stationary points of the Lagrangian are potential solutions of
the constrained optimization problem: as always, each candidate solution must be tested to determine which
minimizes the objective function.

Theorem Let x� denote a local solution to the constrained optimization problem given above where the
gradients ∇x g1(x), . . . ,∇x gM(x) of the constraint function’s components are linearly independent. There
then exists a unique vector λλλ � such that

∇x L(x�,λλλ �) = 0 .

Furthermore, the quadratic form yt
[
∇

2
x L(x�,λλλ �)

]
y is non-negative for all y satisfying [∇x g(x)]t y = 0.

The latter result in the theorem says that the Hessian of the Lagrangian evaluated at its stationary points is
non-negative definite with respect to all vectors “orthogonal” to the gradient of the constraint. This result
generalizes the notion of a positive definite Hessian in unconstrained problems.

The rather abstract result of the preceding theorem has a simple geometric interpretation. As shown in
Fig. 3.1, the constraint corresponds to a contour in the x plane. A “contour map” of the objective function
indicates those values of x for which f (x) = c. In this figure, as c becomes smaller, the contours shrink
to a small circle in the center of the figure. The solution to the constrained optimization problem occurs
when the smallest value of c is chosen for which the contour just touches the constraint contour. At that
point, the gradient of the objective function and of the constraint contour are proportional to each other.
This proportionality vector is λλλ �, the so-called Lagrange multiplier. The Lagrange multiplier’s exact value
must be such that the constraint is exactly satisfied. Note that the constraint can be tangent to the objective
function’s contour map for larger values of c. These potential, but erroneous, solutions can be discarded only
by evaluating the objective function.

Example
A typical problem arising in signal processing is to minimize xtAx subject to the linear constraint
ctx = 1. A is a positive definite, symmetric matrix (a correlation matrix) in most problems. Clearly,
the minimum of the objective function occurs at x = 0, but his solution cannot satisfy the constraint.
The constraint g(x) = ctx− 1 is a scalar-valued one; hence the theorem of Lagrange applies as there
are no multiple components in the constraint forcing a check of linear independence. The Lagrangian
is

L(x,λ ) = xtAx+λ (ctx−1) .

Its gradient is 2Ax + λc with a solution x� = −λ�A−1c/2. To find the value of the Lagrange mul-
tiplier, this solution must satisfy the constraint. Imposing the constraint, λ�ctA−1c = −2; thus,
λ� =−2/(ctA−1c) and the total solution is

x� =
A−1c

ctA−1c
.
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When the independent variable is complex-valued, the Lagrange multiplier technique can be used if care is
taken to make the Lagrangian real. If it is not real, we cannot use the theorem {47} that permits computation
of stationary points by computing the gradient with respect to z∗ alone. The Lagrangian may not be real-
valued even when the constraint is real. Once insured real, the gradient of the Lagrangian with respect to the
conjugate of the independent vector can be evaluated and the minimization procedure remains as before.

Example
Consider slight variations to the previous example: let the vector z be complex so that the objective
function is z′Az where A is a positive definite, Hermitian matrix and let the constraint be linear, but
vector-valued (Cz = c). The Lagrangian is formed from the objective function and the real part of the
usual constraint term.

L(z,λλλ ) = z′Az+λλλ
′ (Cz− c)+λλλ

t (C∗z∗− c∗)

For the Lagrange multiplier theorem to hold, the gradients of each component of the constraint must
be linearly independent. As these gradients are the columns of C, their mutual linear independence
means that each constraint vector must not be expressible as a linear combination of the others. We
shall assume this portion of the problem statement true. Evaluating the gradient with respect to z∗,
keeping z a constant, and setting the result equal to zero yields

Az�+C′λλλ � = 0 .

The solution is z� is −A−1C′λλλ �. Applying the constraint, we find that CA−1C′λλλ � =−c. Solving for
the Lagrange multiplier and substituting the result into the solution, we find that the solution to the
constrained optimization problem is

z� = A−1C′
(
CA−1C′

)−1 c .

The indicated matrix inverses always exist: A is assumed invertible and CA−1C′ is invertible because
of the linear independence of the constraints.

3.2.2 Inequality Constraints

When some of the constraints are inequalities, the Lagrange multiplier technique can be used, but the solution
must be checked carefully in its details. But first, the optimization problem with equality and inequality
constraints is formulated as

min
x

f (x) subject to g(x) = 0 and h(x)≤ 0 .

As before, f (·) is the scalar-valued objective function and g(·) is the equality constraint function; h(·) is the
inequality constraint function.

The key result which can be used to find the analytic solution to this problem is to first form the Lagrangian
in the usual way as L(x,λλλ ,µµµ) = f (x)+λλλ tg(x)+µµµ th(x). The following theorem is the general statement of
the Lagrange multiplier technique for constrained optimization problems.

Theorem Let x� be a local minimum for the constrained optimization problem. If the gradients of g’s
components and the gradients of those components of h(·) for which hi(x�) = 0 are linearly independent,
then

∇x L(x�,λλλ �,µµµ�) = 0,

where µ�i ≥ 0 and µ�i hi(x�) = 0.
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The portion of this result dealing with the inequality constraint differs substantially from that concerned with
the equality constraint. Either a component of the constraint equals its maximum value (zero in this case)
and the corresponding component of its Lagrange multiplier is non-negative (and is usually positive) or a
component is less than the constraint and its component of the Lagrange multiplier is zero. This latter result
means that some components of the inequality constraint are not as stringent as others and these lax ones do
not affect the solution.

The rationale behind this theorem is a technique for converting the inequality constraint into an equality
constraint: hi(x) ≤ 0 is equivalent to hi(x) + s2

i = 0. Since the new term, called a slack variable, is non-
negative, the constraint must be non-positive. With the inclusion of slack variables, the equality constraint
theorem can be used and the above theorem results. To prove the theorem, not only does the gradient with
respect to x need to be considered, but also with respect to the vector s of slack variables. The ith component
of the gradient of the Lagrangian with respect to s at the stationary point is 2µ�i s�i = 0. If in solving the opti-
mization problem, s�i = 0, the inequality constraint was in reality an equality constraint and that component of
the constraint behaves accordingly. As si = [−hi(x)]1/2, si = 0 implies that that component of the inequality
constraint must equal zero. On the other hand, if si 6= 0, the corresponding Lagrange multiplier must be zero.

Example
Consider the problem of minimizing a quadratic form subject to a linear equality constraint and an
inequality constraint on the norm of the linear constraint vector’s variation.

min
x

xtAx subject to (c+δδδ )tx = 1 and ‖δδδ‖2 ≤ ε

This kind of problem arises in robust estimation. One seeks a solution where one of the “knowns” of
the problem, c in this case, is, in reality, only approximately specified. The independent variables are
x and δδδ . The Lagrangian for this problem is

L({x,δδδ},λ ,µ) = xtAx+λ
[
(c+δδδ )tx−1

]
+ µ

[
‖δδδ‖2− ε

]
.

Evaluating the gradients with respect to the independent variables yields

2Ax�+λ
�(c+δδδ

�) = 0
λ
�x�+2µ

�
δδδ
� = 0

The latter equation is key. Recall that either µ� = 0 or the inequality constraint is satisfied with
equality. If µ� is zero, that implies that x� must be zero which will not allow the equality constraint
to be satisfied. The inescapable conclusion is that ‖δδδ �‖2 = ε and that δδδ � is parallel to x�: δδδ � =
−(λ �/2µ�)x�. Using the first equation, x� is found to be

x� =−λ �

2

(
A− λ �2

4µ�
I

)−1

c.

Imposing the constraints on this solution results in a pair of equations for the Lagrange multipliers.(
λ �2

4µ�

)2

ct

[
A− λ �2

4µ�
I

]−2

c = ε

ct

[
A− λ �2

4µ�
I

]−1

c =− 2
λ �
− 4εµ�

λ �2

Multiple solutions are possible and each must be checked. The rather complicated completion of this
example is left to the (numerically oriented) reader.
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Problems
3.1 Minumum Variance Estimators

The minumum-variance estimator is an example of how constrained optimization theory can be used
to derive a “non-standard” estimation procedure. The observations X consist of a deterministic signal
s corrupted by noise. The standard framework involves estimating the unit-sample response h of the
optimal FIR linear filter that will pass the signal with unity gain while minimizing the power of the
filtered observations. Cast as a constrained optimization problem,

min
h

E
[(

h′X
)2
]

subject to h′s = 1

(a) Find the optimal filter that solves this problem.
(b) Find the variance (power) when this estimator is used.
(c) This result has applications in spectral estimation when we want to estimate the power

spectrum of a stochastic sequence at a particular frequency f . Here the “signal” is
s = col

{
1,e j2π f ,e j2π2 f , . . . ,e j2π(N−1) f

}
, where N = dim(s). What is the minimum variance spec-

tral estimator?
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Chapter 4

Estimation Theory

IN searching for methods of extracting information from noisy observations, this chapter describes estima-
tion theory, which has the goal of extracting from noise-corrupted observations the values of disturbance

parameters (noise variance, for example), signal parameters (amplitude or propagation direction), or signal
waveforms. Estimation theory assumes that the observations contain an information-bearing quantity, thereby
tacitly assuming that detection-based preprocessing has been performed (in other words, do I have something
in the observations worth estimating?). Conversely, detection theory often requires estimation of unknown
parameters: Signal presence is assumed, parameter estimates are incorporated into the detection statistic, and
consistency of observations and assumptions tested. Consequently, detection and estimation theory form a
symbiotic relationship, each requiring the other to yield high-quality signal processing algorithms.

Despite a wide variety of error criteria and problem frameworks, the optimal detector is characterized
by a single result: the likelihood ratio test. Surprisingly, optimal detectors thus derived are usually easy
to implement, not often requiring simplification to obtain a feasible realization in hardware or software. In
contrast to detection theory, no fundamental result in estimation theory exists to be summoned to attack
the problem at hand. The choice of error criterion and its optimization heavily influences the form of the
estimation procedure. Because of the variety of criterion-dependent estimators, arguments frequently rage
about which of several optimal estimators is “better.” Each procedure is optimum for its assumed error
criterion; thus, the argument becomes which error criterion best describes some intuitive notion of quality.
When more ad hoc, noncriterion-based procedures∗ are used, we cannot assess the quality of the resulting
estimator relative to the best achievable. As shown later, bounds on the estimation error do exist, but their
tightness and applicability to a given situation are always issues in assessing estimator quality. At best,
estimation theory is less structured than detection theory. Detection is science, estimation art. Inventiveness
coupled with an understanding of the problem (what types of errors are critically important, for example) are
key elements to deciding which estimation procedure “fits” a given problem well.

4.1 Terminology in Estimation Theory
More so than detection theory, estimation theory relies on jargon to characterize the properties of estimators.
Without knowing any estimation technique, let’s use parameter estimation as our discussion prototype. The
parameter estimation problem is to determine from a set of L observations, represented by the L-dimensional
vector X, the values of parameters denoted by the vector θθθ . We write the estimate of this parameter vector
as θ̂θθ(X), where the “hat” denotes the estimate, and the functional dependence on X explicitly denotes the
dependence of the estimate on the observations. This dependence is always present,† but we frequently denote
the estimate compactly as θ̂θθ . Because of the probabilistic nature of the problems considered in this chapter,
a parameter estimate is itself a random vector, having its own statistical characteristics. The estimation error
∗This governmentese phrase concisely means guessing.
†Estimating the value of a parameter given no data may be an interesting problem in clairvoyance, but not in estimation theory.

53



54 Estimation Theory Chap. 4

εεε(X) equals the estimate minus the actual parameter value: εεε(X) = θ̂θθ(X)−θθθ . It too is a random quantity and
is often used in the criterion function. For example, the mean-squared error is given by E[εεε tεεε]; the minimum
mean-squared error estimate would minimize this quantity. The mean-squared error matrix is E[εεεεεε t ]; on the
main diagonal, its entries are the mean-squared estimation errors for each component of the parameter vector,
whereas the off-diagonal terms express the correlation between the errors. The mean-squared estimation error
E[εεε tεεε] equals the trace of the mean-squared error matrix tr{E[εεεεεε t ]}.
Bias. An estimate is said to be unbiased if the expected value of the estimate equals the true value of the
parameter: E[θ̂θθ |θθθ ] = θθθ . Otherwise, the estimate is said to be biased: E[θ̂θθ |θθθ ] 6= θθθ . The bias b(θθθ) is usually
considered to be additive, so that b(θθθ) = E[θ̂θθ |θθθ ]−θθθ . When we have a biased estimate, the bias usually
depends on the number of observations L. An estimate is said to be asymptotically unbiased if the bias tends
to zero for large L: limL→∞ b = 0. An estimate’s variance equals the mean-squared estimation error only if
the estimate is unbiased.

An unbiased estimate has a probability distribution where the mean equals the actual value of the param-
eter. Should the lack of bias be considered a desirable property? If many unbiased estimates are computed
from statistically independent sets of observations having the same parameter value, the average of these es-
timates will be close to this value. This property does not mean that the estimate has less error than a biased
one; there exist biased estimates whose mean-squared errors are smaller than unbiased ones. In such cases,
the biased estimate is usually asymptotically unbiased. Lack of bias is good, but that is just one aspect of how
we evaluate estimators.

Consistency. We term an estimate consistent if the mean-squared estimation error tends to zero as the
number of observations becomes large: limL→∞ E[εεε tεεε] = 0. Thus, a consistent estimate must be at least
asymptotically unbiased. Unbiased estimates do exist whose errors never diminish as more data are collected:
Their variances remain nonzero no matter how much data are available. Inconsistent estimates may provide
reasonable estimates when the amount of data is limited, but have the counterintuitive property that the quality
of the estimate does not improve as the number of observations increases. Although appropriate in the proper
circumstances (smaller mean-squared error than a consistent estimate over a pertinent range of values of L),
consistent estimates are usually favored in practice.

Efficiency. As estimators can be derived in a variety of ways, their error characteristics must always be
analyzed and compared. In practice, many problems and the estimators derived for them are sufficiently
complicated to render analytic studies of the errors difficult, if not impossible. Instead, numerical simulation
and comparison with lower bounds on the estimation error are frequently used instead to assess the estimator
performance. An efficient estimate has a mean-squared error that equals a particular lower bound: the Cramér-
Rao bound. If an efficient estimate exists (the Cramér-Rao bound is the greatest lower bound), it is optimum
in the mean-squared sense: No other estimate has a smaller mean-squared error (see §4.2.3 {61} for details).

For many problems no efficient estimate exists. In such cases, the Cramér-Rao bound remains a lower
bound, but its value is smaller than that achievable by any estimator. How much smaller is usually not
known. However, practitioners frequently use the Cramér-Rao bound in comparisons with numerical error
calculations. Another issue is the choice of mean-squared error as the estimation criterion; it may not suffice
to pointedly assess estimator performance in a particular problem. Nevertheless, every problem is usually
subjected to a Cramér-Rao bound computation and the existence of an efficient estimate considered.

4.2 Parameter Estimation
Determining signal parameter values or a probability distribution’s parameters are the simplest estimation
problems. Their fundamental utility in signal processing is unquestioned. How do we estimate noise power?
What is the best estimator of signal amplitude? Examination of useful estimators, and evaluation of their
properties and performances constitute a case study of estimation problems. As expected, many of these
issues are interrelated and serve to highlight the intricacies that arise in estimation theory.

All parameters of concern here have unknown values; we classify parameter estimation problems accord-
ing to whether the parameter is stochastic or not. If so, then the parameter has a probability density known as
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the prior density (one that applies before the data become available). Choosing the prior, as we have said so
often, narrows the problem considerably, suggesting that measurement of the parameter’s density would yield
something like what was assumed! Said another way, if a prior is not chosen from fundamental considerations
(such as the physics of the problem) but from ad hoc assumptions, the results could tend to resemble the as-
sumptions you placed on the problem. On the other hand, if the density is not known, the parameter is termed
“nonrandom,” and its values range unrestricted over some interval. The resulting nonrandom-parameter es-
timation problem differs greatly from the random-parameter problem. We consider first the latter problem,
letting θ be a scalar parameter having the prior density pθ (θ). The impact of the a priori density becomes
evident as various error criteria are established, and an “optimum” estimator is derived.

4.2.1 Minimum Mean-Squared Error Estimators

In terms of the densities involved in scalar random-parameter problems, the mean-squared error is given by

E[ε2] =
∫ ∫

(θ − θ̂)2 pX,θ (x,θ)dxdθ

where pX,θ (X,θ) is the joint density of the observations and the parameter. To minimize this integral with
respect to θ̂ , we rewrite it using the laws of conditional probability as

E[ε2] =
∫

pX(x)
(∫

[θ − θ̂(X)]2 pθ |X(θ |x)dθ

)
dx

The density pX(·) is nonnegative. To minimize the mean-squared error, we must minimize the inner integral
for each value of X because the integral is weighted by a positive quantity. We focus attention on the inner
integral, which is the conditional expected value of the squared estimation error. The condition, a fixed value
of X, implies that we seek that constant θ̂(X) derived from X that minimizes the second moment of the
random parameter θ . A well-known result from probability theory states that the minimum of E[(X − c)2]
occurs when the constant c equals the expected value of the random variable X (see §2.1.4 {5}). The inner
integral and thereby the mean-squared error is minimized by choosing the estimator to be the conditional
expected value of the parameter given the observations.

θ̂MMSE(X) = E[θ |X]

Thus, a parameter’s minimum mean-squared error (MMSE ) estimate is the parameter’s a posteriori (after the
observations have been obtained) expected value.

The associated conditional probability density pθ |X(θ |X) is not often directly stated in a problem defini-
tion and must somehow be derived. In many applications, the likelihood function pX|θ (X|θ) and the a priori
density of the parameter are a direct consequence of the problem statement. These densities can be used to
find the joint density of the observations and the parameter, enabling us to use Bayes’s Rule to find the a
posteriori density if we knew the unconditional probability density of the observations.

pθ |X(θ |X) =
pX|θ (X|θ)pθ (θ)

pX(X)

This density pX(X) is often difficult to determine. Be that as it may, to find the a posteriori conditional
expected value, it need not be known. The numerator entirely expresses the a posteriori density’s dependence
on θ ; the denominator only serves as the scaling factor to yield a unit-area quantity. The expected value
is the center-of-mass of the probability density and does not depend directly on the “weight” of the density,
bypassing calculation of the scaling factor. If not, the MMSE estimate can be exceedingly difficult to compute.

Example
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Let L statistically independent observations be obtained, each of which is expressed by X(`) = θ +
N(`). Each N(`) is a Gaussian random variable having zero mean and variance σ2

N . Thus, the unknown
parameter in this problem is the mean of the observations. Assume it to be a Gaussian random variable
a priori (mean mθ and variance σ2

θ
). The likelihood function is easily found to be

pX|θ (X|θ) =
L−1

∏
`=0

1√
2πσ2

N

exp

{
−1

2

(
X(`)−θ

σN

)2
}

so that the a posteriori density is given by

pθ |X(θ |X) =

1√
2πσ2

θ

exp

{
−1

2

(
θ −mθ

σθ

)2
}

L−1

∏
`=0

1√
2πσ2

N

exp

{
−1

2

(
X(`)−θ

σN

)2
}

pX(X)

In an attempt to find the expected value of this distribution, lump all terms that do not depend explicitly
on the quantity θ into a proportionality term.

pθ |X(θ |X) ∝ exp
{
−1

2

[
∑(X(`)−θ)2

σ2
N

+
(θ −mθ )2

σ2
θ

]}
After some manipulation, this expression can be written as

pθ |X(θ |X) ∝ exp

{
− 1

2σ2

[
θ −σ

2
(

mθ

σ2
θ

+ ∑X(`)
σ2

N

)]2
}

where σ2 is a quantity that succinctly expresses the ratio σ2
Nσ2

θ
/(σ2

N + Lσ2
θ
). The form of the a

posteriori density suggests that it too is Gaussian; its mean, and therefore the MMSE estimate of θ ,
is given by

θ̂MMSE(X) = σ
2
(

mθ

σ2
θ

+ ∑X(`)
σ2

N

)
More insight into the nature of this estimate is gained by rewriting it as

θ̂MMSE(X) =
σ2

N/L
σ2

θ
+σ2

N/L
mθ +

σ2
θ

σ2
θ

+σ2
N/L
· 1

L

L−1

∑
`=0

X(`)

The term σ2
N/L is the variance of the averaged observations for a given value of θ ; it expresses the

squared error encountered in estimating the mean by simple averaging. If this error is much greater
than the a priori variance of θ (σ2

N/L� σ2
θ

), implying that the observations are noisier than the
variation of the parameter, the MMSE estimate ignores the observations and tends to yield the a priori
mean mθ as its value. If the averaged observations are less variable than the parameter, the second
term dominates, and the average of the observations is the estimate’s value. This estimate behavior
between these extremes is very intuitive. The detailed form of the estimate indicates how the squared
error can be minimized by a linear combination of these extreme estimates.

The conditional expected value of the estimate equals

E[θ̂MMSE|θ ] =
σ2

N/L
σ2

θ
+σ2

N/L
mθ +

σ2
θ

σ2
θ

+σ2
N/L

θ

This estimate is biased because its expected value does not equal the value of the sought-after pa-
rameter. It is asymptotically unbiased as the squared measurement error σ2

N/L tends to zero as L
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becomes large. The consistency of the estimator is determined by investigating the expected value of
the squared error. Note that the variance of the a posteriori density is the quantity σ2; as this quan-
tity does not depend on X, it also equals the unconditional variance. As the number of observations
increases, this variance tends to zero. In concert with the estimate being asymptotically unbiased, the
expected value of the estimation error thus tends to zero, implying that we have a consistent estimate.

4.2.2 Maximum a Posteriori Estimators

In those cases in which the expected value of the a posteriori density cannot be computed, a related but simpler
estimate, the maximum a posteriori (MAP ) estimate, can usually be evaluated. The estimate θ̂MAP(X) equals
the location of the maximum of the a posteriori density. Assuming that this maximum can be found by
evaluating the derivative of the a posteriori density, the MAP estimate is the solution of the equation

∂ pθ |X(θ |X)
∂θ

∣∣∣∣
θ=θ̂MAP

= 0

Any scaling of the density by a positive quantity that depends on X does not change the location of the
maximum. Symbolically, pθ |X = pX|θ pθ /pX; the derivative does not involve the denominator, and this term
can be ignored. Thus, the only quantities required to compute θ̂MAP are the likelihood function and the
parameter’s a priori density.

Although not apparent in its definition, the MAP estimate does satisfy an error criterion. Define a criterion
that is zero over a small range of values about ε = 0 and a positive constant outside that range. Minimization
of the expected value of this criterion with respect to θ̂ is accomplished by centering the criterion function
at the maximum of the density. The region having the largest area is thus “notched out,” and the criterion is
minimized. Whenever the a posteriori density is symmetric and unimodal, the MAP and MMSE estimates
coincide. In Gaussian problems, such as the last example, this equivalence is always valid. In more general
circumstances, they differ.

Example
Let the observations have the same form as the previous example, but with the modification that the
parameter is now uniformly distributed over the interval [θ1, θ2]. The a posteriori mean cannot be
computed in closed form. To obtain the MAP estimate, we need to find the location of the maximum
of

pX|θ (X|θ)pθ (θ) =
1

θ2−θ1

L−1

∏
`=0

1√
2πσ2

N

exp

{
−1

2

(
X(`)−θ

σN

)2
}

, θ1 ≤ θ ≤ θ2

Evaluating the logarithm of this quantity does not change the location of the maximum and simplifies
the manipulations in many problems. Here, the logarithm is

ln pX|θ (X|θ)pθ (θ) =− ln(θ2−θ1)−
L−1

∑
`=0

(
X(`)−θ

σN

)2

+ lnC, θ1 ≤ θ ≤ θ2

where C is a constant with respect to θ . Assuming that the maximum is interior to the domain of the
parameter, the MAP estimate is found to be the sample average ∑X(`)/L. If the average lies outside
this interval, the corresponding endpoint of the interval is the location of the maximum. To summarize,

θ̂MAP(X) =


θ1, ∑` X(`)/L < θ1

∑` X(`)/L , θ1 ≤ ∑` X(`)/L≤ θ2

θ2, θ2 < ∑` X(`)/L
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The a posteriori density is not symmetric because of the finite domain of θ . Thus, the MAP estimate
is not equivalent to the MMSE estimate, and the accompanying increase in the mean-squared error is
difficult to compute. When the sample average is the estimate, the estimate is unbiased; otherwise it
is biased. Asymptotically, the variance of the average tends to zero, with the consequences that the
estimate is unbiased and consistent.

4.2.3 Maximum Likelihood Estimators

When the a priori density of a parameter is not known or the parameter itself is inconveniently described as
a random variable, techniques must be developed that make no presumption about the relative possibilities of
parameter values. Lacking this knowledge, we can expect the error characteristics of the resulting estimates
to be worse than those which can use it.

The maximum likelihood estimate θ̂ML(X) of a nonrandom parameter is, simply, that value which maxi-
mizes the likelihood function (the a priori density of the observations). Assuming that the maximum can be
found by evaluating a derivative, θ̂ML(X) is defined by

∂ pX|θ (X|θ)
∂θ

∣∣∣∣
θ=θ̂ML

= 0 .

The logarithm of the likelihood function may also be used in this maximization.

Example
Let X(`) be a sequence of independent, identically distributed Gaussian random variables having
an unknown mean θ but a known variance σ2

N . Often, we cannot assign a probability density to
a parameter of a random variable’s density; we simply do not know what the parameter’s value is.
Maximum likelihood estimates are often used in such problems. In the specific case here, the derivative
of the logarithm of the likelihood function equals

∂ ln pX|θ (X|θ)
∂θ

=
1

σ2
N

L−1

∑
`=0

[X(`)−θ ] .

The solution of this equation is the maximum likelihood estimate, which equals the sample average.

θ̂ML =
1
L

L−1

∑
`=0

X(`)

The expected value of this estimate E[θ̂ML|θ ] equals the actual value θ , showing that the maximum
likelihood estimate is unbiased. The mean-square error equals σ2

N/L and we infer that this estimate is
consistent.

Parameter Vectors

The maximum likelihood procedure (as well as the others being discussed) can be easily generalized to situa-
tions where more than one parameter must be estimated. Letting θθθ denote the parameter vector, the likelihood
function is now expressed as pX|θθθ (X|θθθ). The maximum likelihood estimate θ̂θθ ML of the parameter vector is
given by the location of the maximum of the likelihood function (or equivalently of its logarithm). Using
derivatives, the calculation of the maximum likelihood estimate becomes

∇θθθ ln pX|θθθ (X|θθθ)
∣∣
θθθ=θ̂θθ ML

= 0 ,
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where ∇θθθ denotes the gradient with respect to the parameter vector. This equation means that we must
estimate all of the parameters simultaneously by setting the partial of the likelihood function with respect to
each parameter to zero. Given P parameters, we must solve in most cases a set of P nonlinear, simultaneous
equations to find the maximum likelihood estimates.

Example
Let’s extend the previous example to the situation where neither the mean nor the variance of a se-
quence of independent Gaussian random variables is known. The likelihood function is, in this case,

pX|θθθ (X|θθθ) =
L−1

∏
`=0

1√
2πθ2

exp
{
− 1

2θ2
[X(`)−θ1]

2
}

.

Evaluating the partial derivatives of the logarithm of this quantity, we find the following set of two
equations to solve for θ1, representing the mean, and θ2, representing the variance.∗

1
θ2

L−1

∑
`=0

[X(`)−θ1] = 0

− L
2θ2

+
1

2θ 2
2

L−1

∑
`=0

[X(`)−θ1]2 = 0

The solution of this set of equations is easily found to be

θ̂
ML
1 =

1
L

L−1

∑
`=0

X(`)

θ̂
ML
2 =

1
L

L−1

∑
`=0

(
X(`)− θ̂

ML
1

)2

The expected value of θ̂ ML
1 equals the actual value of θ1; thus, this estimate is unbiased. However,

the expected value of the estimate of the variance equals θ2 · (L−1)/L. The estimate of the variance
is biased, but asymptotically unbiased. This bias can be removed by replacing the normalization of L
in the averaging computation for θ̂ ML

2 by L−1.

Cramér-Rao Bound

The mean-square estimation error for any estimate of a nonrandom parameter has a lower bound, the Cramér-
Rao bound [25: pp. 474–477], which defines the ultimate accuracy of any estimation procedure. This lower
bound, as shown later, is intimately related to the maximum likelihood estimator.

We seek a “bound” on the mean-squared error matrix M defined to be

M = E[(θ̂θθ −θθθ)(θ̂θθ −θθθ)t ] = E[εεεεεε
t ] .

A matrix is “lower bounded” by a second matrix if the difference between the two is a non-negative definite
matrix. Define the column matrix x to be

x =
[

θ̂θθ −θθθ −b(θθθ)
∇θθθ ln pX|θθθ (X|θθθ)

]
,

∗The variance rather than the standard deviation is represented by θ2. The mathematics is messier and the estimator has less attractive
properties in the latter case. Problem 4.11 illustrates this point.
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where b(θθθ) denotes the column matrix of estimator biases. To derive the Cramér-Rao bound, evaluate E[xxt ].

E[xxt ] =
[

M−bbt I+∇
t
θθθ

b(
I+∇

t
θθθ

b
)t F

]
where ∇θθθ b represents the matrix of partial derivatives of the bias [∂bi/∂θ j]. The notation ∇

t
θθθ

b represents
the matrix (∇θθθ bt)t .

The matrix F is the Fisher information matrix

F = E
[(

∇θθθ ln pX|θθθ (X|θθθ)
)(

∇θθθ ln pX|θθθ (X|θθθ)
)t
]

, (4.1)

a very important quantity in estimation theory and, surprisingly, many other fields as well. Note that this
matrix can alternatively be expressed as

F =−E
[
∇θθθ ∇

t
θθθ

ln pX|θθθ (X|θθθ)
]

.

The notation ∇θθθ ∇
t
θθθ

means the matrix of all second partials of the quantity it operates on (the gradient of the
gradient). This matrix is known as the Hessian. Demonstrating the equivalence of these two forms for the
Fisher information is quite easy. Because

∫
pX|θθθ (X|θθθ)dX = 1 for all choices of the parameter vector, the gra-

dient of this expression equals zero. Furthermore, ∇θθθ ln pX|θθθ (X|θθθ) = ∇θθθ pX|θθθ (X|θθθ)/pX|θθθ (X|θθθ). Combining
these results yields ∫ (

∇θθθ ln pX|θθθ (x|θθθ)
)

pX|θθθ (x|θθθ)dx = 0 .

Evaluating the gradient of this quantity (using the chain rule) also yields zero.∫ (
∇θθθ ∇

t
θθθ

ln pX|θθθ (x|θθθ)
)

pX|θθθ (x|θθθ)+
(
∇θθθ ln pX|θθθ (x|θθθ)

)(
∇θθθ ln pX|θθθ (x|θθθ)

)t pX|θθθ (x|θθθ)dx = 0

or E
[(

∇θθθ ln pX|θθθ (X|θθθ)
)(

∇θθθ ln pX|θθθ (X|θθθ)
)t
]

=−E
[
∇θθθ ∇

t
θθθ

ln pX|θθθ (X|θθθ)
]

Calculating the expected value for the Hessian form is sometimes easier than finding the expected value of
the outer product of the gradient with itself. In the scalar case, we have

E

[(
∂ ln pX|θ (X|θ)

∂θ

)2
]

=−E

[
∂ 2 ln pX|θ (X|θ)

∂θ 2

]
.

Returning to the derivation of the Cramér-Rao bound, the matrix E[xxt ] is non-negative definite because it
is a correlation matrix. Thus, for any column matrix ααα , the quadratic form ααα t E[xxt ]ααα is non-negative. Choose
a form for ααα that simplifies the quadratic form. A convenient choice is

ααα =

[
βββ

−F−1
(
I+∇

t
θθθ

b
)

βββ

]
,

where βββ is an arbitrary column matrix. The quadratic form becomes in this case

ααα
t
E[xxt ]ααα = βββ

t
[
M−bbt −

(
I+∇θθθ bt)t F−1 (I+∇θθθ bt)]

βββ .

As this quadratic form must be non-negative, the matrix expression enclosed in brackets must be non-negative
definite. We thus obtain the well-known Cramér-Rao bound on the mean-square error matrix.

E[εεεεεε
t ]≥ b(θθθ)bt(θθθ)+

(
I+∇θθθ bt)t F−1 (I+∇θθθ bt)
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This form for the Cramér-Rao bound does not mean that each term in the matrix of squared errors is
greater than the corresponding term in the bounding matrix. As stated earlier, this expression means that the
difference between these matrices is non-negative definite. For a matrix to be non-negative definite, each term
on the main diagonal must be non-negative. The elements of the main diagonal of E[εεεεεε t ] are the squared
errors of the estimate of the individual parameters. Thus, for each parameter, the mean-squared estimation
error can be no smaller than

E[(θ̂i−θi)2]≥ b2
i (θθθ)+

[(
I+∇θθθ bt)t F−1 (I+∇θθθ bt)t

]
ii

.

This bound simplifies greatly if the estimator is unbiased (b = 0). In this case, the Cramér-Rao bound
becomes

E[(θ̂i−θi)2]≥ F−1
ii .

Thus, the mean-squared error for each parameter in a multiple-parameter, unbiased-estimator problem can
be no smaller than the corresponding diagonal term in the inverse of the Fisher information matrix. In such
problems, the estimate’s error characteristics of any parameter become intertwined with the other parameters
in a complicated way. Any estimator satisfying the Cramér-Rao bound with equality is said to be efficient.

Example
Let’s evaluate the Cramér-Rao bound for the example we have been discussing: the estimation of
the mean and variance of a length L sequence of statistically independent Gaussian random vari-
ables. Let the estimate of the mean θ1 be the sample average θ̂1 = ∑X(`)/L; as shown in the last
example, this estimate is unbiased. Let the estimate of the variance θ2 be the unbiased estimate
θ̂2 = [∑

(
X(`)− θ̂1

)2]/(L−1). Each term in the Fisher information matrix F is given by the expected
value of the paired products of derivatives of the logarithm of the likelihood function.

Fi j =−E

[
∂ 2 ln pX|θθθ (X|θθθ)

∂θi∂θ j

]
The logarithm of the likelihood function is

ln pX|θθθ (X|θθθ) =−L
2

ln2πθ2−
1

2θ2

L−1

∑
`=0

[X(`)−θ1]2 ,

its partial derivatives are

∂ ln pX|θθθ (X|θθθ)
∂θ1

=
1
θ2

L−1

∑
`=0

[X(`)−θ1] (4.2)

∂ ln pX|θθθ (X|θθθ)
∂θ2

=− L
2θ2

+
1

2θ 2
2

L−1

∑
`=0

[X(`)−θ1]2 (4.3)

and its second partials are

∂ 2 ln pX|θθθ (X|θθθ)
∂θ 2

1
=− L

θ2

∂ 2 ln pX|θθθ (X|θθθ)
∂θ1∂θ2

=− 1
θ 2

2

L−1

∑
`=0

[X(`)−θ1]

∂ 2 ln pX|θθθ (X|θθθ)
∂θ2∂θ1

=− 1
θ 2

2

L−1

∑
`=0

[X(`)−θ1]
∂ 2 ln pX|θθθ (X|θθθ)

∂θ 2
2

=
L

2θ 2
2
− 1

θ 3
2

L−1

∑
`=0

[X(`)−θ1]2

The Fisher information matrix has the surprisingly simple form

F =

 L
θ2

0

0 L
2θ 2

2

 ;
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its inverse is also a diagonal matrix with the elements on the main diagonal equalling the reciprocal of
those in the original matrix. Because of the zero-valued off-diagonal entries in the Fisher information
matrix, the errors between the corresponding estimates are not inter-dependent. In this problem, the
mean-square estimation errors can be no smaller than

E[(θ̂1−θ1)2]≥ θ2

L

E[(θ̂2−θ2)2]≥ 2θ 2
2

L

Note that nowhere in the preceding example did the form of the estimator enter into the computation
of the bound. The only quantity used in the computation of the Cramér-Rao bound is the logarithm of the
likelihood function, which is a consequence of the problem statement, not how it is solved. Only in the
case of unbiased estimators is the bound independent of the estimators used.∗ Because of this property, the
Cramér-Rao bound is frequently used to assess the performance limits that can be obtained with an unbiased
estimator in a particular problem. When bias is present, the exact form of the estimator’s bias explicitly enters
the computation of the bound. All too frequently, the unbiased form is used in situations where the existence
of an unbiased estimator can be questioned. As we shall see, one such problem is time delay estimation,
presumably of some importance to the reader. This misapplication of the unbiased Cramér-Rao arises from
desperation: the estimator is so complicated and nonlinear that computing the bias is nearly impossible. As
shown in Problem 4.12, biased estimators can yield mean-squared errors smaller as well as larger than the
unbiased version of the Cramér-Rao bound. Consequently, desperation can yield misinterpretation when a
general result is misapplied.

In the single-parameter estimation problem, the Cramér-Rao bound incorporating bias has the well-known
form†

E[ε2]≥ b2 +

(
1+ db

dθ

)2

−E

[
∂ 2 ln pX|θ (X|θ)

∂θ 2

] .

Note that the sign of the bias’s derivative determines whether this bound is larger or potentially smaller than
the unbiased version, which is obtained by setting the bias term to zero.

Efficiency

An interesting question arises: when, if ever, is the bound satisfied with equality? Recalling the details of
the derivation of the bound, equality results when the quantity E[ααα txxtααα] equals zero. As this quantity is the
expected value of the square of ααα tx, it can only equal zero if ααα tx = 0. Substituting in the form of the column
matrices ααα and x, equality in the Cramér-Rao bound results whenever

∇θθθ ln pX|θθθ (X|θθθ) =
[
I+∇θθθ bt]−1 F[θ̂θθ(X)−θθθ −b] . (4.4)

This complicated expression means that only if estimation problems (as expressed by the a priori density)
have the form of the right side of this equation can the mean-square estimation error equal the Cramér-Rao
bound. In particular, the gradient of the log likelihood function can only depend on the observations through
the estimator. In all other problems, the Cramér-Rao bound is a lower bound but not a tight one; no estimator
can have error characteristics that equal it. In such cases, we have limited insight into ultimate limitations on
estimation error size with the Cramér-Rao bound. However, consider the case where the estimator is unbiased
(b = 0). In addition, note the maximum likelihood estimate occurs when the gradient of the logarithm of the
∗That’s why we assumed in the example that we used an unbiased estimator for the variance.
†Note that this bound differs somewhat from that originally given by Cramér [25: p. 480]; his derivation ignores the additive bias

term bbt .
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likelihood function equals zero: ∇θθθ ln pX|θθθ (X|θθθ) = 0 when θθθ = θ̂θθ ML. In this case, the condition for equality
in the Cramér-Rao bound becomes

F[θ̂θθ − θ̂θθ ML] = 0 .

As the Fisher information matrix is positive-definite, we conclude that if the estimator equals the maximum
likelihood estimator, equality in the Cramér-Rao bound can be achieved. To summarize, if the Cramér-Rao
bound can be satisfied with equality, only the maximum likelihood estimate will achieve it. To use estimation
theoretic terminology, if an efficient estimate exists, it is the maximum likelihood estimate. This result stresses
the importance of maximum likelihood estimates, despite the seemingly ad hoc manner by which they are
defined.

Example
Consider the Gaussian example being examined so frequently in this section. The components of the
gradient of the logarithm of the likelihood function were given earlier by equations (4.2) {61}. These
expressions can be rearranged to reveal

∂ ln pX|θθθ (X|θθθ)
∂θ1

∂ ln pX|θθθ (X|θθθ)
∂θ2

=

 L
θ2

[(
1
L ∑` X(`)

)
−θ1

]
− L

2θ2
+ 1

2θ 2
2

∑`[X(`)−θ1]2

 .

The first component, which corresponds to the estimate of the mean, is expressed in the form required
for the existence of an efficient estimate. The second component—the partial with respect to the vari-
ance θ2—cannot be rewritten in a similar fashion. No unbiased, efficient estimate of the variance
exists in this problem. The mean-squared error of the variance’s unbiased estimate, but not the max-
imum likelihood estimate, is lower-bounded by 2θ 2

2 /(L− 1)2. This error is strictly greater than the
Cramér-Rao bound of 2θ 2

2 /L2. As no unbiased estimate of the variance can have a mean-squared error
equal to the Cramér-Rao bound (no efficient estimate exists for the variance in the Gaussian problem),
one presumes that the closeness of the error of our unbiased estimator to the bound implies that it
possesses the smallest squared-error of any estimate. This presumption may, of course, be incorrect.

Properties of the Maximum Likelihood Estimator

The maximum likelihood estimate is the most used estimation technique for nonrandom parameters. Not only
because of its close linkage to the Cramér-Rao bound, but also because it has desirable asymptotic properties
in the context of any Problem [25: pp. 500–6].

1. The maximum likelihood estimate is at least asymptotically unbiased. It may be unbiased for any num-
ber of observations (as in the estimation of the mean of a sequence of independent random variables)
for some problems.

2. The maximum likelihood estimate is consistent.
3. The maximum likelihood estimate is asymptotically efficient. As more and more data are incorporated

into an estimate, the Cramér-Rao bound accurately projects the best attainable error and the maximum
likelihood estimate has those optimal characteristics.

4. Asymptotically, the maximum likelihood estimate is distributed as a Gaussian random variable. Be-
cause of the previous properties, the mean asymptotically equals the parameter and the covariance
matrix is [LF(θθθ)]−1.

Most would agree that a “good” estimator should have these properties. What these results do not provide
is an assessment of how many observations are needed for the asymptotic results to apply to some specified
degree of precision. Consequently, they should be used with caution; for instance, some other estimator may
have a smaller mean-square error than the maximum likelihood for a modest number of observations.
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4.2.4 Linear Estimators

We derived the minimum mean-squared error estimator in the previous section with no constraint on the form
of the estimator. Depending on the problem, the computations could be a linear function of the observations
(which is always the case in Gaussian problems) or nonlinear. Deriving this estimator is often difficult, which
limits its application. We consider here a variation of MMSE estimation by constraining the estimator to
be linear while minimizing the mean-squared estimation error. Such linear estimators may not be optimum;
the conditional expected value may be nonlinear and it always has the smallest mean-squared error. Despite
this occasional performance deficit, linear estimators have well-understood properties, they interact well with
other signal processing algorithms because of linearity, and they can always be derived, no matter what the
problem.

Let the parameter estimate θ̂θθ(X) be expressed as L [X], where L [·] is a linear operator:
L [a1X1 +a2X2] = a1 L [X1]+ a2 L [X2], a1,a2 scalars. Although all estimators of this form are obviously
linear, the term linear estimator denotes that member of this family that minimizes the mean-squared estima-
tion error.

argmin
θ̂θθ∈L [X]

E[εεε t
εεε] = θ̂θθ LIN(X)

Because of the transformation’s linearity, the theory of linear vector spaces can be fruitfully used to
derive the estimator and to specify its properties. One result of that theoretical framework is the well-known
Orthogonality Principle [76: 407–14]: The linear estimator is that particular linear transformation that yields
an estimation error orthogonal to all linear transformations of the data. The orthogonality of the error to
all linear transformations is termed the “universality constraint.” This principle provides us not only with
a formal definition of the linear estimator but also with the mechanism to derive it. To demonstrate this
intriguing result, let 〈·, ·〉 denote the abstract inner product between two vectors and ‖ ·‖ the associated norm.

‖x‖2 = 〈x,x〉
For example, if x and y are each column matrices having only one column,∗ their inner product might be
defined as 〈x,y〉= xty. Thus, the linear estimator as defined by the Orthogonality Principle must satisfy

E
[
〈θ̂θθ LIN(X)−θθθ ,L [X]〉

]
= 0, for all linear transformations L [·] (4.5)

To see that this principle produces the MMSE linear estimator, we express the mean-squared estimation error
E[εεε tεεε] = E[‖εεε‖2] for any choice of linear estimator θ̂θθ as

E[‖θ̂θθ −θθθ‖2] = E[‖(θ̂θθ LIN−θθθ)− (θ̂θθ LIN− θ̂θθ)‖2]

= E[‖θ̂θθ LIN−θθθ‖2]+E[‖θ̂θθ LIN− θ̂θθ‖2]−2E[〈θ̂θθ LIN−θθθ ,θ̂θθ LIN− θ̂θθ〉]

As θ̂θθ LIN− θ̂θθ is the difference of two linear transformations, it too is linear and is orthogonal to the estimation
error resulting from θ̂θθ LIN. As a result, the last term is zero and the mean-squared estimation error is the sum
of two squared norms, each of which is, of course, nonnegative. Only the second norm varies with estimator
choice; we minimize the mean-squared estimation error by choosing the estimator θ̂θθ to be the estimator θ̂θθ LIN,
which sets the second term to zero.

The estimation error for the minimum mean-squared linear estimator can be calculated to some degree
without knowledge of the form of the estimator. The mean-squared estimation error is given by

E[‖θ̂θθ LIN−θθθ‖2] = E[〈θ̂θθ LIN−θθθ ,θ̂θθ LIN−θθθ〉]

= E[〈θ̂θθ LIN−θθθ ,θ̂θθ LIN〉]+E[〈θ̂θθ LIN−θθθ ,−θθθ〉]
∗There is a confusion as to what a vector is. “Matrices having one column” are colloquially termed vectors as are the field quantities

such as electric and magnetic fields. “Vectors” and their associated inner products are taken to be much more general mathematical
objects than these. Hence the prose in this section is rather contorted.
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The first term is zero because of the Orthogonality Principle. Rewriting the second term yields a general
expression for the MMSE linear estimator’s mean-squared error.

E[‖εεε‖2] = E[‖θθθ‖2]−E[〈θ̂θθ LIN,θθθ〉]

This error is the difference of two terms. The first, the mean-squared value of the parameter, represents the
largest value that the estimation error can be for any reasonable estimator. That error can be obtained by the
estimator that ignores the data and has a value of zero. The second term reduces this maximum error and
represents the degree to which the estimate and the parameter agree on the average.

Note that the definition of the minimum mean-squared error linear estimator makes no explicit assump-
tions about the parameter estimation problem being solved. This property makes this kind of estimator at-
tractive in many applications where neither the a priori density of the parameter vector nor the density of the
observations is known precisely. Linear transformations, however, are homogeneous: A zero-valued input
yields a zero output. Thus, the linear estimator is especially pertinent to those problems where the expected
value of the parameter is zero. If the expected value is nonzero, the linear estimator would not necessarily
yield the best result (see Problem 4.18).

Example
Express the first example {56} in vector notation so that the observation vector is written as

X = Aθ +N

where the matrix A has the form A = col[1, . . . ,1]. The expected value of the parameter is zero. The
linear estimator has the form θ̂LIN = LX, where L is a 1×L matrix. The Orthogonality Principle states
that the linear estimator satisfies

E[(LX−θ)tMX] = 0, for all 1×L matrices M

To use the Orthogonality Principle to derive an equation implicitly specifying the linear estimator, the
“for all linear transformations” phrase must be interpreted. Usually, the quantity specifying the linear
transformation must be removed from the constraining inner product by imposing a very stringent
but equivalent condition. In this example, this phrase becomes one about matrices. The elements of
the matrix M can be such that each element of the observation vector multiplies each element of the
estimation error. Thus, in this problem the Orthogonality Principle means that the expected value of
the matrix consisting of all pairwise products of these elements must be zero.

E[(LX−θ)Xt ] = 0

Thus, two terms must equal each other: E[LXXt ] = E[θXt ]. The second term equals E[θ 2]At as the
additive noise and the parameter are assumed to be statistically independent quantities. The quantity
E[XXt ] in the first term is the correlation matrix of the observations, which is given by AAt E[θ 2]+KN .
Here, KN is the noise covariance matrix, and E[θ 2] is the parameter’s variance. The quantity AAt is
a L×L matrix with each element equaling 1. The noise vector has independent components; the
covariance matrix thus equals σ2

NI. The equation that L must satisfy is therefore given by

[L1 · · ·LL] ·


σ2

N +σ2
θ

σ2
θ

· · · σ2
θ

σ2
θ

σ2
N +σ2

θ

. . .
...

...
. . . . . . σ2

θ

σ2
θ

· · · σ2
θ

σ2
N +σ2

θ

=
[

σ2
θ
· · · σ2

θ

]
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The components of L are equal and are given by Li = σ2
θ
/(σ2

N + Lσ2
θ
). Thus, the minimum mean-

squared error linear estimator has the form

θ̂LIN(X) =
σ2

θ

σ2
θ

+σ2
N/L

1
L ∑

l
X(`)

Note that this result equals the minimum mean-squared error estimate derived earlier under the
condition that E[θ ] = 0. Mean-squared error, linear estimators, and Gaussian problems are intimately
related to each other. The linear minimum mean-squared error solution to a problem is optimal if the
underlying distributions are Gaussian.

4.3 Signal Parameter Estimation
One extension of parametric estimation theory necessary for its application to signal processing is the estima-
tion of signal parameters. We assume that we observe a signal s(`,θθθ), whose characteristics are known save a
few parameters θθθ , in the presence of noise. Signal parameters, such as amplitude, time origin, and frequency
if the signal is sinusoidal, must be determined in some way. In many cases of interest, we would find it diffi-
cult to justify a particular form for the unknown parameters’ a priori density. Because of such uncertainties,
the minimum mean-squared error and maximum a posteriori estimators cannot be used in many cases. The
minimum mean-squared error linear estimator does not require this density, but it is most fruitfully used when
the unknown parameter appears in the problem in a linear fashion (such as signal amplitude as we shall see).

4.3.1 Linear Minimum Mean-Squared Error Estimator

The only parameter that is linearly related to a signal is the amplitude. Consider, therefore, the problem where
the observations are modeled as

X(`) = θs(`)+N(`), ` = 0, . . . ,L−1

The signal waveform s(`) is known and its energy normalized to be unity (∑s2(`) = 1). The linear estimate of
the signal’s amplitude is assumed to be of the form θ̂ = ∑h(`)X(`), where h(`) minimizes the mean-squared
error. To use the Orthogonality Principle expressed by Eq. 4.5 {64}, an inner product must be defined for
scalars. Little choice avails itself but multiplication as the inner product of two scalars. The Orthogonality
Principle states that the estimation error must be orthogonal to all linear transformations defining the kind of
estimator being sought.

E

[(
L−1

∑
`=0

hLIN(`)X(`)−θ

)
L−1

∑
k=0

h(k)X(k)

]
= 0 for all h(·)

Manipulating this equation to make the universality constraint more transparent results in

L−1

∑
k=0

h(k) ·E

[(
L−1

∑
`=0

hLIN(`)X(`)−θ

)
X(k)

]
= 0 for all h(·)

Written in this way, the expected value must be 0 for each value of k to satisfy the constraint. Thus, the
quantity hLIN(·) of the estimator of the signal’s amplitude must satisfy

L−1

∑
`=0

hLIN(`)E[X(`)X(k)] = E[θX(k)] for all k

Assuming that the signal’s amplitude has zero mean and is statistically independent of the zero-mean noise,
the expected values in this equation are given by

E[X(`)X(k)] = σ
2
θ s(`)s(k)+KN(k, `)

E[θX(k)] = σ
2
θ s(k)
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where KN(k, `) is the covariance function of the noise. The equation that must be solved for the unit-sample
response hLIN(·) of the optimal linear MMSE estimator of signal amplitude becomes

L−1

∑
`=0

hLIN(`)KN(k, `) = σ
2
θ s(k)

[
1−

L−1

∑
`=0

hLIN(`)s(`)

]
for all k

This equation is easily solved once phrased in matrix notation. Letting KN denote the covariance matrix
of the noise, s the signal vector, and hLIN the vector of coefficients, this equation becomes

KNhLIN = σ
2
θ

(
1− sthLIN

)
s

or

hLIN = σ
2
θ

(
1− sthLIN

)
K−1

N s

While this equation does not lead directly to a solution, let’s assume that the solution has the form hLIN =
cK−1

N s, c is a scalar constant. This proposed solution satisfies the equation; the MMSE estimate of signal
amplitude is

hLIN =
σ2

θ

1+σ2
θ

stK−1
N s

K−1
N s .

The mean-squared estimation error of signal amplitude is given by

E[ε2] = σ
2
θ −E

[
θ

L−1

∑
`=0

hLIN(`)X(`)

]

Substituting the vector expression for hLIN yields the result that the mean-squared estimation error equals the
proportionality constant c defined earlier.

E[ε2] =
σ2

θ

1+σ2
θ

stK−1
N s

If we had not assumed the noise to be Gaussian, the estimator would be unchanged. This invariance occurs
because the linear MMSE estimator requires no assumptions on the noise’s amplitude characteristics.

Example
Let the noise be white so that its covariance matrix is proportional to the identity matrix (KN = σ2

NI).
The weighting factor in the minimum mean-squared error linear estimator is proportional to the signal
waveform.

hLIN(`) =
σ2

θ

σ2
N +σ2

θ

s(`) θ̂LIN =
σ2

θ

σ2
N +σ2

θ

L−1

∑
`=0

s(`)X(`)

This proportionality constant depends only on the relative variances of the noise and the parameter. If
the noise variance can be considered to be much smaller than the a priori variance of the amplitude,
then this constant does not depend on these variances and equals unity. Otherwise, the variances must
be known.

We find the mean-squared estimation error to be

E[ε2] =
σ2

θ

1+σ2
θ
/σ2

N
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This error is significantly reduced from its nominal value σ2
θ

only when the variance of the noise
is small compared with the a priori variance of the amplitude. Otherwise, this admittedly optimum
amplitude estimate performs poorly, and we might as well as have ignored the data and “guessed” that
the amplitude was zero.∗

4.3.2 Maximum Likelihood Estimators

Many situations are either not well suited to linear estimation procedures, or the parameter is not well de-
scribed as a random variable. For example, signal delay is observed nonlinearly and usually no a priori
density can be assigned. In such cases, maximum likelihood estimators are more frequently used. Because
of the Cramér-Rao bound, fundamental limits on parameter estimation performance can be derived for any
signal parameter estimation problem where the parameter is not random.

Assume that the data are expressed as a signal observed in the presence of additive Gaussian noise.

X(`) = s(`,θθθ)+N(`), ` = 0, . . . ,L−1

The vector of observations X is formed from the data in the obvious way. Evaluating the logarithm of the
observation vector’s joint density,

ln pX|θθθ (X|θθθ) =−1
2

lndet[2πKN ]− 1
2
[X− s(θθθ)]tK−1

N [X− s(θθθ)]

where s(θθθ) is the signal vector having P unknown parameters, and KN is the covariance matrix of the noise.
The partial derivative of this likelihood function with respect to the ith parameter θi is, for real-valued signals,

∂ ln pX|θθθ (X|θθθ)
∂θi

= [X− s(θθθ)]tK−1
N

∂ s(θθθ)
∂θi

and, for complex-valued ones,

∂ ln pX|θθθ (X|θθθ)
∂θi

= Re
[
[X− s(θθθ)]′K−1

N
∂ s(θθθ)

∂θi

]
If the maximum of the likelihood function can be found by setting its gradient to 0, the maximum likelihood
estimate of the parameter vector is the solution of the set of equations

[X− s(θθθ)]tK−1
N

∂ s(θθθ)
∂θi

∣∣∣∣
θθθ=θ̂θθ ML

= 0 , i = 1, . . . ,P

The Cramér-Rao bound depends on the evaluation of the Fisher information matrix F. The elements of
this matrix are found to be

Fi j =
∂ st(θθθ)

∂θi
K−1

N
∂ s(θθθ)
∂θ j

, i, j = 1, . . . ,P (4.6)

Further computation of the Cramér-Rao bound’s components is problem dependent if more than one parameter
is involved, and the off-diagonal terms of F are nonzero. If only one parameter is unknown, the Cramér-Rao
bound is given by

E[ε2]≥ b2(θ)+

(
1+ db(θ)

dθ

)2

∂ st(θ)
∂θ

K−1
N

∂ s(θ)
∂θ

∗In other words, the problem is difficult in this case.
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When the signal depends on the parameter nonlinearly (which constitute the interesting cases), the maximum
likelihood estimate is usually biased. Thus, the numerator of the expression for the bound cannot be ignored.
One interesting special case occurs when the noise is white. The Cramér-Rao bound becomes

E[ε2]≥ b2(θ)+
σ2

N

(
1+ db(θ)

dθ

)2

L−1

∑
`=0

(
∂ s(`,θ)

∂θ

)2

The derivative of the signal with respect to the parameter can be interpreted as the sensitivity of the signal
to the parameter. The mean-squared estimation error depends on the “integrated” squared sensitivity: The
greater this sensitivity, the smaller the bound.

For an efficient estimate of a signal parameter to exist, the estimate must satisfy the condition we derived
earlier (Eq. 4.4 {62}).

[∇θθθ s(θθθ)]tK−1
N [X− s(θθθ)] ?=

[
I+∇θθθ bt]−1 [∇θθθ s(θθθ)]tK−1

N [∇θθθ s(θθθ)][θ̂θθ(X)−θθθ −b]

Because of the complexity of this requirement, we quite rightly question the existence of any efficient estima-
tor, especially when the signal depends nonlinearly on the parameter (see Problem 4.19).

Example
Let the unknown parameter be the signal’s amplitude; the signal is expressed as θs(`) and is observed
in the presence of additive noise. The maximum likelihood estimate of the amplitude is the solution
of the equation

[X− θ̂MLs]tK−1
N s = 0

The form of this equation suggests that the maximum likelihood estimate is efficient. The amplitude
estimate is given by

θ̂ML =
XtK−1

N s
stK−1

N s

The form of this estimator is precisely that of the matched filter derived in the colored-noise situation
(see Eq. 5.16 {174}). The expected value of the estimate equals the actual amplitude. Thus the bias is
zero and the Cramér-Rao bound is given by

E[ε2]≥
(
stK−1

N s
)−1

The condition for an efficient estimate becomes

stK−1
N (X−θs) ?= stK−1

N s · (θ̂ML−θ)

whose veracity we can easily verify.
In the special case where the noise is white, the estimator has the form θ̂ML = Xts, and the Cramér-

Rao bound equals σ2
N (the nominal signal is assumed to have unit energy). The maximum likelihood

estimate of the amplitude has fixed error characteristics that do not depend on the actual signal ampli-
tude. A signal-to-noise ratio for the estimate, defined to be θ 2/E[ε2], equals the signal-to-noise ratio
of the observed signal.

When the amplitude is well described as a random variable, its linear minimum mean-squared
error estimator has the form

θ̂LIN =
σ2

θ
XtK−1

N s
1+σ2

θ
stK−1

N s
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which we found in the white-noise case becomes a weighted version of the maximum likelihood
estimate (see the example {67}).

θ̂LIN =
σ2

θ

σ2
θ

+σ2
N

Xts

Seemingly, these two estimators are being used to solve the same problem: Estimating the amplitude of
a signal whose waveform is known. They make very different assumptions, however, about the nature
of the unknown parameter; in one it is a random variable (and thus it has a variance), whereas in the
other it is not (and variance makes no sense). Despite this fundamental difference, the computations
for each estimator are equivalent. It is reassuring that different approaches to solving similar problems
yield similar procedures.

4.3.3 Time-Delay Estimation

An important signal parameter estimation problem is time-delay estimation. Here the unknown is the time
origin of the signal: s(`,θ) = s(`−θ). The duration of the signal (the domain over which the signal is defined)
is assumed brief compared with the observation interval L. Although in continuous time the signal delay is a
continuous-valued variable, in discrete time it is not. Consequently, the maximum likelihood estimate cannot
be found by differentiation, and we must determine the maximum likelihood estimate of signal delay by
the most fundamental expression of the maximization procedure. Assuming Gaussian noise, the maximum
likelihood estimate of delay is the solution of

min
θ

[X− s(θ)]tK−1
N [X− s(θ)]

The term stK−1
N s is usually assumed not to vary with the presumed time origin of the signal because of the

signal’s short duration. If the noise is white, this term is constant except near the “edges” of the observation
interval. If not white, the kernel of this quadratic form is equivalent to a whitening filter. As discussed in the
previous chapter (§5.4.2 {174}), this filter may be time varying. For noise spectra that are rational and have
only poles, the whitening filter’s unit-sample response varies only near the edges (see the example {176}).
Thus, near the edges, this quadratic form varies with presumed delay and the maximization is analytically
difficult. Taking the “easy way out” by ignoring edge effects, the estimate is the solution of

max
θ

[XtK−1
N s(θ)]

Thus, the delay estimate is the signal time origin that maximizes the matched filter’s output.

Cramér-Rao Bound

In addition to the complexity of finding the maximum likelihood estimate, the discrete-valued nature of the
parameter also calls into question the use of the Cramér-Rao bound. One of the fundamental assumptions of
the bound’s derivation is the differentiability of the likelihood function with respect to the parameter. Mathe-
matically, a sequence cannot be differentiated with respect to the integers. A sequence can be differentiated
with respect to its argument if we consider the variable to be continuous valued. This approximation can be
used only if the sampling interval, unity for the integers, is dense with respect to variations of the sequence.
This condition means that the signal must be oversampled to apply the Cramér-Rao bound in a meaningful
way. Under these conditions, the mean-squared estimation error for unbiased estimators can be no smaller
than the Cramér-Rao bound, which is given by

E[ε2]≥ 1

∑k,`
[
K−1

N

]
k,` ṡ(k−θ)ṡ(`−θ)

which, in the white-noise case, becomes

E[ε2]≥ σ2
N

∑`[ṡ(`)]2
(4.7)
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Figure 4.1: The matched filter outputs are shown for two separate signal situations. In each case, the ob-
servation interval (100 samples), the signal’s duration (50 samples) and energy (unity) are the same. The
difference lies in the signal waveform; both are sinusoids with the first having a frequency of 2π×0.04 and
the second 2π×0.25. Each output is the signal’s autocorrelation function. Few, broad peaks characterize the
low-frequency example whereas many narrow peaks are found in the high frequency one.

Here, ṡ(·) denotes the “derivative” of the discrete-time signal. To justify using this Cramér-Rao bound, we
must face the issue of whether an unbiased estimator for time delay exists. No general answer exists; each
estimator, including the maximum likelihood one, must be examined individually.

Example
Assume that the noise is white. Because of this assumption, we determine the time delay by maximiz-
ing the match-filtered observations.

argmax
θ

∑
`

X(`)s(`−θ) = θ̂ML

The number of terms in the sum equals the signal duration. Fig. 4.1 illustrates the match-filtered output
in two separate situations; in one the signal has a relatively low-frequency spectrum as compared with
the second. Because of the symmetry of the autocorrelation function, the estimate should be unbiased
so long as the autocorrelation function is completely contained within the observation interval. Direct
proof of this claim is left to the masochistic reader. For sinusoidal signals of energy E and frequency
ω0, the Cramér-Rao bound is given by E[ε2] = σ2

N/ω2
0 E. This bound on the error is accurate only if the

measured maximum frequently occurs in the dominant peak of the signal’s autocorrelation function.
Otherwise, the maximum likelihood estimate “skips” a cycle and produces values concentrated near
one of the smaller peaks. The interval between zero crossings of the dominant peak is π/(2ω0);
the signal-to-noise ratio E/σ2

N must exceed 4/π2 (about 0.5). Remember that this result implicitly
assumed a low-frequency sinusoid. The second example demonstrates that cycle skipping occurs
more frequently than this guideline suggests when a high-frequency sinusoid is used.

Ziv-Zakai Bound

The size of the errors encountered in the time-delay estimation problem can be more accurately assessed by a
bounding technique tailored to the problem: the Ziv-Zakai bound [90, 96]. The derivation of this bound relies
on results from detection theory [21].∗ Consider the detection problem in which we must distinguish the
signals s(`−τ) and s

(
`− (τ +∆)

)
while observing them in the presence of white noise that is not necessarily

Gaussian. Let hypothesis M0 represent the case in which the delay, denoted by our parameter symbol θ , is

∗This result is an example of detection and estimation theory complementing each other to advantage.
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τ and M1 the case in which θ = τ + ∆. The suboptimum test statistic consists of estimating the delay, then
determining the closest a priori delay to the estimate.

θ̂

M1
>
<

M0
τ +

∆

2

By using this ad hoc hypothesis test as an essential part of the derivation, the bound can apply to many
situations. Furthermore, by not restricting the type of parameter estimate, the bound applies to any estimator.
The probability of error for the optimum hypothesis test (derived from the likelihood ratio) is denoted by
Pe(τ,∆). Assuming equally likely hypotheses, the probability of error resulting from the ad hoc test must be
greater than that of the optimum.

Pe(τ,∆)≤ 1
2

Pr
(

ε >
∆

2

∣∣∣∣M0

)
+

1
2

Pr
(

ε <−∆

2

∣∣∣∣M1

)
Here, ε denotes the estimation error appropriate to the hypothesis.

ε =

{
θ̂ − τ under M0

θ̂ − τ−∆ under M1

The delay is assumed to range uniformly between 0 and L. Combining this restriction to the hypothesized
delays yields bounds on both τ and ∆: 0 ≤ τ < L−∆ and 0 ≤ ∆ < L. Simple manipulations show that the
integral of this inequality with respect to τ over the possible range of delays is given by∗∫ L−∆

0
Pe(τ,∆)dτ ≤ 1

2

∫ L

0
Pr
(
|ε|> ∆

2

∣∣∣∣M0

)
dτ

Note that if we define (L/2)P̃(∆/2) to be the right side of this equation so that

P̃
(

∆

2

)
=

1
L

∫ L

0
Pr
(
|ε|> ∆

2

∣∣∣∣M0

)
dτ

P̃(·) is the complementary distribution function† of the magnitude of the average estimation error. Multiplying
P̃(∆/2) by ∆ and integrating, the result is∫ L

0
∆P̃
(

∆

2

)
d∆ =−2

∫ L/2

0
x2 dP̃

dx
dx

The reason for these rather obscure manipulations is now revealed: Because P̃(·) is related to the probability
distribution function of the absolute error, the right side of this equation is twice the mean-squared error E[ε2].
The general Ziv-Zakai bound for the mean-squared estimation error of signal delay is thus expressed as

E[ε2]≥ 1
L

∫ L

0
∆

∫ L−∆

0
Pe(τ,∆)dτ d∆

In many cases, the optimum probability of error Pe(τ,∆) does not depend on τ , the time origin of the observa-
tions. This lack of dependence is equivalent to ignoring edge effects and simplifies calculation of the bound.
Thus, the Ziv-Zakai bound for time-delay estimation relates the mean-squared estimation error for delay to
∗Here again, the issue of the discrete nature of the delay becomes a consideration; this step in the derivation implicitly assumes that

the delay is continuous valued. This approximation can be greeted more readily as it involves integration rather than differentiation (as
in the Cramér-Rao bound).

†The complementary distribution function of a probability distribution function P(x) is defined to be P̃(x) = 1−P(x), the probability
that a random variable exceeds x.
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Figure 4.2: The Ziv-Zakai bound and the Cramér-Rao bound for the estimation of the time delay of a signal
observed in the presence of Gaussian noise is shown as a function of the signal-to-noise ratio. For this plot,
L = 20 and β = 2π×0.2. The Ziv-Zakai bound is much larger than the Cramér-Rao bound for signal-to-noise
ratios less than 13 dB; the Ziv-Zakai bound can be as much as 30 times larger.

the probability of error incurred by the optimal detector that is deciding whether a nonzero delay is present or
not.

E[ε2]≥ 1
L

∫ L

0
∆(L−∆)Pe(∆)d∆

≥ L2

6
Pe(L)−

∫ L

0

(
∆2

2
− ∆3

3L

)
dPe

d∆
d∆

(4.8)

To apply this bound to time-delay estimates (unbiased or not), the optimum probability of error for the type
of noise and the relative delay between the two signals must be determined. Substituting this expression into
either integral yields the Ziv-Zakai bound.

The general behavior of this bound at parameter extremes can be evaluated in some cases. Note that the
Cramér-Rao bound in this problem approaches infinity as either the noise variance grows or the observation
interval shrinks to 0 (either forces the signal-to-noise ratio to approach 0). This result is unrealistic as the
actual delay is bounded, lying between 0 and L. In this very noisy situation, one should ignore the observations
and “guess” any reasonable value for the delay; the estimation error is smaller. The probability of error
approaches 1/2 in this situation no matter what the delay ∆ may be. Considering the simplified form of the
Ziv-Zakai bound, the integral in the second form is 0 in this extreme case.

E[ε2]≥ L2

12

The Ziv-Zakai bound is exactly the variance of a random variable uniformly distributed over [0,L− 1]. The
Ziv-Zakai bound thus predicts the size of mean-squared errors more accurately than does the Cramér-Rao
bound.
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Example[90]
Let the noise be Gaussian of variance σ2

N and the signal have energy E. The probability of error
resulting from the likelihood ratio test is given by

Pe(∆) = Q

([
E

2σ2
N

(
1−ρ(∆)

)]1/2
)

The quantity ρ(∆) is the normalized autocorrelation function of the signal evaluated at the delay ∆.

ρ(∆) =
1
E ∑

`

s(`)s(`−∆)

Evaluation of the Ziv-Zakai bound for a general signal is very difficult in this Gaussian noise case.
Fortunately, the normalized autocorrelation function can be bounded by a relatively simple expres-
sion to yield a more manageable expression. The key quantity 1− ρ(∆) in the probability of error
expression can be rewritten using Parseval’s Theorem.

1−ρ(∆) =
1

2πE

∫
π

0
2|S(ω)|2[1− cos(ω∆)]dω

Using the inequality 1− cosx≤ x2/2, 1−ρ(∆) is bounded from above by min
{

∆2β 2/2,2
}

, where β

is the root-mean-squared (RMS ) signal bandwidth.

β
2 =

∫
π

−π

ω
2|S(ω)|2 dω∫

π

−π

|S(ω)|2 dω

(4.9)

Because Q(·) is a decreasing function, we have Pe(∆)≥ Q
(
µ min{∆,∆∗}

)
, where µ is a combination

of all of the constants involved in the argument of Q(·): µ = (Eβ 2/4σ2
N)1/2. This quantity varies with

the product of the signal-to-noise ratio E/σ2
N and the squared RMS bandwidth β 2. The parameter

∆∗ = 2/β is known as the critical delay and is twice the reciprocal RMS bandwidth. We can use
this lower bound for the probability of error in the Ziv-Zakai bound to produce a lower bound on the
mean-squared estimation error. The integral in the first form of the bound yields the complicated, but
computable result

E[ε2]≥ L2

6
Q(µ min{L,∆∗})+

1
4µ2 P

χ2
3

(
µ

2 min{L2,∆∗2}
)

− 2
3
√

2πLµ3

[
1−
(

1+
µ2

2
min{L2,∆∗2}

)
exp
{
−µ

2 min{L2,∆∗2}/2
}]

The quantity P
χ2

3
(·) is the probability distribution function of a χ2 random variable having three de-

grees of freedom.∗ Thus, the threshold effects in this expression for the mean-squared estimation error
depend on the relation between the critical delay and the signal duration. In most cases, the minimum
equals the critical delay ∆∗, with the opposite choice possible for very low bandwidth signals.

The Ziv-Zakai bound and the Cramér-Rao bound for the time-delay estimation problem are shown
in Fig. 4.2. Note how the Ziv-Zakai bound matches the Cramér-Rao bound only for large signal-to-
noise ratios, where they both equal 1/4µ2 = σ2

N/Eβ 2. For smaller values, the former bound is much
larger and provides a better indication of the size of the estimation errors. These errors are because
of the “cycle skipping” phenomenon described earlier. The Ziv-Zakai bound describes them well,
whereas the Cramér-Rao bound ignores them.

∗This distribution function has the “closed-form” expression P
χ2

3
(x) = 1−Q(

√
x)−

√
x/2exp{−x/2}.
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Figure 4.3: The three classical categories of linear signal waveform estimation are defined by the observation
interval’s relation to the time at which we want to estimate the signal value. As time evolves, so does the
observation interval so that le, the interval between the last observation and the estimation time, is fixed.

4.4 Linear Signal Waveform Estimation
When the details of a signal’s waveform are unknown, describing the signal parametrically is usually unsat-
isfactory. We need techniques that estimate waveforms rather than numbers. For example, we may want to
know the propagating signal’s waveform contained in the noise-corrupted array output. Without some a priori
information, this task is impossible; if neither the signal nor the noise is known, how can anyone discriminate
one from the other? The key to waveform estimation is how much prior information we have about the signal
and the noise, and how valid that information is. Given noisy observations of a signal throughout the interval
[Li,L f ], the waveform estimation problem is to estimate accurately the value of the signal at some moment
L f + le. In most situations, the observation interval evolves with the passage of time while the estimation time
is fixed relative to the occurrence of the most recent observation (in other words, le is a constant). Linear
waveform estimation results when we apply a linear filter to the observations.

Waveform estimation problems are usually placed into one of three categories [4: 9–11] based on the
value of le (see Fig. 4.3):

Interpolation. The interpolation or smoothing problem is to estimate the signal at some moment within the
observation interval (le < 0). Observations are thus considered before and after the time at which the
signal needs to be estimated. In practice, applying interpolation filtering means that the estimated signal
waveform is produced some time after it occurred.

Filtering. We estimate the signal at the end of the observation interval (le = 0). Thus, a waveform estimate is
produced as soon as the signal is observed. The filtering problem arises when we want to remove noise
(as much as possible) from noise-corrupted signal observations as they are obtained.

Prediction. Here, we attempt to predict the signal’s value at some future time (le > 0). The signal’s structure
must be well known to enable us to predict what values the signal obtains. Prediction filters have
obvious applications in sonar/radar tracking and stock market analysis. Of all the waveform estimation
problems, this one produces the largest errors.

Waveform estimation algorithms are not defined by this categorization; each technique can be applied
to each type of problem (in most cases). Instead, the algorithms are defined according to the signal model.
Correctness of the signal model governs the utility of a given technique. Because the signal usually appears
linearly in the expression for the observations (the noise is usually additive), linear waveform estimation
methods—filters—are frequently employed.

4.4.1 General Considerations

In the context of linear waveform estimation, the signal as well as the noise is considered to be a stochastic
sequence. Furthermore, the signal component S̃ in the observations is assumed to only be related to the
signal s to be estimated and not necessarily equal to it: X(l) = S̃(l)+ N(l). For example, the observations
may contain a filtered version of the signal when we require an estimate of the prefiltered waveform. In
this situation, the signal filter is usually known. The noise and signal components are zero-mean random
sequences statistically independent of each other. The optimum filter that provides the waveform estimate
Ŝ(l) can be time invariant (Wiener filters), time varying (Kalman filters), or data dependent (adaptive filters).
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Choosing an estimation strategy is determined by the signal’s characteristics and the degree to which these
characteristics are known. For generality, we allow the optimum filter’s unit-sample response h�(l,k) to be
time varying: It depends directly on the values of l, the “time variable” and k, the “time” at which the unit
sample is presented. When the filter is time invariant, the unit-sample response would be a function of the
interval l− k, time since presentation of the unit sample. The fundamental form of the observations and the
estimated signal in all linear waveform estimators is

X(l) = S̃(l)+N(l)

Ŝ(L f + le) =
L f

∑
k=Li

h�(L f ,k)X(k)

The estimate of the signal’s value at L f + le is thus produced at time L f in the filter’s output. The duration of
the filter’s unit-sample response extends over the entire observation interval [Li,L f ].

The Orthogonality Principle that proved so useful in linear parameter estimation can be applied here.
It states that the estimation error must be orthogonal to all linear transformations of the observations (see
Eq. 4.5 {64}). For the waveform estimation problem, this requirement implies that

E

[
{S(L f + le)− Ŝ(L f + le)}

L f

∑
k=Li

h(L f ,k)X(k)

]
= 0 for all h(·, ·)

This expression implies that each observed value must be orthogonal to the estimation error at time L f + le.

E

[{
S(L f + le)−

L f

∑
j=Li

h�(L f , j)X( j)
}

X(k)

]
= 0 for all k in [Li,L f ]

Simplifying this expression, the fundamental equation that determines the unit-sample response of the linear
minimum mean-squared error filter is

KSS̃(L f + le,k) =
L f

∑
j=Li

KX ( j,k)h�(L f , j) for all k in [Li,L f ]

where KX (k, l) is the covariance function of the observations, equaling E[X(k)X(l)], and KSS̃(L f + le,k) is the
cross-covariance between the signal at L f + le and the signal-related component of the observation at k. When
the signal and noise are uncorrelated, KX (k, l) = KS̃(k, l) + KN(k, l). Given these quantities, the preceding
equation must then be solved for the unit-sample response of the optimum filter. This equation is known as
the generalized Wiener-Hopf equation.

From the general theory of linear estimators, the mean-squared estimation error at index l equals the
variance of the quantity being estimated minus the estimate’s projection onto the signal.

E[ε2(l)] = KS(l, l)−E[Ŝ(l)S(l)]

Expressing the signal estimate as a linear filtering operation on the observations, this expression becomes

E[ε2(l)] = KS(l, l)−
L f

∑
k=Li

h�(L f ,k)KSS̃(l,k)

Further reduction of this expression is usually problem dependent, as succeeding sections illustrate.
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4.4.2 Wiener Filters

Wiener filters are the solutions of the linear minimum mean-squared waveform estimation problem for the
special case in which the noise and the signal are stationary random sequences [43: 100–18];[87: 481–
515];[93]. The covariance functions appearing in the generalized Wiener-Hopf equation thus depend on the
difference of their arguments. Considering the form of this equation, one would expect the unit-sample
response of the optimum filter to depend on its arguments in a similar fashion. This presumption is in fact
valid, and Wiener filters are always time invariant.

Ŝ(L f + le) =
L f

∑
k=Li

h�(L f − k)X(k)

We consider first the case in which the initial observation time Li equals −∞. The resulting filter uses all
of the observations available at any moment.∗ The errors that result from using this filter are smaller than
those obtained when the filter is constrained to use a finite number of observations (such as some number of
recent samples). The choice of Li = −∞ corresponds to an infinite-duration impulse response (IIR) Wiener
filter; in a succeeding section, Li is finite and a finite-duration impulse response (FIR) Wiener filter results.
The error characteristics of the IIR Wiener filter generally bound those of FIR Wiener filters because more
observations are used. We write the generalized Wiener-Hopf equation for the IIR case as

KSS̃(L f + le− k) =
L f

∑
j=−∞

KX ( j− k) ·h�(L f − j) for all k in (−∞,L f ]

Changing summation variables results in the somewhat simpler expression known as the Wiener-Hopf equa-
tion. It and the expression for the mean-squared estimation error are given by

KSS̃(l + le) =
∞

∑
k=0

KX (l− k)h�(k) for all l in [0,∞)

E[ε2] = KS(0)−
∞

∑
k=0

h�(k)KSS̃(le + k)
(4.10)

The first term in the error expression is the signal variance. The mean-squared error of the signal estimate
cannot be greater than this quantity; this error results when the estimate always equals 0.

In many circumstances, we want to estimate the signal directly contained in observations: X = S + N.
This situation leads to a somewhat simpler form for the Wiener-Hopf equation.

KS(l + le) =
∞

∑
k=0

[KS(l− k)+KN(l− k)]h�(k) for all l in [0,∞)

It is this form we solve, but the previous one is required in its solution.

Solving the Wiener-Hopf equation. The Wiener-Hopf equation at first glance appears to be a convolu-
tion integral, implying that the optimum filter’s frequency response could be easily found. The constraining
condition—the equation applies only for the variable l in the interval [0,∞)—means, however, that Fourier
techniques cannot be used for the general case. If the Fourier Transform of the left side of the Wiener-Hopf
equation were evaluated only over the constraining interval, the covariance function on the left would be
implicitly assumed 0 outside the interval, which is usually not the case. Simply stated but mathematically
complicated, the covariance function of the signal outside this interval is not to be considered in the solution
of the equation.

∗Presumably, observations have been continuously available since the beginning of the universe.
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Figure 4.4: We can conceptualize the solu-
tion of the Wiener-Hopf equation as the cas-
cade of two linear filters. The first whitens
the observations and the second has a unit-
sample response equal to (over the appro-
priate interval) the covariance between the
signal S and the signal component S̃ of the
whitened observations.

Non-causal solution. One set of circumstances does allow Fourier techniques. Let the Wiener filter
be noncausal with L f = +∞. In this case, the Wiener-Hopf equation becomes

KS(l) =
∞

∑
k=−∞

KX (l− k)h�(k) for all l

As this equation must be valid for all values of l, a convolution sum emerges. The frequency response H�( f )
of the optimum filter is thus given by

H�( f ) =
SS( f )

SS( f )+SN( f )

where SS( f ) and SN( f ) are, respectively, the signal and the noise power spectra. Because this expression
is real and even, the unit-sample response of the optimum filter is also real and even. The filter is therefore
noncausal and usually has an infinite duration unit-sample response. This result is not often used in temporal
signal processing but may find applications in spatial problems. Be that as it may, because this filter can use
the entire set of observations to estimate the signal’s value at any moment, it yields the smallest estimation
error of any linear filter. Computing this error thus establishes a bound on how well any causal or FIR Wiener
filter performs. The mean-squared estimation error of the noncausal Wiener filter can be expressed in the time
domain or frequency domain.

E[ε2] = KS(0)−
∞

∑
l=−∞

h�(l)KS(l)

=
∫ 1

2

− 1
2

SS( f )SN( f )
SS( f )+SN( f )

d f

Causal solution. To find the causal solution of the Wiener-Hopf equation, we now take L f to be
finite and follow Bode and Shannon’s approach [11]. Cleverly note the solution’s simplicity in the seemingly
artificial situation where the sum of the signal and noise covariance functions equals a unit sample. In this
case, we find that h�(l) = KSS̃(l + le), l = 0, . . . ,∞, which is compactly written using step functions as h�(l) =
KSS̃(l + le)u(l). In the frequency domain, this result is expressed as

H�( f ) = [e+ j2π f leSSS̃( f )]+,

where [S ( f )]+ means the Fourier transform of a covariance function’s additively causal part, which cor-
responds to its values at non-negative indices. The “additive” qualifier means we think of the covariance
function as the sum of a causal function, its values for non-negative indices, and a non-causal one, the values
for negative indices. The artificial situation of unit-sample covariance for the observations can be created by
passing them through a whitening filter. The optimum filter would then consist of the cascade (conceptually,
at least) of the whitening filter and the filter having the unit-sample response equal to the simple solution of
the Wiener-Hopf equation just given (Fig. 4.4). The whitening filter is such that the observations become
white noise with unity variance. Thus, its frequency response must be equal to the reciprocal of the “square
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root” of the observation sequence’s power spectrum. In the context of this problem, the square root of a given
power spectrum S ( f ) must result in a frequency response G( f ) whose squared magnitude is the solution to
the problem G( f )G∗( f ) = S ( f ). Thus, we need the multiplicatively causal part of the power density spec-
trum: in the frequency domain, we decompose the spectrum into a product of two terms, one corresponding
to a causal signal and the other to its non-causal relative.

This square-root must be evaluated carefully; for every S ( f ), there are an infinity of answers, only some
of which are appropriate. For example, the unit-valued squared magnitude has many square roots: not only
are the simplistic answers of +1 and −1 solutions, but also the frequency responses of allpass filters: filters
whose frequency responses are constant in magnitude, but vary in phase. A first-order allpass filter would
have a frequency response of the form

H( f ) =
e− j2π f −a

1−ae− j2π f .

Because of the symmetry of the pole and zero locations (pole at a while the zero is located at 1/a), this
frequency response has a constant magnitude. Factors such as these could be included in the square root
of an arbitrary power spectrum, but they are purely ancillary. More importantly, the reciprocal of the power
spectrum’s square root must be causal. These restrictions allow the number of possible solutions to be reduced
to just a few.

Letting the frequency response of the whitening filter be denoted by Hw( f ), it must satisfy

[SS( f )+SN( f )] · |Hw( f )|2 = 1.

Consider for the moment rational power spectra that can be expressed as ratios of polynomials in
exp{− j2π f}. Such spectra can envisioned as the result of passing white noise through linear filters hav-
ing poles and zeros. These power spectra not only have the same poles and zeros as the linear filter,
but also at their reciprocals because the power spectrum equals the product of the frequency response and
its conjugate. For example, when white noise is passed through a linear filter having transfer function
G(z) = (1−bz−1)/(1−az−1), the power spectrum of the output sequence equals G( f )G∗( f ), which becomes

S ( f ) =

(
1−be− j2π f

)(
1−be+ j2π f

)
(1−ae− j2π f )(1−ae+ j2π f )

=
b
a

(
1−be− j2π f

)(
1− 1

b e− j2π f
)

(1−ae− j2π f )
(
1− 1

a e− j2π f
) .

Given a power spectrum such as this and wanting to derive a frequency response corresponding to the stable,
causal filter which could have generated it, the poles located inside the unit circle and either of the zeros
occurring in reciprocal pairs could be chosen. Usually the selected zeros are those located inside the unit
circle; in this way, the so-called minimum-phase square root is chosen. We have thus calculated the square-
root of a power spectrum! The result of finding the stable, causal, and minimum-phase square-root of S ( f )
is denoted by S +( f ). The whitening filter’s frequency response equals the reciprocal of this quantity.

Hw( f ) =
1

[SS +SN ]+( f )

Note that the zeros located inside the unit circle must have been selected in the square root extraction lest the
whitening filter be unstable!

Once the observations are whitened, the solution to the simplified Wiener-Hopf equation given earlier
is related to the whitened signal component. The optimum filter’s unit-sample response corresponds to the
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values of the cross-covariance between the signal and its whitened version evaluated over [le,∞).

KSS̃(l) = E[S(k)S̃(k− l)]

= E

[
S(k)

∞

∑
j=−∞

hw( j)S(k− l− j)

]

=
∞

∑
j=−∞

hw(− j)KS(l− j)

In the frequency domain, the selection of the index values is thus equivalent to extracting the causal part
of exp{+ j2π f le}SS( f )H∗w( f ). However, the causal part is evaluated in a different sense from that used in
constructing the whitening filter. Here, we want that aspect of the power spectrum which corresponds to
the causal part in the additive sense while in deriving the whitening filter we sought the causal part in a
convolutional sense (i.e., factorization of the spectrum into causal and non-causal components). To compute
the additively causal part of a power spectrum, the power spectrum must be expanded in a partial fraction
expansion with those terms corresponding to poles inside the unit circle selected. This procedure results in
the operation previously denoted by [S ( f )]+.

The solution to the Wiener-Hopf equation—the frequency response of the Wiener filter—is the product of
the frequency response of the whitening filter and the frequency response of the signal estimation filter based
on whitened observations.

H�( f ) =
1

[SS +SN ]+( f )

[
e+ j2π f leSS( f )

[SS +SN ]+∗( f )

]
+

Example
Let’s estimate the value of S(L f + le) with a Wiener filter using the observations obtained up to and
including time L f . The additive noise in the observations is white, having variance 8/7. The power
spectrum of the signal is given by

SS( f ) =
1

5/4− cos2π f

=
1

1−0.5e− j2π f ·
1

1−0.5e+ j2π f

The variance of the signal equals the value of the covariance function (found by the inverse Fourier
Transform of this expression) at the origin. In this case, the variance equals 4/3; the signal-to-noise
ratio of the observations, taken to be the ratio of their variances, equals 7/6.

The power spectrum of the observations is the sum of the signal and noise power spectra.

SS( f )+SN( f ) =
1

1−0.5e− j2π f
1

1−0.5e+ j2π f +
8
7

=
16
7

(
1−0.25e− j2π f

)(
1−0.25e+ j2π f

)
(1−0.5e− j2π f )(1−0.5e+ j2π f )

The noncausal Wiener filter has the frequency response

SS( f )
SS( f )+SN( f )

=
7

16
1

(1−0.25e− j2π f )(1−0.25e+ j2π f )
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The unit-sample response corresponding to this frequency response and the covariance function of the
signal are found to be

h�(l) =
7
15

(
1
4

)|l|
and KS(l) =

4
3

(
1
2

)|l|
We find that the mean-squared estimation error for the noncausal estimator equals 4/3−4/5 = 8/15.

The convolutionally causal part of signal-plus-noise power spectrum consists of the first terms in
the numerator and denominator of the signal-plus-noise power spectrum.

[SS +SN ]+( f ) =
4√
7

1−0.25e− j2π f

1−0.5e− j2π f

The second term in the expression for the frequency response of the optimum filter is given by

e+ j2π f leSS( f )
[SS +SN ]+∗( f )

=

e+ j2π f le

(1−0.5e− j2π f )(1−0.5e+ j2π f )
4√
7

1−0.25e+ j2π f

1−0.5e+ j2π f

=
√

7
4

e+ j2π f le

(1−0.5e− j2π f )(1−0.25e+ j2π f )

The additively causal part of this Fourier Transform is found by evaluating its partial fraction expan-
sion.

√
7

4
e+ j2π f le

(1−0.5e− j2π f )(1−0.25e+ j2π f )
=

e+ j2π f le

2
√

7

[
4

1−0.5e− j2π f −
2e+ j2π f

1−0.25e+ j2π f

]
The simplest solution occurs when le equals zero: Estimate the signal value at the moment of the

most recent observation. The first term on the right side of the preceding expression corresponds to
the additively causal portion.[

SS( f )
[SS +SN ]+∗( f )

]
+

=
2√
7

1
1−0.5e− j2π f

The frequency response of the Wiener filter is found to be

H�( f ) =
√

7
4

1−0.5e− j2π f

1−0.25e− j2π f ·
2√
7

1
1−0.5e− j2π f

=
1
2

1
1−0.25e− j2π f

The Wiener filter has the form of a simple first-order filter with the pole arising from the whitening
filter. The difference equation corresponding to this frequency response is

Ŝ(l) =
1
4

Ŝ(l−1)+
1
2

X(l)

The waveforms that result in this example are exemplified in Fig. 4.5.
To find the mean-squared estimation error, the cross-covariance between the signal and its

whitened counterpart is required. This quantity equals the inverse transform of the Wiener filter’s
second component and thus equals (2/

√
7)(1/2)l , l ≥ 0. The mean-squared estimation error is nu-

merically equal to

E[ε2] =
4
3
−

∞

∑
l=0

[
2√
7

(
1
2

)l
]2

=
4
7

= 0.57
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Figure 4.5: The upper panel displays observations having statistic characteristics corresponding to those
given in the accompanying example. The output of the causal Wiener filter is shown in the bottom panel
along with the actual signal, which is shown as a dashed line.

which compares with the smallest possible value of 0.53 provided by the noncausal Wiener filter.
Thus, little is lost by using the causal filter. The signal-to-noise ratio of the estimated signal is equal to
KS(0)/E[ε2]. The causal filter yields a signal-to-noise ratio of 2.33, which should be compared with
the ratio of 1.17 in the observations. The ratio of the signal-to-noise ratios at the output and input of a
signal processing operation is usually referred to as the processing gain. The best possible processing
gain is 2.14 and equals 2.0 in the causal case. These rather modest gains are because of the close
similarity between the power spectra of the signal and the noise. As the parameter of this signal’s
power spectrum is increased, the two become less similar, and the processing gain increases.

Now consider the case in which le > 0: We want to predict the signal’s future value. The whitening
filter portion of the solution does not depend on the value of le and is therefore identical to that just
given. The second component of the Wiener filter’s frequency response does depend on le and is given
for positive values of le by [

e+ j2π f leSS( f )
[SS +SN ]+∗( f )

]
+

=

[ 2√
7
e+ j2π f le

1−0.5e− j2π f

]
+

The causal portion of this frequency response is found by shifting the unit-sample response to the
left and retaining the positive-time portion. Because this frequency response has only one pole, this
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manipulation is expressed simply as a scaling.[
e+ j2π f leSS( f )

[SS +SN ]+∗( f )

]
+

=
2√
7

( 1
2

)le

1−0.5e− j2π f

The frequency response of the prediction filter is thus given by

H�( f ) =
1
2

2−le

1−0.25e− j2π f

The optimum linear predictor is a scaled version of the signal estimator. The mean-squared error in-
creases as the desired time of the predicted value exceeds the time of the last observation. In particular,
the signal-to-noise ratio of the predicted value is given by

KS(0)
E[ε2]

=
1

1− 4
7

( 1
2

)2le

The signal-to-noise ratio decreases rapidly as the prediction time extends into the future. This decrease
is directly related to the reduced correlation between the signal and its future values in this example.
This correlation is described by the absolute value of the signal’s covariance function relative to its
maximum value at the origin. As a covariance function broadens (corresponding to a lower frequency
signal), the prediction error decreases. If a covariance function oscillates, the mean-squared prediction
error varies in a similar fashion.

Finite-duration Wiener filters. Another useful formulation of Wiener filter theory is to constrain the
filter’s unit-sample response to have finite duration. To find this solution to the Wiener-Hopf equation, the
values of L f and Li are chosen to be finite. Letting L represent the duration of the filter’s unit-sample response
(L = L f −Li +1), the Wiener-Hopf equation becomes

KSS̃(l + le) =
L−1

∑
k=0

KX (k− l)h�(k), for all l in [0,L−1]

This system of equations can be written in matrix form as kSS̃(le) = KX h�.
KSS̃(le)

KSS̃(le +1)
...

KSS̃(le +L−1)

=


KX (0) KX (1) · · · KX (L−1)

KX (−1) KX (0) · · · KX (L−2)
... KX (−1)

. . .
...

KX (−L+1) · · · KX (−1) KX (0)

 ·


h�(0)

h�(1)
...

h�(L−1)


When the signal component of the observations equals the signal being estimated (S̃ = S), the Wiener-Hopf
equation becomes kS(le) = KX h�. The L×L matrix KX is the covariance matrix of the sequence of L obser-
vations. In the simple case of uncorrelated signal and noise components, this covariance matrix is the sum of
those of the signal and the noise (KX = KS +KN). This matrix has an inverse in all but unusual circumstances
with the result that the unit-sample response of the FIR Wiener filter is given by

h� = K−1
X kS(le)

Because this covariance matrix is Toeplitz and Hermitian, its inverse can be efficiently computed using a
variety of algorithms [69: 80–90]. The mean-squared error of the estimate is given by

E[ε2] = KS(0)−
L−1

∑
k=0

h�(k)KS(le + k)

= KS(0)−kt
S(le)K

−1
X kS(le)
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Linear prediction. One especially important variation of the FIR Wiener filter occurs in the unique situ-
ation in which no observation noise is present, and the signal generation model contains only poles [67, 68].
Thus, the signal S(l) is generated by passing white noise w(l) through a linear system given by the difference
equation

S(l) = a1S(l−1)+a2S(l−2)+ · · ·+apS(l− p)+w(l)

The coefficients a1, . . . ,ap are unknown. This signal modeling approach is frequently used to estimate the
signal’s spectrum.

As no noise is present in the observations, the filtered estimate of the signal (le = 0) equals S(l) and the
estimation error is exactly 0. The concern of linear prediction is not this trivial problem, but the so-called one-
step prediction problem (le = 1): Predict the value of the signal at index l given values of S(l−1),S(l−2), . . . .
Thus, we seek a FIR Wiener filter predictor, which has the form

Ŝ(l) = h(0)S(l−1)+h(1)S(l−2)+ · · ·+h(p−1)S(l− p)

Comparing the signal model equation to that for the Wiener filter predictor, we see that the model parameters
{a1, . . . ,ap} equal the Wiener filter’s unit-sample response h(·) because the input w(l) is uncorrelated from
sample to sample. In linear prediction, the signal model parameters are used notationally to express the filter
coefficients.

The Orthogonality Principle can be used to find the minimum mean-squared error predictor of the next
signal value. By requiring orthogonality of the prediction error to each of the observations used in the estimate,
the following set of equations results.

a1KS(0)+a2KS(1)+ · · ·+apKS(p−1) = KS(1)
a1KS(1)+a2KS(0)+ · · ·+apKS(p−2) = KS(2)

...
...

a1KS(p−1)+a2KS(p−2)+ · · ·+apKS(0) = KS(p)

In linear prediction, these are known as the Yule-Walker equations. Expressing them concisely in matrix form
KSa = kS, the solution is a = K−1

S kS.
From the signal model equation, we see that the mean-squared prediction error E[{S(l)− Ŝ(l)}2] equals the

variance σ2
w of the white-noise input to the model. Computing the mean-squared estimation error according

to Eq. 4.10 {77}, this variance is expressed by

σ
2
w = KS(0)−a1KS(1)−·· ·−apKS(p)

This result can be combined with the previous set of equations to yield a unified set of equations for the
unknown parameters and the mean-squared error of the optimal linear predictive filter.


KS(0) KS(1) · · · KS(p)

KS(1) KS(0) · · · KS(p−1)
... KS(1)

. . .
...

KS(p) · · · KS(1) KS(0)

 ·


1

−a1

...

−ap

=


σ2

w

0
...

0

 (4.11)

To solve this set of equations for the model coefficients and the input-noise variance conceptually, we compute
the preliminary result K−1

S δδδ . The first element of this vector equals the reciprocal of σ2
w; normalizing K−1

S δδδ

so that its leading term is unity yields the coefficient vector a. Levinson’s algorithm can be used to solve these
equations efficiently and simultaneously obtain the noise variance [69: 211–16].
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4.4.3 Dynamic Adaptive Filtering

The Wiener filter approach presumes that the signal and the noise are statistically well characterized. Specif-
ically, the theoretical framework requires a second-order description of the signal and the noise that models
the signal and the noise as white noise processes that have been passed through known linear system. Each
filter has a specific implementation and performance characteristics that must be determined before the obser-
vations are made.

In many other situations, however, the signal or the observation noise are ill defined. They may vary
in unpredictable ways or have poorly specified spectral or temporal characteristics. One typical problem is
interference: Rather than just noise, the observations are corrupted by other signals that defy simple statistical
characterization. Here, the waveform estimator must learn from the observations what is not known a priori
and adapt its characteristics or structure as data become available. Rather than, for example, estimating a
signal’s power spectrum “off-line” and then incorporating the estimate into the filter’s structure for subsequent
observations, dynamic adaptive filters either take the imprecise knowledge into account directly or modify
themselves while producing signal estimates [3, 24, 43, 45, 92].

Such filters can adjust two aspects of themselves: their structure and their coefficients. Consider a finite-
duration (FIR ) Wiener filter. The characteristics of this filter are its duration (L) and the values of the unit-
sample response h. The quantity L is a structural parameter because it determines the number of filter coef-
ficients; the coefficients are determined by signal and noise characteristics. Structure adjustment is usually
quite involved while changing coefficient values dynamically is much more plausible. For example, adjusting
the filter coefficients from one sample to another by a presumably modest increment poses no fundamen-
tal difficulties (as shown in sequel). Modifying the number of coefficients, however, requires the ability to
compute an initial value for a new coefficient, conceptually equivalent to “adjusting” the value from zero.
Not only is this adjustment in reality a rather drastic change, but it also increases the computations required
for the other coefficients. Consequently, we concentrate here on coefficient adaptations to changes in the
observations.

The FIR Wiener filter consists of a finite set of coefficients that minimize the mean-squared estimation
error. The closed form solution for this set is

h� = K−1
X kSS̃(le)

where KX is the covariance matrix of the observations (assumed to consist of signal plus noise) and kSS̃(le)
consists of L values starting at lag le of the cross-covariance function between the signal and its observed
counterpart. For simplicity, only the one-step prediction problem (le = 1) is explicitly considered here. To
determine a method of adapting the filter coefficients at each sample, two approaches have been used. The
first one considered here, the least mean squares (LMS ) algorithm, is to return to the linear minimum mean-
squared error minimization problem and find iterative methods of solving it that can incorporate new observa-
tions “on the fly.” The second approach, the recursive least squares (RLS ) algorithm (considered in the next
section), amounts to finding ways of updating the optimal Wiener solution at each index.

Least mean squares (LMS) algorithm. The LMS algorithm is intimately related to an optimization
method known as the method of steepest descent [3: 46–52];[27]: Given a function to be minimized, the mean-
squared error E[ε2] at index l, and the independent variables, the vector of filter coefficients h, the minimum
can be found iteratively by adjusting the filter coefficients according to the gradient of the mean-squared error.

h(i+1) = h(i)−µ ∇h E[ε2(l)] , µ > 0

The gradient “points” in the direction of the maximum rate of change of the mean-squared error for any set
of coefficient values. The direction of the gradient’s negative points toward the minimum. The often-used
analogy is rolling a ball down the edge of a bowl. The direction the ball rolls at each instant corresponds to the
locally maximum slope, the negative of the gradient at each spatial location. If the bowl is smooth and isn’t
too bumpy, the ball rolls to the global minimum; if bumpy, the ball may stop in a local minimum. Because
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of the characteristics of the mean-squared error, the bowl it forms is provably convex; hence, it has only one
minimum. The method of steepest descent is therefore guaranteed to converge.

To compute this gradient, the mean-squared error must be expressed in terms of the filter coefficients.
Letting the previous L observations be expressed by the observation vector X = col[X(l− 1), . . . ,X(l−L)]
with X = S̃+N, the application of an arbitrary set of coefficients results in a mean-squared error given by

E[ε2] = E[(S−htX)2]

= σ
2
S −2htkSS̃ +htKX h

The gradient of this quantity is, therefore,

∇h E[ε2] =−2kSS̃ +2KX h

and the method of steepest descent is characterized by the iterative equation for the filter coefficients given
by∗

h(i+1) = h(i)+2µ[kSS̃−KX h(i)]

Here, the variable i denotes iteration number, which in general need not be related to index values: Filter
adaptation could occur every once in a while rather than at every index. The term in the brackets can also be
written as

kSS̃−KX h(i) = E[ε(i)X]

where ε(i) = S−ht(i)X is the estimation error.
The convergence of the method of steepest descent is controlled by the value of the adaptation parameter

µ . The difference of the filter coefficients from the optimal set, d(i) = h�−h(i), is governed by an easily
derived iterative equation.

d(i+1) = [I−2µKX ]d(i)

This equation says that the error at each iteration is “proportional” to the error at the previous iteration;
consequently, the method of steepest descent converges linearly. A closed form expression for the vector of
coefficient differences is

d(i) = [I−2µKX ]id(0)

Convergence is assured so long as the ith power of the matrix in brackets decreases to 0 as i becomes large.
This condition is more easily expressed in terms of the eigenvalues of this matrix (see §B.5 {231}): A neces-
sary and sufficient condition for convergence is that the magnitude of the eigenvalues of I−2µKX must all be
less than unity (see Problem 4.33 {134}). Coupling this condition with the necessity that µ > 0 results in the
requirement for the method of steepest descent to converge, µ must be less than the reciprocal of the largest
eigenvalue of KX .

0 < µ <
1

maxλKX

The “time constant” of the convergence is governed by the smallest eigenvalue and is greater than
1/(2µ min{λKX }). The greatest rate of convergence is obtained with the smallest time constant; we should
thus choose µ as near to its upper limit as possible. When the largest value of µ is selected, the rate of con-
vergence of the method of steepest descent is proportional to the ratio of the largest and smallest eigenvalues
of the observations’ covariance matrix.

The preceding discussion described a numerical procedure for computing the coefficients of the FIR
Wiener filter as an alternative to the closed-form expression that involves a matrix inverse. This procedure

∗The form of this equation is remarkably similar to a Kalman filter equation for estimating the filter coefficients. This similarity is no
accident and reveals the fundamental importance of the ideas expressed by Kalman filter.
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does not yield an adaptive filter because we must somehow calculate E[ε(i)X], but it does inspire an idea.
Expressing the steepest descent iteration in terms of the estimation error yields

h(i+1) = h(i)+2µ E[ε(i)X]

The LMS algorithm amounts to approximating the expected value by the product of the observation vector
and the estimation error, a technique known as stochastic approximation [89]. The optimization iteration now
coincides with the index of the observations and a desired signal (i = l). The equations governing the LMS
algorithm are [3: 68–83];[43: 194–259]

Ŝ(l) =
L−1

∑
k=0

h(l,k)X(l− k−1) = ht(l)X(l−1)

ε(l) = S(l)− Ŝ(l)
h(l +1) = h(l)+2µε(l)X(l−1)

Employing the LMS algorithm presumes that either the signal is known to some degree and we want to
estimate some aspect of it or that we want to cancel it so that the error sequence ε(l) is “signal-free” [3:
87–98];[43: 7–31]. A typical example is one-step prediction where no observation noise is present: The filter
predicts the signal value at index l, the error at time l is computed, and this error is used to adapt the filter
coefficients that yield the next signal estimate. Because of the limited extent of the data used to change the
filter coefficients, we can estimate well signals having slowly varying characteristics.

Because the filter coefficients depend on new observations and are continually updated via the estimate of
the gradient, the LMS filter coefficients do not converge to a stable set of values even when the observations
are stationary. Rather, after an initial transient response to the onset of the observations, the coefficients
“settle” toward a set of values and vary randomly to some degree. Furthermore, the convergence bounds on
the adaptation parameter must be sharpened to include the gradient estimate rather than its expected value [34].
For the LMS filter to converge, the adaptation parameter must satisfy [33, 34]

0 < ∑
j

µλ j

1−2µλ j
< 1 and 0 < µ <

1
2max j{λ j}

where λ j, j = 1, . . . ,L denotes the eigenvalues of KX . Enforcing this condition requires clairvoyance because
the covariance is assumed to be unknown. A more practical and more stringent bound is [33]

0 < µ ≤ 1
3tr[KX ]

(4.12)

because the trace of the covariance matrix equals the total power in the observations, an easily estimated
quantity in practice.

The variances of the filter’s coefficients are also related to the adaptation parameter µ , but in the opposite
way than the settling time. A small value of µ results in little change of the coefficients from one update to the
next; the filter coefficients settle slowly but their long-term values do not vary greatly about the optimal values.
Larger values of µ allow greater changes; more rapid settling occurs, but the long-term values have larger
variations. Fig. 4.6 illustrates this point. The degree of the long-term variations in stationary environments is
assessed by the so-called misadjustment factor M: the difference between the variances of the LMS estimate
and the optimal, Wiener filter estimate normalized by the optimal value [43: 236–37].

M =
σ2

ε −σ2
ε (Wiener)

σ2
ε (Wiener)

The misadjustment factor MLMS for the LMS algorithm is well approximated (for small values of the factor)
by µLσ2

S [34];[43: 236–37].
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Figure 4.6: The filter coefficients of one-step predictors produced by first-order LMS and RLS algorithms
are shown as a function of the number of observations. The coefficient’s correct value is 1/2. In the upper
panel, both algorithms settle rapidly but vary greatly about their optimal values. In the lower, the algorithms’
parameters were adjusted to reduce the variations of their estimates. Note that the settling time of the RLS
filter coefficient is not strongly influenced by this parameter value change. In comparison, settling takes much
longer in the LMS algorithm.

On the basis of these simple considerations, one is tempted to consider changing the adaptation parameter
in addition to the filter coefficients; conceptually, large values could be used initially and then slowly reduced
to yield smaller coefficient variations about their optimal values. Given sufficient detail about the signal
characteristics, such a scheme might be feasible. If this reduction of µ is tried in an ad hoc manner, however,
the coefficients might settle about artificial values because they are not allowed to change.∗

Recursive least squares (RLS) algorithm. Another approach in adaptive filtering is to approximate
the solution for optimal set of filter coefficients directly without imposing the additional burden of approx-
imating an optimization procedure as the LMS algorithm does [3: 111–21];[34];[43: 381–444]. This more
direct approach results in filters having better convergence properties but at the expense of computational
complexity.
∗Note that any set of vectors is a solution to h(l +1) = h(l) when µ = 0.
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Recalling the solution to the FIR Wiener filter, the filter coefficients are given by

h� = K−1
X kSS̃

The data-dependent quantity in this expression is the covariance matrix of the observations. Not only is a
recursive method of computing the inverse of this matrix sought, but also a recursive estimate of the matrix
itself. To estimate the covariance matrix of size L×L from zero-mean data, the data is formed into a series
of groups (frames) of duration L. The lth frame, denoted by the vector X(l), contains the most recent L
observations: X(l) = col[X(l),X(l−1), . . . ,X(l−L + 1)]. Two methods of estimating the covariance matrix
are commonly used. Whichever is chosen, the estimate at index l must depend ononly the observations
obtained before that time.∗ The first method of estimating the covariance matrix is to average the outer
products computed from the most recent S frames.

K̂X (l) =
1
S

l−1

∑
k=l−S

X(k)Xt(k)

Note that we must require S≥ L to obtain an invertible covariance matrix from this moving average or Bartlett
estimate. Updating this estimate requires storing all of the S + L− 1 observations. A second and somewhat
simpler approach is to use the exponentially weighted estimate†

K̂X (l) =
l−1

∑
k=0

α
l−1−kX(k)Xt(k)

This estimate is reminiscent of the convolution sum for a first-order recursive filter having the sequence of
outer products for each frame as its input. Because of this analogy, this estimate’s promised simplicity arises
because it can be written in the recursive form

K̂X (l) = αK̂X (l−1)+X(l−1)Xt(l−1)

Similar to the moving average estimate, an invertible estimate emerges once l ≥ S. Because of this recursive
form, the exponentially weighted estimate has the additional advantage that its inverse can also be expressed
recursively. Based on the well-known Matrix Inverse Lemma (see §B.3 {229}), the inverse of K̂X (l) is thus
computed according to

K̂−1
X (l) =

1
α

[
K̂−1

X (l−1)−
K̂−1

X (l−1)X(l−1)Xt(l−1)K̂−1
X (l−1)

α +β (l)

]
, (4.13)

where β (l) = Xt(l− 1)K̂−1
X (l− 1)X(l− 1). For later convenience, define the vector g(l) to be a portion of

this recursion

g(l) =
K̂−1

X (l−1)X(l−1)
α +β (l)

and we thus express the estimate’s inverse by

K̂−1
X (l) =

1
α

[
K̂−1

X (l−1)−g(l)Xt(l−1)K̂−1
X (l−1)

]
A similar recursive structure can be imposed on the second term in the expression for the FIR Wiener filter’s
unit-sample response that started all of this (h� = K−1

X kSS̃). The vector kSS̃ arose from the cross-covariance
of the to-be-estimated signal with the observations. This quantity can be approximated by the recursion

k̂SS̃(l) = αk̂SS̃(l−1)+S(l)X(l−1)

∗This requirement is needed because we are focused on prediction problems.
†Note that the frames used in both estimates overlap. If desired, nonoverlapping frames could be used with the advantage of a more

statistically stable estimate. Observations would span a longer period, however.
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The filter coefficients h(l +1) are given by K̂−1
X (l)k̂SS̃(l), which on substitution of the recursions becomes

h(l +1) = h(l)+g(l)
[
S(l)−ht(l)X(l−1)

]
The equations governing the RLS algorithm are therefore

Ŝ(l) = ht(l)X(l−1)

ε(l) = S(l)− Ŝ(l)

β (l) = Xt(l−1)K̂−1
X (l−1)X(l−1)

g(l) =
K̂−1

X (l−1)X(l−1)
α +β (l)

K̂−1
X (l) =

1
α

[
K̂−1

X (l−1)−g(l)Xt(l−1)K̂−1
X (l−1)

]
h(l +1) = h(l)+g(l)ε(l)

The difference equation for updating the inverse of the covariance matrix is numerically sensitive. This
computational issue can be approached using so-called square-root algorithms that update the matrix square
root of the covariance matrix [9]. The parameter α in this algorithm plays a similar role as µ in the LMS
approach. Both parameters control the effective amount of data used in the averaging and hence the degree
to which the algorithms can track variations in signal characteristics. The RLS algorithm always converges
so long as 0 < α < 1; otherwise, the covariance estimate recursion is unstable. In addition, α controls the
variance of the long-term estimate. The misadjustment factor of the RLS algorithm is approximately equal to
MRLS = (1−α)L [34]. Both procedures require initial conditions to begin their recursions. Usually, the filter
coefficients are initially zero. The RLS algorithm requires an additional quantity: the covariance matrix of
the observations. A typical choice for this initial covariance matrix estimate is a constant times the identity
matrix, the constant equaling an estimate of the signal variance.

Example
Consider the first-order example given when we considered the Wiener filter {80} where no observa-
tion noise is present. The initial observation occurs at l = 0. Given that the statistical characteristics
of the signal are known, the optimal one-step predictor is a constant times the previous observations.
The adaptive algorithms, LMS and RLS, do not presume knowledge of signal characteristics other
than filter duration. The optimal one-step predictor for a first-order signal is a zeroth-order system
(L = 1). This type of consideration is an example of a structural constraint; usually, the duration of
the adaptive filter is chosen longer than that expected to be required by the data. This choice must be
made carefully as it directly influences the amount of computation in both algorithms. For simplicity,
set L = 1.

The LMS algorithm requires a value for µ to ensure convergence; too large a choice leads to an
unstable filter. In this simple, first-order example, the variance σ2

X of the observations is about 2.5 and
µ must be less than 0.13.∗ The RLS algorithm can also use an estimate of the observations’ variance
to initialize the covariance matrix estimate. The choice of α is governed by the misadjustment factor.
To compare fairly the two adaptive algorithms, we set the misadjustment factors equal. The values of
the single filter coefficient are shown for each in Fig. 4.6 {88}. The RLS filter coefficient settles much
more rapidly than the LMS one. The LMS algorithm must both “sense” the signal characteristics and
search for the optimal filter; the RLS algorithm needs only to perform the latter chore.

The RLS algorithm, which generally produces better adaptive filters by most any measure, does require
more computations than the LMS filter in its present form. Typically, the RLS algorithm converges quickly,
∗Because the system is first order, we use the constraint µ < 1/3σ2

X (Eq. 4.12 {87}).
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taking about 2M steps to converge [43: 395]. This convergence rate is much greater than that provided by
the LMS algorithm. The quickened convergence is bought with increased computational complexity: Com-
putations for each RLS update are of order O(L2) and O(L) for LMS. The computations of the covariance
matrix’s inverse can be reduced by exploiting the matrix’s Toeplitz symmetries for both algorithms. Gener-
ically known as fast Kalman algorithms [3: 142–74];[43: 409–44];[65], they provide linear computational
complexity for both algorithms.

4.4.4 Kalman Filters

Kalman filters are linear minimum mean-squared error waveform estimators that generalize Wiener filters to
situations in which the observations have time-varying statistics [4];[35];[43: 269–301];[53]. On the surface,
this problem may seem esoteric. Kalman filters, however, directly face the issue ducked by the Wiener
filter: initiating a linear waveform estimator from the first observation. Wiener filters tacitly assume that
observations have been forever available, an unrealistic requirement. More important, the structure of the
Kalman filter provides direct insights into the nature of MMSE waveform estimators. For example, we should
have noted previously that the Wiener filter’s output does not have a power spectrum equal to that assumed
for the signal. A simple illustration of this point is the noncausal Wiener filter; the power spectrum of its
waveform estimate is

SŜ(ω) =
S 2

s (ω)
Ss(ω)+SN(ω)

This power spectrum tends toward the signal’s power spectrum Ss(ω) only when that of the noise tends to
zero, not a very interesting situation. Why shouldn’t the optimum filter make the power spectrum of its output
equal that of the signal? This question and others are best answered in the context of the Kalman filter.

Rather than use the unit-sample response framework of linear waveform estimation developed in §4.4.1,
Kalman filters are derived in terms of state variable characterizations of linear systems. This re-expression is,
in fact, the key to gaining more insight into linear waveform estimators. The Kalman filter provides the basis
for tracking systems that coalesce the outputs from several arrays to locate a moving source of propagating
energy. Here, the concept of state becomes crucial to developing effective algorithms. Conversely, signals
having zeros in their power spectra cannot be easily represented by state variable characterizations; the gain
in insight more than compensates for the loss of generality.

State-variable modeling of observations. Signal production is modeled as passing white noise
through a system characterized by the state vector v. The state equation, which governs the behavior of
the system, is given by

v(l) = A(l)v(l−1)+u(l)

The observation equation describes the signal s(l) as a linear combination of state vector components C(l)v(l)
observed in the presence of additive noise.

X(l) = C(l)v(l)+N(l)

Note that the observations and the signal can be vectors in this characterization; in this way, multiple, interde-
pendent observations can be described and their estimates described as the result of a single, unified operation.
In previous sections, the signal and noise models have been constrained to stationary random sequences. The
explicit dependence of every aspect of the state and observation equations on the index l permits relaxation of
that constraint. The noise vectors are assumed to be zero-mean, white Gaussian random vectors.

E[u(k)ut(l)] = Ku(l)δ (k− l) E[N(k)Nt(l)] = KN(l)δ (k− l)

Note the components of these noise vectors are allowed to be correlated in this framework. Additive colored
noise in the observations can be described by enlarging the number of states in the state equation and defining
the matrix C appropriately.
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Kalman filter derivation. The minimum mean-squared error linear estimate of the signal is equivalent
to estimating the state vector and then multiplying by the matrix C: Ŝ(l) = C(l)v̂(l). We shall thus derive the
optimal state estimate. Furthermore, this estimate is the filtered estimate: The estimate of the state at index
l depends on all of the observations made up to and including l, commencing with X(0). We describe later
how to extend this estimate to prediction problems.

Denote the state estimate by v̂(l|m), the notation intending to convey that the estimate at index l depends
on all the observations made up to and including those made at index m {X(m),X(m−1), . . . ,X(0)}. The
filtered state estimate thus takes the form v̂(l|l), and we assume it to have a state variable characterization:

v̂(l|l) = M(l)v̂(l−1|l−1)+G(l)X(l)

This formulation is verified by finding the matrices M and G that permit the Orthogonality Principle to be
obeyed: The estimation error εεε(l|l) = v(l)− v̂(l|l) must be orthogonal to all linear transformations that can
be applied to the observations. For instance, the waveform estimator is certainly a linear system acting on the
observations; hence the estimator v̂(l−1|l−1) is a linear transformation of all of the observations obtained
before index l and must be orthogonal to the estimation error.

E
[
{v(l)− v̂(l|l)}t v̂(l−1|l−1)

]
= 0

This property can be used to find the matrix M.∗

E
[
{v(l)−GX(l)}t v̂(l−1|l−1)

]
= E

[
{Mv̂(l−1|l−1)}t v̂(l−1|l−1)

]
Adding and subtracting the state v(l− 1) from v̂(l− 1|l− 1) occurring in braces on the right side of this
equation and applying the Orthogonality Principle results in

E
[
{v(l)−GX(l)}t v̂(l−1|l−1)

]
= E

[
{Mv(l−1)}t v̂(l−1|l−1)

]
Using the observation equation to eliminate X(l) leaves

E
[
{v(l)−GCv(l)−GN(l)}t v̂(l−1|l−1)

]
= E

[
{Mv(l−1)}t v̂(l−1|l−1)

]
Because the noise N(l) is uncorrelated from index to index, it is uncorrelated with the state estimate v̂(l−
1|l− 1), which depends only on the noise values previous to index l. Thus, the expected value of the inner
product between these two quantities is zero. Substituting the state equation into the left side of this equation
and noting a similar simplification with respect to the input noise u(l) leaves

E
[{

(I−GC)Av(l−1)
}t v̂(l−1|l−1)

]
= E

[{
Mv(l−1)

}t v̂(l−1|l−1)
]

For this equality to be satisfied for all nonzero states and their estimates, the matrix M must satisfy

M = [I−GC]A

The Kalman filter state estimator equation thus becomes

v̂(l|l) = A(l)v̂(l−1|l−1)+G(l) [X(l)−C(l)A(l)v̂(l−1|l−1)]

This rather complicated result hides an intriguing and useful interpretation. A critical aspect of this inter-
pretation is the idea of the one-step predictor v̂(l|l−1): the estimate of the current state based on all previous

∗The dependence of the various matrices on time is notationally implicit in sequel. Consequently, reference to a matrix (such as A)
denotes the matrix A(l) at index l.
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observations. As no other observations are available, assume that the estimate is based solely on the estimate
of the state at l−1: v̂(l−1|l−1). The predictor is therefore written

v̂(l|l−1) = N(l)v̂(l−1|l−1)

where N is a matrix found by satisfying the Orthogonality Principle. This matrix is found to equal A(l) so
that the one-step predictor is given by

v̂(l|l−1) = A(l)v̂(l−1|l−1)

In the Wiener filter example of estimating a first-order signal observed in noise {80}, we found the one-step
predictor to be a scaled version of the previous estimate. We now see that the Kalman filter generalizes that
finding to higher-order signals.

The estimator equation can thus be expressed in terms of the one-step predictor.

v̂(l|l) = v̂(l|l−1)+G[X(l)−Cv̂(l|l−1)]

The term ννν(l) = X(l)−Cv̂(l|l− 1) serves as the input and represents that part of the current observations
X(l) not predicted by the previous ones. This quantity is often referred to as the innovations sequence.
This basic form of the estimator equation occurs in many linear estimation situations: The value of the one-
step predictor is augmented by an input term equal to a matrix G, the Kalman gain matrix, multiplying the
innovations sequence.

To derive the equations determining the Kalman gain, the estimation errors εεε(l|l) and εεε(l|l−1) as well as
the observation vector X(l) are given by

εεε(l|l−1) = Aεεε(l−1|l−1)+u(l)
εεε(l|l) = Aεεε(l−1|l−1)+u(l)−GCAεεε(l−1|l−1)−G[Cu(l)+N(l)]
X(l) = CA[εεε(l−1|l−1)+ v̂(l−1|l−1)]+Cu(l)+N(l)

Let Kε denote the covariance matrix of the state estimation error: Kε = E[εεεεεε t ]. The covariance matrix of the
one-step prediction error is found from the first equation to be

Kε(l|l−1) = AKε(l−1|l−1)At +Ku

Because of the Orthogonality Principle, E
[
εεε(l|l)Xt(l)

]
= 0. Using the last two equations, this constraint

yields
Kε(l|l−1)Ct −G[CKε(l|l−1)Ct +KN ] = 0

We find the Kalman gain matrix to be

G(l) = Kε(l|l−1)Ct(l)
[
C(l)Kε(l|l−1)Ct(l)+KN(l)

]−1

Expressing the covariance matrix of the estimation error directly, a simple recursion for it emerges.

Kε(l|l) = Kε(l|l−1)−G(l)C(l)Kε(l|l−1)

Thus, the Kalman gain matrix is found recursively from the covariance matrix of the estimation error and
the covariance matrix of the one-step prediction error. This recursion amounts to a solution of the Riccati
equation, the nonlinear difference equation governing the evolution of the gain matrix.

In summary, the Kalman filter equations are

Kalman Prediction Equations:

Ŝ(l) = C(l)v̂(l|l)
v̂(l|l) = A(l)v̂(l−1|l−1)+G(l) [X(l)−C(l)A(l)v̂(l−1|l−1)]

(4.14a)
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Kalman Gain Equations:

G(l) = Kε(l|l−1)Ct(l)
[
C(l)Kε(l|l−1)Ct(l)+KN(l)

]−1

Kε(l|l−1) = A(l)Kε(l−1|l−1)At(l)+Ku(l)

Kε(l|l) =
[
I−G(l)C(l)

]
Kε(l|l−1)

(4.14b)

To perform these recursions, initial conditions must be specified. As observations are usually taken to begin
at l = 0, values for v̂(−1|−1) and Kε(−1|−1) must somehow be established. The initial value v̂(−1|−1)
equals the state estimate when no observations are available. Given no data, the minimum mean-squared error
estimate of any quantity is the mean. As the noise terms in the state variable representation of the signal and
the observations are assumed to have zero mean, the expected value of the state is 0, implying that the initial
value of the state estimate should be 0. In this case, the variance of the estimation error equals that of the
state. Thus, the initial condition of the Riccati equation solution is Kε(−1|−1) = E[v(−1)vt(−1)].

Example
The simplest example of a Kalman filter waveform estimator occurs when the signal generation model
is first-order. Recalling this type of example from the previous section {80}, its state variable charac-
terization is

v(l) =
1
2

v(l−1)+w(l) Kw = [1]

and the observation equation is

X(l) = v(l)+N(l) KN = [8/7]

Thus, the quantities that determine the solution of the Kalman filter components are A = [1/2] and
C = [1]. The estimator equation is, therefore,

Ŝ(l) =
1
2

Ŝ(l−1)+G(l)[X(l)− 1
2

Ŝ(l−1)]

The covariance matrices are simply variances and the equations determining the Kalman gain are
scalar equations.

G(l) =
σ2

ε (l|l−1)
σ2

ε (l|l−1)+8/7

σ
2
ε (l|l−1) =

1
4

σ
2
ε (l−1|l−1)+1

σ
2
ε (l|l) = σ

2
ε (l|l−1)−G(l)σ2

ε (l|l−1)

The initial value for the variance, σ2
ε (−1| − 1), equals the signal variance, which equals 4/3. The

table shows the values of the quantities involved in the Kalman gain computation.

l σ2
ε (l|l−1) G(l) σ2

ε (l|l)
0 1.3333 0.5385 0.6154
1 1.1538 0.5024 0.5742
2 1.1435 0.5001 0.5716
3 1.1429 0.5000 0.5714
...

...
...

...
∞ 8/7 1/2 4/7

Note how the gain varies despite the fact that the signal model is stationary. This effect occurs because
the filter is started with no prior observation values. After few iterations that correspond to this initial
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transient, the Kalman filter coefficients settle and the signal estimate is governed by the difference
equation

Ŝ(l) =
1
2

Ŝ(l−1)+
1
2
[X(l)− 1

2
Ŝ(l−1)]

=
1
4

Ŝ(l−1)+
1
2

X(l)

which is precisely the Wiener filter result. The Kalman filter has the advantage that there is an explicit
starting procedure; the Wiener filter is the Kalman filter in “steady state” for otherwise stationary
signals.

4.5 Noise Suppression with Wavelets
Since their introduction in the mid 1980s, ideas from diverse scientific fields have resulted in developing
wavelet signal analysis into a powerful analysis tool. The term wavelet is often used to denote a signal located
in time with a concentrated amount of energy [14]. Wavelets are a set of basis functions that can represent
an arbitrary function as a combination of scaled and dilated versions of a particular oscillatory “mother”
function. The “mother” wavelet is used to generate a set of “daughter” functions through the operations of
scaling and dilation applied to the mother wavelet. This set forms an orthogonal basis that allows, using inner
products, to represent any given signal much like in the case of Fourier analysis. Wavelets, however, are
superior to Fourier analysis in that both time and scale (analogous to frequency) information are represented
in the transform domain.

The term wavelet was first introduced by Jean Morlet while working on the analysis of signals for seismic
analysis on oil-related projects. Before Morlet’s work remarkable contributions were developed by Haar [40]
and Zweig in 1975. After the work of Morlet and Grossmann on the definition of the continous wavelet trans-
form (CWT) [38], several developings have followed. The work of researchers as Stromberg, Daubechies,
Mallat and Newland, among others, has pushed forward the theoretical frontiers of wavelets-based orthogonal
decomposition and also augmented the scope of possible application fields.

4.5.1 Wavelet Expansions

This review of wavelet signal representation is based on [14]. A wavelet is a known signal with special
characteristics that allow it to be employed for studying the properties of other signals simultaneously in the
frequency and time domains. A typical wavelet is shown in Figure 4.7. Based on a particular wavelet, it
is possible to define a wavelet expansion. A wavelet expansion is the representation of a signal in terms of
an orthogonal collection of real-valued functions generated by applying suitable transformations to the orig-
inal wavelet. These functions are called “daughter” wavelets while the original wavelet is dubbed “mother”

Figure 4.7: Daubechies wavelet ψD20 [14].
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wavelet, acknowledging its function as source of the orthogonal collection. If x(t) is a given signal to be
decomposed, the signal can be represented by an orthonormal expansion as

x(t) = ∑
i

aiψi(t) . (4.15)

Here, {ψi(t)} comprise a set of orthonormal basis functions. The coefficients ai can be found through the
inner product of f (t) and the functions ψi(t).

ai = 〈x(t),ψi(t)〉=
∫

x(t)ψi(t)dt

In the special case of a wavelet expansion, the wavelet basis functions have two integer indexes as they are
generated from the so-called “mother” wavelet by scaling and translation operations.

ψ j,k(t) = 2 j/2
ψ(2 jt− k) j,k ∈ Z (4.16)

and (4.15) must be rewritten as
x(t) = ∑

j
∑
k

a j,kψ j,k(t) (4.17)

Equation (4.17) is termed the wavelet expansion of x(t) while the collection of coefficients a j,k form the
discrete wavelet transform (DWT) of f (t).

Most wavelets basis functions satisfy multiresolution conditions. This property guarantees that if a set of
signals can be represented by basis functions generated from a translation ψ(t−k) of the mother wavelet, then
a larger set of functions, including the original, can be represented by a new set of basis functions ψ(2t− k).
This feature is used in the fast wavelet transform (FWT) algorithm, the equivalent of the FFT algorithm for
wavelet decomposition. The computational complexity of the discrete wavelet transform is at most O(L logL),
akin to the complexity of using the Fast Fourier Transform to calculate the discrete Fourier transform (DFT).
For some particular types of wavelets, the complexity can be as low as O(L).

Perhaps the most important feature of the wavelet expansion is that it provides a dual time-frequency
localization of the input signal. Here, scaling the contraction of the mother wavelet amounts to selecting
higher frequency components. The time shifts localize the analysis to specific time intervals when the mother
wavelet has finite duration. This combination of properties implies that most of the energy of the signal will
be captured by a few wavelet coefficients. The lower resolution coefficients can be calculated from the higher
resolution coefficients using a filter bank algorithm [14]. This property contributes to the efficiency of the
calculation of the FWT.

4.5.2 Denoising with Wavelets

Denoising means removing noise unwanted information that contaminates observations of an unknown
signal. The use of wavelets for noise removal was first introduced by Donoho and Johnstone [30]. The
shrinkage methods for noise removal, first introduced by Donoho [29], have led to a variety of approaches to
signal denoising. If X(t) is an empirically recorded (sampled) signal consisting of a signal s(t) and additive
noise.

X(t`) = s(t`)+σN(t`), ` = 1, . . . ,L (4.18)

where N(t`) are independent normal random variables N(t`) ∼ N (0,1) and σ represents the intensity
(standard deviation) of the noise in the observations X(t`). Given a finite set of X(t`) values, denoising
attempts to reconstruct the original signal s without assuming a particular structure for it. The usual approach
to noise removal assumes some knowledge of the signal’s structure. In the case of Wiener filters, the signal
is assumed to be described as a stochastic process having a known power spectrum. For Kalman filters,
the characteristics of the signal’s dynamic model must be known. The wavelet approach decomposes the
observations using a “dual” frequency-time representation. Under this approach, noise will be represented as
a white process having a constant power spectrum while the signal has a non-flat spectrum. Consequently, the
wavelet coefficients of the noise are identically distributed Gaussian random variables.
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Once the noise characteristics its variance in particular are identified, the removal process starts. It has
been shown that a suitable strategy for noise removal consists in making the expansion coefficients associated
to noise frequencies (scales) equal to zero, a process known as thresholding. Because this approach can be
nonlinear, we avoid using the term “filtering,” using the more general term “denoising” instead. This approach
represents a global approach for noise removal, regardless of whether wavelets serve as the basis functions
or not. The various methods for denoising differ in the way the signal coefficients are tracked and the noise
coefficients removed from the representation.

Before attempting to describe the methods is convenient to discuss an alternative definition for wavelet
representation used for noise removal. First, the description assumes that the representation is achieved using
periodized wavelet bases on [0,1]. Also, the basis functions are generated by dilation and translation of a
compactly supported (finite duration) scaling function φ , also called father wavelet and the familiar mother
wavelet function ψ . ψ must be associated with an r-regular (i.e., the signals are smooth) multiresolution anal-
ysis of L2(R). An advantage of this approach is that generated wavelet families allow integration of different
kinds of smoothness and vanishing moments. This feature leads to the fact that many signals in practice can
be represented sparsely (with few wavelets coefficients) and uniquely with a wavelet decomposition. Using
father and mother wavelets in a signal expansion,

s(t) =
2 j0−1

∑
k=0

cs
j0,kφ j0,k(t)+

∞

∑
j= j0

2 j−1

∑
k=0

ds
j,kψ j,k(t), j0 ≥ 0, t ∈ [0,1]

where j0 is a primary resolution level, and cs
j0,k and ds

jk are calculated with inner products with the signal.

cs
j0,k = 〈s,φ j0,k〉=

∫ 1

0
s(t)φ j0,k(t)dt, j0 ≥ 0, k = 0,1, . . . ,2 j0 −1

ds
j,k = 〈s,ψ j,k〉=

∫ 1

0
s(t)ψ j,k(t)dt, j ≥ j0 ≥ 0, k = 0,1, . . . ,2 j−1

Applying the DWT to (4.18), the wavelet coefficients for the observations are

cx
j0,k = cs

j0,k +σcn
j0,k, k = 0,1, . . . ,2 j0 −1

dx
j,k = ds

j,k +σdn
j,k, j = j0, . . . ,J−1, k = 0, . . . ,2 j−1

Classical approach to wavelet thresholding

The simplest way to remove noise from a contaminated signal consists in modifying the observation’s wavelet
coefficients in a smart way so that the “small” coefficients associated to the noise are neglected. The updated
coefficients can thus be used to reconstruct the original underlying function free from the effects of noise.
Implicit in this strategy is the presumption that only a few “large” wavelets coefficients dx

j,k are associated with
the original signal, and that their identification and subsequent elimination of the other coefficients together
allows perfect reconstruction of the underlying signal s. Several methods use this idea and implement it in
different ways.

In the linear penalization method, every wavelet coefficient is affected by a linear shrinkage particular to
the resolution level of the coefficient.

d̃x
jk =

dx
jk

1+λ22 jr

Here, the parameter r is the known smoothness index of the underlying signal s, while parameter λ is a
smoothing factor whose determination is critical for this type of analysis. It must be said that linear threshold-
ing is adequate only for a stationary signal with specific levels of regularity. When homegeneity and regularity
conditions are not met, nonlinear wavelet thresholding or shrinkage methods are usually more suitable.
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Hard Threshold Soft Threshold

θ θ
−θ −θ

Figure 4.8: The “hard” threshold function is shown on the left, the “soft” threshold function on the right. θ

represents the threshold value, which must be estimated from the data.

Donoho et. al [28, 30] proposed a nonlinear strategy for thresholding. With their approach, the threshold-
ing is implemented with either a hard or a soft thresholding rule (see Figure 4.8).

d̃x
j,k =

{
0 |dx

j,k| ≤ θ

dx
j,k |dx

j,k|> θ
(hard)

d̃x
j,k =


0 |dx

j,k| ≤ θ

dx
j,k−θ dx

j,k > θ

dx
j,k +θ dx

j,k <−θ

(soft)

In both methods, the role of the parameter θ as a threshold value is critical to the destruction, reduction or
maintenance of a wavelet coefficient’s value. Several authors have discussed the properties and limitations
of these two strategies. Hard thresholding, due to its induced discontinuity, can be unstable and sensitive
to small changes in the data. On the other hand, soft thresholding can create unnecessary bias when the true
coefficients are large. Although more sophisticated methods has been introduced to account for the drawbacks
of the described nonlinear strategies, the discussion here is limited to the hard and soft approaches.

Term-by-Term Thresholding

One apparent problem in applying wavelet thresholding methods is the way of selecting an appropriate value
for the threshold θ . Strategies for determining the threshold can be classified in two groups: global thresholds
and level-dependent thresholds. Global threshold implies the selection of one threshold value applied to all
the wavelet coefficients. Level-dependent thresholds implies that a (possibly) different threshold value θ j is
applied at each scale. All the alternatives require an estimate of the noise level σ . The standard deviation of
the data values is clearly not a good estimator because of the presence of the signal. Donoho [30] proposed
estimating σ in the wavelet domain by using

σ̂ =
median(|dx

J−1,k|)
0.6745

, k = 0,1, . . . ,2J−1−1

Minimax threshold. Donoho [30] obtained an optimal threshold value θ M by minimizing the risk (error)
involved in estimating the signal. The proposed minimax threshold depends of the available data and also
takes into account the noise level contaminating the signal.

θ
M = σ̂θ

∗

θ ∗ is equal to the value of θ satisfying

θ
∗ = inf

θ
sup

d

{
Rθ (d)

L−1 +Roracle(d)

}
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Figure 4.9: The original chirp signal is shown in red. The noisy signal to be denoised is shown in the left
panel. Results from soft and hard thresholding are shown in the center and right panels respectively.

Rλ (d) is calculated according to
Rλ (d) = E

[(
δ
[
d2])]

while Roracle(d) accounts for the risk associated to the modification of the value of a given wavelet coefficient
and δ [·] is the shrinkage/thresholding operation. Two oracles were introduced by Donoho [30]: diagonal
linear projection (DLP) and diagonal linear shrinker (DLS).

RDLP
oracle(d) = min{d2,1}

RDLS
oracle(d) =

d2

d2 +1

Antoniadis [5] provides values of the minimax threshold for both the hard and soft nonlinear thresholding
rules. For the soft rule, 1.669 and 2.226 for L equal to 128 and 1024; for the hard rule, 2.913 and 3.497 for
the same respective number of observations.

Universal threshold. Donoho [30] proposed this threshold as an alternative to the minimax thresholds
that could be applied to all the wavelet coefficients.

θ
U = σ̂

√
2logL

This threshold is easy to calculate and the optimization implicit in the minimax method is avoided. The univer-
sal threshold ensures, with high probability, that every value in the wavelet transform for which the underlying
function is exactly zero will be estimated as zero. Note that the resulting convergance rate (depending in the
size of the sample) can be slow.

How well denoising works is illustrated in Figure 4.9. Hard thresholding tends to better preserve the signal
at the expense of allowing extreme noisy values to appear while soft thresholding gives a smoother result but
one that departs significantly from the actual signal value. This scaling is due to the reduction of the values of
wavelet coefficients even if they are only related to the signal.

Classical Methods: Block Thresholding

Thresholding approaches resorting to term-by-term modification of the wavelet coefficients attempt to bal-
ance variance and bias contributions to the mean squared error incurred in estimating the underlying signal
s. However, it has been proven that such balance is not optimal. Term-by-term thresholding removes to
many terms, leading to an estimate prone to bias and with a slower convergance rate due to the number of
operations involved. The quality of wavelet denoising can be improved by using information of the entire set
of data associated to a particular wavelet coefficient. To do so, block strategies for thresholding have been
proposed [16, 46]. The main idea consists of isolating a block of wavelet coefficients and, based upon the in-
formation collected about the entire set, make a decision about decreasing or even entirely discard the group.
This procedure allows faster manipulation of the information and accelerated convergence rates.
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4.6 Particle Filtering
The typical state-space formulation of a linear (possibly time-varying) system in discrete time is defined by

Linear State Equation: v(l) = Av(l−1)+Bu(l) (4.19)
Linear Observation Equation: y(l) = Cv(l)+w(l) (4.20)

Here, the system’s inputs are the elements of u(l) and the outputs are the elements of y(l). The vector v(l)
denotes the state vector; its dimension determines the system’s order M (how many poles it has) and thus its
complexity. The state matrix A is a M×M square matrix that determines the system’s dynamics. The output
matrix C determines what linear combination of the state vector’s elements contribute to the output. Added
to this combination is observational noise w(l). Note that the state equation (4.19) entirely determines the
system’s dynamics. However, the state equation and the output matrix are not unique for a fixed input-output
relationship between the input and output. Usually, convenient forms for the state (and thus the state matrix)
are used to model a given system.

In nonlinear cases, the same basic modeling idea is used.

Nonlinear State Equation: v(l) = f
(
v(l−1),u(l)

)
(4.21)

Nonlinear Observation Equation: y(l) = g
(
v(l),w(l)

)
(4.22)

Again, the state equation defines the nonlinear nature of the Markov evolution of the state and the observation
equation shows the output depends nonlinearly on the state’s instantaneous value and the observation noise.
Said another way, whether linear or nonlinear, the observations y(l) depend on the state vector v(l) that is
hidden from direct observation.

The state-space model for both linear and nonlinear system amounts to a hidden Markov model (HMM)
for the observations. The signal processing goal of many applications is to estimate from observations the
unmeasured state and/or the input(s) u(l).∗ The minimal mean-squared error solution is always the condi-
tional mean. Let the vector h(l) contain the hidden variables of interest (the components of the state and/or
input vectors). Its optimal estimate based only on the observations made at the same time as the estimate
is ĥ(l) = E[h(l) | y(l)]. In all conceivable cases, better estimates (smaller mean squared-error) can be ob-
tain by including more data (observations) into the estimate. These various estimators differ only in what
portion of the observations are used in the estimation. We use the notation y(l1 : l2) to denote the time se-
ries y(l1),y(l1 +1), . . . ,y(l2). Furthermore, we may well want to revise our estimate of previously estimated
hidden variables as more observations are made. Consequently, we generally seek an estimate of h(0 : l).

Only in the simplest case Gaussian inputs into a linear system with Gaussian observation noise is
the optimal (in the mean-squared error sense) estimate known. It can be expressed either as the Kalman or
the Wiener filter. If the state equation is nonlinear or the input (in particular) is non-Gaussian, these optimal
solutions for the linear and Gaussian case generally become suboptimal. To find the optimal estimate, we need
the conditional probability distribution p

(
h(0 : l) | y(l1 : l2)

)
; in particular, we focus on p

(
h(0 : l) | y(0 : l)

)
.

We therefore seek p
(
v(0 : l) | y(0 : l)

)
. Note that this conditional probability distribution is “backwards:” it

is the probability density of the input given the output. The problem statement (equations 4.19 and 4.20 or
equations 4.21 and 4.22) defines the “forward” distribution: the conditional distribution of the output given
the input.

4.6.1 Recursive Framework

All filtering algorithms exploit the special structure of the state-space formalism to reduce computations. In
particular, they use the relationship between p

(
h(l) | y(0 : l)

)
and p

(
h(l− 1) | y(0 : l− 1)

)
to update the

conditional distribution on an index-by-index basis. First of all, we note that the state and observations obey
the Markovian property

p
(
v(l−1),v(l) | y(0 : l−1)

)
= p
(
v(l) | v(l−1),y(0 : l−1)

)
p
(
v(l−1) | y(0 : l−1)

)
= p
(
v(l) | v(l−1)

)
p
(
v(l−1) | y(0 : l−1)

)
∗In the cases where the state is to be estimated, a pre-defined state characterization (a matrix A) is used so that a unique answer exists.
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The simplification in going from the first to the second amounts to the Markov property of the state equa-
tions (4.19) and (4.21): the previous state and the input completely determine the statistical properties of the
current state. Integrating out v(l−1) we find that

p
(
v(l) | y(0 : l−1)

)
=
∫

p
(
v(l) | v(l−1)

)
p
(
v(l−1) | y(0 : l−1)

)
dv(l−1) (4.23)

This equation is known as the Chapman-Kolmogorov equation and occurs frequently in Markovian problems.
If we augment the state vector with components of the input u(l) that form a white noise sequence (but which
are statistically independent rather than correlated), the same result applies.

p
(
h(l) | y(0 : l−1)

)
=
∫

p
(
h(l) | h(l−1)

)
p
(
h(l−1) | y(0 : l−1)

)
dh(l−1)

To find the conditional distribution we seek, we use Bayes’ Rule.

p
(
h(l) | y(0 : l)

)
= p
(
h(l) | y(0 : l−1),yn

)
(a)

=
p
(
yn | hn,y(0 : l−1)

)
p
(
hn | y(0 : l−1)

)
p
(
yn | y(0 : l−1)

) (b)

=
p
(
y(l) | h(l)

)
p
(
h(l) | y(0 : l−1)

)
p
(
y(l) | y(0 : l−1)

) (4.24)

Equation (a) simply expands the observations into previous ones and the current one, equation (b) is Bayes’
Rule and (4.24) uses the Markov property again. Consequently, (4.23) and (4.24) provide the exact way of
updating the conditional distribution p

(
h(l− 1) | y(0 : l− 1)

)
to find p

(
h(l) | y(0 : l)

)
. The update requires

knowledge of the state-space equation to find p
(
h(l) | h(l−1)

)
and the observation equation to find p

(
y(l) |

hn
)
.∗ The conditional distribution p

(
y(l) | y(0 : l−1)

)
amounts to normalization: it equals the integral of the

numerator of (4.24) with respect to h(l).
A similar derivation can be used to derive how to update p

(
h(0 : l−1) | y(0 : l−1)

)
to obtain p

(
h(0 : l) |

y(0 : l)
)
.

p
(
h(0 : l) | y(0 : l)

)
=

p
(
y(l) | y(0 : l−1),h(0 : l)

)
p
(
h(0 : l) | y(0 : l−1)

)
��

���
��

p
(
y(0 : l−1)

)
p
(
yn | y(0 : l−1)

)
���

���
�

p
(
y(0 : l−1)

)
=

p
(
y(l) | y(0 : l−1),h(0 : l)

)
p
(
h(l) | h(0 : l−1)y(0 : l−1)

)
p
(
h(0 : l−1) | y(0 : l−1)

)
p
(
yn | y(0 : l−1)

)
=

p
(
y(l) | h(l)

)
p
(
h(l) | h(l−1)

)
p
(
h(0 : l−1) | y(0 : l−1)

)
p
(
yn | y(0 : l−1)

)
∝ p
(
y(l) | h(l)

)
p
(
h(l) | h(l−1)

)
· p
(
h(0 : l−1) | y(0 : l−1)

)
(4.25)

The last step relies on the Markov property of the state equation and the nature of the observation equation.
When the input and noise terms are Gaussian and the linear model of (4.19) and (4.20) applies, the com-

ponent probability distributions are Gaussian, making the result Gaussian. In this case, finding the conditional
mean required for the estimate is straightforward. Performing these calculations results in both the Kalman
and Wiener filters. In virtually all other cases, calculating the Chapman-Kolmogorov equation (4.23) is im-
possible, leading us to seek numerical solutions. Computationally more efficient are Monte Carlo simulations
that use statistical methods to estimate the required distributions and evolve them recursively. Particle filters
are one of these methods.

∗In the latter equation, conditioning on the state suffices as the observation equation depends only on the state and not on the input.
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4.6.2 Estimating Probability Distributions using Monte Carlo Methods

Before we tackle the problem at hand, consider first how to generate random variables that have a specific
distribution. The most common technique is based on the cumulative probability distribution function PZ(z).
It is easily shown that if you consider the probability distribution function as a function and map the random
variable Z with it, you obtain a uniform random variable defined over [0,1]. Consequently, if you have a
uniform random variable, P−1

Z (U) creates the original random variable. Consequently, given a pseudo-random
generator that produces uniformly distributed values over the unit interval, you can generate simulated values
of the random variable Z. Assuming z(k),k = 1, . . . ,K are generated this way,† an empirical estimate of the
probability distribution pZ(z) is given by

p̂Z(z) =
1
K

K

∑
k=1

δ (z− z(k)) ,

where δ (·) is the impulse. In the parlance of particle filtering, the values z(k) are particles, each of which have
the same weight ( 1

K ). This approximation for the probability density of a continuous random variable, like a
Gaussian, would not seem to be very good. However, if all we are interested in is the mean, it can be quite
good. It will turn out other statistical measures can also be derived from this crude estimate. Conceptually, the
underlying probability distribution could be a conditional one. The generation process would simply need to
incorporate the conditioning values. Looking ahead a little, since we want to update a probability distribution,
we need to “migrate” the particles. We won’t change their locations; we’ll change their weights.

However, our method has a flaw: we need the probability distribution we seek to generate the particle
locations. Furthermore, even if we did, there is no guarantee that generating them will be easy: the inverse of
the probability distribution function may be intractable, for example. The statistical technique of importance
sampling comes to the fore. Suppose it is easy to generate random variables having the probability distribution
q
(
·
)
, but we want random variables distributed according to p(·). Assuming these two distributions have the

same support, the values z(k),k = 1, . . . ,K generated according to q
(
·
)

can be used to estimate p(·) with

p̂(z) =
K

∑
k=1

w(k)
δ (z− z(k)), w(k)

∝
p
(
z(k)
)

q
(
z(k)
) (4.26)

The constant of proportionality for the weights is required so that ∑k w(k) = 1: we require the estimate to
integrate to one. Do note, however, that importance sampling introduces variability into the estimate that
would have not be present if the actual probability distribution had been used to generate the particles.

So far, we have applied importance sampling to the case of approximating the distribution of a single
random variable. The same approach can be used for random vectors and for conditional distributions.

p
(
h(0 : l) | y(0 : l)

)
≈∑

k
w(k)

n δ
(
h(0 : l)−h(0 : l)(k)

)
Here, the random variables are generated according to q

(
h(0 : l) | y(0 : l)

)
and the weights are proportional

to p
(
h(0 : l) | y(0 : l)

)
/q
(
h(0 : l) | y(0 : l)

)
. Also note that now the weights depend on the index l: we will

need to update them recursively. Furthermore, we want to generate particles for [0 : l] by augmenting the
particles for [0 : l−1] with new particles for the lth index, rather than generating particles for the entire time
frame. Consequently, we seek recursive formulations based on the properties of the equations governing the
observations and the state.

The importance-sampling distribution is arbitrary; at this point, all we require is that it be easily generated.
In fact, a distribution that does not depend on the measurements or the estimate of hidden variables could be
used. A convenient choice is to force the importance sampling distribution to factor.

q
(
h(0 : l) | y(0 : l)

)
= q
(
h(l) | h(0 : l−1),y(0 : l)

)
·q
(
h(0 : l−1) | y(0 : l−1)

)
†We adopt the convention that the subscript expresses the time index range and the superscript indexes the simulated value.
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This form suggests a way of updating the importance sampling distribution recursively and, just as impor-
tantly, a way of updating the weights in a similar fashion. Exploiting (4.25) and the assumed factorization of
the importance sampling distribution, we have

w(l)(k) ∝
p
(
y(l) | h(k)(l)

)
p
(
h(k)(l) | h(k)(l−1)

)
· p
(
h(k)(0 : l−1) | y(0 : l−1)

)
q
(
h(k)(l) | h(k)(0 : l−1),y(0 : l)

)
·q
(
h(k)(0 : l−1) | y(0 : l−1)

)
=

p
(
y(l) | h(k)(l)

)
p
(
h(k)(l) | h(k)(l−1)

)
q
(
h(k)(l) | h(k)(0 : l−1),y(0 : l)

) w(l−1)(k) (4.27)

If we further assume that this distribution depends only on the last available observations and state, so that
q
(
h(l) | h(0 : l−1),y(0 : l)

)
= q
(
h(l) | h(l−1),y(l)

)
, the weight computation and simulation further simplify.

This yields the weight computation

w(l)(k) ∝
p
(
y(l) | h(k)(l)

)
p
(
h(k)(l) | h(k)(l−1)

)
q
(
h(k)(l) | h(k)(l−1),y(l)

) w(l−1)(k) . (4.28)

This way, only the current values of the particles need be stored; past particles h(k)(0 : l−1) and past observa-
tions y(0 : l−1) can be discarded. In the particle filtering “business,” this choice for the importance sampling
distribution is known as the one-observation-ahead sampler. This distribution is easy to calculate analytically
(so that pseudo-random numbers can be generated) when the observation equation is linear as in (4.20).

Is this choice of importance sampling distribution a good one? To provide some measure of quality, we
create a criterion that the choice should optimize. Most researchers focus on Keff, the effective number of
importance samples needed to achieve the same degree of simulation accuracy that using the true distribution
would yield, and it is defined as

Keff =
K

1+var
[
w∗(k)(l)

] ,

where w∗(k)(l) = p
(
h(k)(l) | y(0 : l)

)
/q
(
h(k)(l) | h(k)(l− 1),y(l)

)
is known as the “true” weight. While it

cannot be evaluated analytically, an estimate of it is

K̂eff =
1

K
∑

k=1

(
w(l)(k)

)2
,

where the weights in this expression are the normalized weights calculated according to (4.27). Because each
weight is less than one and squared, we known that Keff ≤ K. A small value of Keff denotes degeneracy in the
weights, which means that more than a few are small. Small weights contribute little to the probability density
estimate as illustrated in (4.26). This degeneracy has been shown to occur always in particle filtering as the
weights go through a succession of updates. If Keff is too small, many particles have very small weights and
accuracy in estimating even the mean, much less the probability distribution, is lost. The choice of importance
sampling distribution that maximizes Keff is

q
(
h(l) | h(k)(l−1),y(l)

)
= p
(
h(l) | h(k)(l−1),y(l)

)
=

p
(
y(l) | h(l),h(k)(l−1)

)
p
(
h(l) | h(k)(l−1)

)
���

���p
(
h(k)(l−1)

)
p
(
y(l) | h(k)(l−1)

)
��

���
�

p
(
h(k)(l−1)

) (4.29)

Substituting into (4.28) yields a simple weight update equation.

w(k)(l) ∝ p
(
y(l) | h(k)(l−1)

)
w(l−1)(k)

The required distribution can be calculated using the Chapman-Kolmogorov equation (4.23). In many prob-
lems, the importance sampling distribution can be derived from the state and observation equations.
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4.6.3 Degeneracy

Even with the optimal choice, as the particle filter evolves, degeneracy small Keff will occur. A typical
threshold for Keff is K/2. The typical way of creating a better estimate of the conditional distribution is
resampling, the technique that underlies many statistical techniques such as the bootstrap. The idea is very
simple. Suppose you had an empirical estimate of a probability distribution; what would it mean to generate
random variables according to it? The value of each random variable would equal one of the values used in the
estimate. The probability that any given value would be selected equals its weight. Note that this procedure
amounts to “sampling with replacement:” the probability of choosing a value does not change just because it
has been chosen in previous simulation trials. Consequently, small probability values, which are the source
of the degeneracy, are unlikely to be chosen but high-probability values will be repeated. The same number
of resampled particles, K, as in the degenerate distribution are chosen. In extreme cases where resampling
occurs many times, only a few values survive, leading to what is known as sample impoverishment.

4.6.4 Smoothing Estimates

So far, the particle filter algorithm can be used to produce filtering estimates and, with simple modification,
prediction estimates. Smoothing estimates provide smaller error but can only be used in a batch processing
mode in which you have all the observations before producing estimates.

To produce a particle filter for smoothing estimates, we use the weights produced at the final observation
time to produce recursively an estimate of the conditional distribution p

(
h(l) | y(0 : l)

)
for previous times

according to

p
(
h( j)(l),h(k)(l−1) | y(0 : l)

)
= p
(
h( j)(l) | y(0 : l)

) p
(
h( j)(l) | h(k)(l−1)

)
w(k)(l−1)

∑k p
(
h( j)(l) | h(k)(l−1)

)
w(k)(l−1)

(4.30a)

p
(
h( j)(l−1) | y(0 : l)

)
=

K

∑
k=1

p
(
h( j)(l),h(k)(l−1) | y(0 : l)

)
(4.30b)

The idea is to initialize the recursion with p
(
h( j)(l) | y(0 : l)

)
= w( j)(l), the weights obtained at the time N of

the last observation. The conditional distribution p
(
h( j)(l) | h(k)(l−1)

)
is defined by the state-space equation

(either (4.19) or (4.21)). The weights computed in the forward direction (after resampling) are reused. The
result of the first equation (4.30a) is used in the second.

4.7 Spectral Estimation
One of the commonest requirements in statistical signal processing systems, both explicitly and implicitly, is
estimating a signal’s Fourier spectrum. Because the covariance function and the power spectrum are Fourier
Transform pairs, estimation of one is related to estimation of the other. Thus, the following discussion fre-
quently alternates between these two quantities.

The resolution of any spectral estimate is the degree to which it can express spectral detail. For example, if
the spectrum is smooth (like that arising from first-order signals), little resolution is demanded of the spectral
analysis. Conversely, signals consisting of sinusoids that give rise to spectra having abrupt changes require
much more resolution. The more usual criteria of assessing the quality of an estimate (bias, consistency, etc..)
are subsumed under spectral resolution considerations.

Resolution generally depends on two factors: the variance of the estimate and the degree of spectral
smoothing implicit in the spectral estimation algorithm. A large variance may well mean that differences in
spectral amplitude at two frequencies cannot be easily distinguished because of large statistical variations.
Although the various spectral estimation algorithms do have very different statistical properties, they all share
the property that variance depends directly on the spectrum being estimated. Thus, to characterize statisti-
cal errors, a general understanding of the spectrum’s shape and how it varies with frequency, what we term
spectral structure, is required to specify criteria on variability. As more data are incorporated into the spectral
estimate, the variance should decrease (the estimate is consistent); for consistent estimators, the variance is ul-
timately limited by the amount of data available. Spectral smoothing expresses the detail that can be gleaned
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from an estimate when the statistical errors are small. An algorithm’s asymptotic resolution is determined
entirely by the range of frequencies that influence the estimate at each frequency. In many algorithms, this
range is dependent on spectral structure and on the variance we demand: Algorithms having high asymp-
totic resolution usually have large variances and vice versa. A kind of “Catch-22” emerges: We have to
know the spectrum to understand an algorithm’s characteristics, but we don’t know the spectrum; that’s why
we’re trying to estimate it. Understanding this dilemma is the key to discerning effective spectral estimation
techniques.

The various algorithms used in spectral estimation fall into two broad categories: nonparametric and
parametric. Some idea of the spectral resolution necessary to reveal the spectrum’s structure is required not
only to select between algorithms in the two categories but also to select an algorithm within the category.

Nonparametric. We require no strong preconceived notions about the nature of a signal that can be success-
fully subjected to nonparametric spectral analysis. Relatively straightforward application of the discrete
Fourier Transform characterizes these algorithms. They are by far the best understood; examples are
the periodogram and Bartlett’s procedure.

Parametric. Parametric algorithms assume we know a great deal a priori about a spectrum’s structure. They
are based on an explicit model for signal generation with the model’s only uncertainty being the values
of a few parameters. Thus, we must know the model’s structure, and given this structure, the spectral
estimation problem becomes one of parameter estimation. If the spectrum does fall into the assumed
class, the estimate is very accurate (high resolution is achieved). If not, the estimate does not just have
poor resolution, it can be misleading.

4.7.1 Periodogram

Let s(n) denote a zero-mean, stationary, stochastic sequence having covariance function Ks(m) = E[s(n)s(n+
m)] and power spectrum Ss( f ), which are related to each other as

Ss( f ) =
+∞

∑
m=−∞

Ks(m)e− j2π f m

Ks(m) =
∫ 1

2

− 1
2

Ss( f )e+ j2π f m d f

Because the Fourier Transform is linear, a linear estimate of one is equivalent to some linear estimate of the
other. This relationship does not imply that they share statistical characteristics, however. This subtle point is
beautifully exemplified by the periodogram.

Covariance-based spectral estimation. We observe the signal over the finite interval [0,D−1]. The
covariance function can be estimated by approximating the averaging implicit in its definition with

K̂s(m) =
1
D

D−|m|−1

∑
n=0

s(n)s(n+m) , 0≤ |m| ≤ D−1

The upper limit on this sum arises because of the data’s finite extent: The signal s(n + m) is provided for
values of the index n ranging from −m to D−m− 1. Beyond lag D− 1, this simple estimate provides no
value. The expected value of this estimate is easily seen to be

E[K̂s(m)] =
(

1− |m|
D

)
Ks(m)

Thus, this estimate is biased, but asymptotically unbiased. More important, bias differs for each lag, the
smaller lags having much less bias than the larger ones. This effect is traced to the number of signal values
that contribute to the estimate for a given lag: D−m terms for lag m. Usually, we compute an average by
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summing a few terms, then dividing by the number of terms in the sum. The estimate of the covariance
function given previously normalizes the sum by D no matter how many terms contribute to the sum; this
choice leads to the bias. The variance of the estimate is given approximately by∗

var[K̂s(m)]≈ 1
D

D−m−1

∑
n=−(D−m−1)

(
1− m+ |n|

D

)
[K2

s (n)+Ks(n+m)Ks(n−m)]

Consistent with the averaging interpretation just given, we find that the variance of the covariance function’s
estimate is bigger at large lags than at the small ones. Assuming the covariance function is square-summable,
this summation remains finite as D→∞; hence the variance of the covariance estimate is proportional to 1/D,
and the estimate is consistent.

One way of estimating the power spectrum is to compute the Fourier Transform of the covariance func-
tion’s estimate.

Ŝs( f ) =
D−1

∑
m=−(D−1)

K̂s(m)e− j2π f m

This spectral estimate can be related directly to the observations by substituting the expression for the covari-
ance estimate.

Ŝs( f ) =
1
D

D−1

∑
m=−(D−1)

D−|m|−1

∑
n=0

s(n)s(n+m)e− j2π f m

The summation limits result from the finite extent of the observations. We can express the availability of
data directly by replacing the signal by the windowed signal wR

D(n)s(n), where wR
D(n) is the rectangular or

“boxcar” window of duration D.

wR
D(n) =

{
1 0≤ n≤ D−1

0 otherwise

The limits on the summations now become infinite with the result

Ŝs( f ) =
1
D

∞

∑
m=−∞

∞

∑
n=−∞

wR
D(n)wR

D(n+m)s(n)s(n+m)e− j2π f m

A simple manipulation of the summand yields in an insightful re-expression.

Ŝs( f ) =
1
D

∞

∑
n=−∞

wR
D(n)s(n)e+ j2π f n

∞

∑
m=−∞

wR
D(l +m)s(l +m)e− j2π f (l+m)

The latter sum does not depend on n; thus, we find the spectral estimate to be the product of the windowed
signal’s Fourier Transform and its conjugate. Defining sD( f ) to be the Fourier Transform of the windowed
signal, this power spectrum estimate, termed the periodogram, is found to be [10];[69: 130–64];[75: 730–36]

Ŝs( f ) =
1
D
|sD( f )|2

sD( f ) =
∞

∑
n=−∞

wR
D(n)s(n)e− j2π f n

The periodogram is, expectedly, biased because it is the Fourier Transform of a biased estimate of the
covariance function. The expected value of the periodogram equals the Fourier Transform of the triangularly

∗The reason for the approximation is the need for the fourth moment of the stochastic sequence s. This computation is dependent on
the signal’s joint amplitude distribution (see Problem 4.40). This approximation, derived under a Gaussian assumption, also applies to
other distributions [50: 171–89].
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windowed covariance function.

E[Ŝs( f )] =
D−1

∑
m=−(D−1)

(
1− |m|

D

)
Ks(m)e− j2π f m

This window is colloquially termed a “rooftop” window; the literature terms it a triangular or Bartlett window.

wT
2D−1(m) = 1− |m|

D
, m =−D, . . . ,D

This lag-domain window is a consequence of the rectangular window we applied to the data. In the frequency
domain, the periodogram’s expected value is the convolution of the actual power density spectrum with the
Bartlett window’s Fourier transform.

E[Ŝs( f )] =
∫ 1

2

− 1
2

Ss(α)W T
2D−1( f −α)dα

The Fourier Transform W T
2D−1( f ) of the Bartlett window is known as the Féjer kernel.

W T
D ( f ) =

1
D

(
sinπ f D
sinπ f

)2

Window selection. These results derived for the rectangular window are easily generalized to other win-
dow shapes: Applying a window wD(n) to the data is equivalent to applying the window wc

2D−1(m) to the
covariance function, where the covariance-domain window equals the autocorrelation function of the data
window. The relationship of the data window wD(n) to the periodogram’s expected value E[Ŝs( f )] is sum-
marized as

wc
2D−1(m) =

1
D

∞

∑
n=−∞

wD(n)wD(n+m)

W c
2D−1( f ) =

∞

∑
m=−∞

wc
2D−1(m)e− j2π f m

E[Ŝs( f )] =
∫ 1

2

− 1
2

Ss(α)W c
2D−1( f −α)dα

(4.31)

Because the actual power spectrum is convolved with the kernel W c
2D−1(·), the periodogram is a smoothed

estimate of the power spectrum. Only those aspects of the spectrum that vary over a range of frequencies
wider than the width of the kernel are noticeable. This width can be defined much like a mainlobe as the
distance between the smallest zeros surrounding the origin. For the Féjer kernel, this width is 4π/D. The
periodogram’s bias thus has a very complicated structure, being neither additive nor multiplicative.

4.7.2 Short-Time Fourier Analysis

The key theoretical framework that describes computing spectra over finite time intervals is the short-time
Fourier Transform. Calculating this quantity means that we apply to a signal at time t a window of duration
D, then evaluate the Fourier Transform of the product.

Xm(t, f )≡
∫ t+D

t
w(τ− t)Xm(τ)e− j2π f τ dτ (4.32)

Here, w(t) denotes the finite-duration window defined over [0,D]. The window’s duration defines the fre-
quency resolution of the short-time Fourier analysis: Because Xm(t, f ) equals the Fourier Transform of the
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product between the sensor signal and the window origined at t, the signal’s spectrum is smoothed by the
window’s spectrum. For the short-time spectrum calculated at one time instant to approximate the signal’s
spectrum well, we should choose the window’s duration so that the spectral smoothing function’s width is
narrow compared with the signal’s spectral variations. Reasonable windows have Fourier Transforms that
resemble a single narrow spike; examples are shown in Fig. 4.10 {110}. Simple manipulations yield an
equivalent representation of the short-time Fourier Transform.

Xm(t, f )e j2π f t =
∫ D

0
w(τ)Xm(t + τ)exp{− j2π f τ}dτ

This representation means that Xm(t, f ) is a complex-valued lowpass signal that approximates the “local”
spectrum of the sensor’s output at time t and frequency f .

Similar to the definition given in Eq. 4.32 for the short-time Fourier Transform of a continuous-time signal,
the short-time Fourier Transform of a sampled sensor signal Xm(n) is given by

Xm(n0, f ) =
n0+D−1

∑
l=n0

w(l−n0)Xm(l)exp{− jl2π f T} (4.33)

The D values of Xm following the time-sample n0 are used to calculate Xm(n0, f ). The function w(n) is a
time-domain window equaling zero outside the interval [0,D−1]; thus, D represents the window’s duration.
Note that the product f T denotes the usual digital frequency variable that has units of radians per sample
period T . A simple change in the summation variable shows that the short-time Fourier Transform has the
related expression

Xm(n0, f )e jn02π f T =
D−1

∑
l=0

w(l)Xm(n0 + l)exp{− jl2π f T} (4.34)

The shape of the window function w(n) influences the resolution and detailed structure of the spectrum
Xm(n0, f ). Its Fourier Transform W ( f ) effectively smoothes the desired but unobtainable spectrum Xm( f )
to give us the short-time spectrum.

The relation of the periodogram’s expected value to the convolution of the actual spectrum with
the window’s magnitude-squared Fourier Transform (Eq. 4.31) expresses the smoothing characteristics of
periodogram-based spectral estimates. Using language gleaned from conventional beamforming, the Fourier
Transform of a rectangular window sin(π f D)/sin(π f ) has a very narrow mainlobe and large ripples (side-
lobes) elsewhere. The sidelobes are directly related to the abrupt beginning and termination of the window.
We can use window shapes other than the rectangular to improve these smoothing characteristics. Windows
having reduced sidelobes have tapered ends: They slowly decrease to 0 near the ends. As expected, this
reduction is compensated by an increase in mainlobe width. For example, a Bartlett window may be applied
to a frame: The mainlobe of its Fourier Transform has twice the width of the rectangular window’s transform,
but the sidelobes’ amplitudes are greatly reduced. Window taper also suppresses the data that are unfortunate
enough to occur at a frame’s edges; they tend to be ignored in the spectral estimate. Some well-known window
functions along with their spectral smoothing functions (their Fourier Transforms) are shown in Fig. 4.10. A
tabular display of their characteristics is provided in Table 4.1.

In a general sense, the effect of windowing on spectral resolution is independent of the shape of the
window. As more and more data are used, the ultimate resolution of periodogram-based spectral estimates
is directly dependent on frame duration, with window choice changing the constant of proportionality via
mainlobe width. All windows produce sidelobes of varying structure; sidelobe structure affects spectral
leakage: the influence on the estimate at a particular frequency by remote portions of the spectrum.

Statistical characteristics. Despite the expected value of the periodogram being a seemingly reasonable
approximation to a signal’s power spectrum and despite the fact that the estimate of the covariance function is
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Window Formulaa FWHM b
Highest
Sidelobe

Level (dB)
Rectangular 1 7.60/D −13

Triangular 1− |n−D1/2|
D1/2

11.2/D −27

Hamming
(
0.54−0.46cos 2πn

D

)
11.4/D −43

Dolph-
Chebyshevc

W (k) ∝

{
cos{Dcos−1[θ(k)]}, |θ(k)|≤1

cosh{Dcosh−1[θ(k)]}, |θ(k)|>1

where θ(k) = β cosπk/D

11.6/D −50

Kaiserd I0

[
πα

√
1−
(

n−D1/2
D1/2

)2
]

/I0(πα) 12.5/D −46

Hanning 1
2

(
1− cos 2πn

D

)
12.6/D −32

aThe formula for each window presumes that they are defined over the interval 0≤ n < D with D1/2 = (D−1)/2.
bFull-width half-maximum measure of mainlobe width.
cW (k),k = 0, . . . ,D−1 is the discrete Fourier Transform of the window function. For the purposes of this formula, cosh−1(x) is given

by ln
(
|x|+

√
x2−1

)
. The parameter β equals cosh[(cosh−1 10α )/D], where α is the number of decades the sidelobe heights lie below

the mainlobe height. In this table, the numerical values were obtained with α = 2.5.
dThe parameter α controls the mainlobe width and sidelobe levels. The larger it is, the wider the mainlobe but smaller the sidelobes.

The numbers presented here result from α = 2.0.

Table 4.1: Characteristics of Commonly Used Windows [adapted from Harris].

asymptotically unbiased and consistent, the periodogram does not converge to the power spectrum [50: 222–
23];[61: 260–65]: The variance of the power spectrum does not tend to zero as the number of observations
increases. For example, the periodogram’s asymptotic variance, for Gaussian signals, tends at any frequency
toward the square of the power density spectrum (see Problem 4.40).

lim
D→∞

var[Ŝs( f )] ∝ S 2
s ( f )

Because the asymptotic variance is not 0, the periodogram is not a consistent estimate of the power spectrum.
In estimation theory, the periodogram is perhaps the most famous example of an inconsistent, yet asymptoti-
cally unbiased estimator. This lack of convergence is illustrated in Fig. 4.11.

Why shouldn’t the periodogram converge? The reason lies in the expression of the power spectrum as
an integral transformation of the estimated covariance function. Recall that the variances of the covariance
function’s values at higher lags were large. These terms are added in the Fourier sum, and their total variability
is never compensated by the normalization factor. Realizing this flaw in the periodogram is the key to finding
alternate spectral estimates that do converge.

Bartlett’s procedure. To obtain a consistent spectral estimate from the empirical covariance function,
either higher lags must not be used in the computations or more data should contribute toward their average.
With the latter idea in mind, from the total of L observations, frame the data into K sections of equal duration
D (L = KD). The Bartlett procedure forms a power spectrum estimate by averaging the spectra computed
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Figure 4.10: Window functions frequently used in spectral estimation are shown in the left column and their
Fourier Transforms—smoothing functions—in the right. The spectral amplitudes are plotted in dB re the
spectral amplitude at the origin. The window duration was D = 32. The latter quantities, when convolved
with the true spectrum, yield the expected value of the Bartlett spectral estimate. The ideal of a narrow
mainlobe and small sidelobes is never achieved as these examples show; a compromise is always required in
practice.

from each frame [7];[69: 153–58];[91].∗

Ŝs( f ) =
1
K

K−1

∑
k=0

Ŝ
(k)

s ( f )

Ŝ
(k)

s ( f ) =
1
D

∣∣∣S(k)
D ( f )

∣∣∣2
S(k)

D ( f ) =
D−1

∑
n=0

wD(n)s(kD+n)e− j2π f n

∗The quantity S(k)
D ( f ) corresponds exactly to the short-time Fourier Transform S(kD, f )e jkD2π f defined previously (Eq. 4.34 {108}).

The more streamlined current notation is employed to simplify the equations for Bartlett’s procedure. Note that the linear phase shift
e jkD2π f owing to the signal’s nonzero time origin is removed by the magnitude operation of the second equation.
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Figure 4.10: (continued) Window functions frequently used in spectral estimation are shown in the left
column and their Fourier Transforms in the right. For those frequency ranges where no spectral values are
shown, the smoothing functions are less than −60 dB. The parameters of the Dolph-Chebyshev and Kaiser
windows are those used in Table 4.1.

In this case, periodograms are computed from each frame; conceptually, any spectral estimate could be av-
eraged in this way. Assuming that the frames are mutually independent, the variance of the Bartlett estimate
equals the sum of the individual variances divided by K.

var[Ŝs( f )] ∝
1
K

S 2
s ( f ) (4.35)

Thus, as L→∞, maintaining fixed duration frames implies that K→∞ so that the Bartlett spectral estimate is
consistent. The non-convergent periodogram example is reexamined in Fig. 4.12 with the Bartlett procedure.

When windows other than the rectangular are used, data aligned with the ends of our somewhat arbitrarily
selected frames do not contribute to the spectral estimate. To counteract this arbitrary stress on portions of
the data, frames are overlapped (Fig. 4.13): The separation between successive windows, the stride, is less
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Figure 4.11: Periodograms were computed from the example signal used in the Wiener and adaptive filtering
sections of this chapter. A rectangular window was applied in each case with the spectrum in the left panel
computed from 128 data points and from 1,024 points for the one on the right. Note how the estimate’s
variability does not stabilize as more data are incorporated.

Figure 4.12: The data used in the right panel of the periodogram example (Fig. 4.11) are now used in Bartlett’s
procedure. The duration of each frame is 128 points, and the Fourier Transform of each frame has the same
length. Eight periodograms are averaged to produce this spectrum; thus, a total of 1,024 data points were used
in this computation and in the last portion of the periodogram example. The marked decrease in statistical
variability is evident. Also note that the variability has roughly the same amplitude at each frequency. This
effect is because of the relation of the spectral estimate’s variance to the square of the actual spectral amplitude
and to the logarithmic vertical scale.

Figure 4.13: In Bartlett’s spectral estimation procedure, the observations are subdivided into frames of length
D. The periodogram is computed over each frame, and these spectra are averaged to produce a spectral
estimate. The frames do not usually overlap, as shown in the upper portion, where a rectangular window is
used. A 50% overlap or, said another way, 50% stride, is typical when one of the gently tapered windows
(such as the Hanning window shown here) is used.
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Figure 4.14: The observations consist of two sinusoids having frequencies 2π×0.1 and 2π×0.15 and addi-
tive noise having first-order lowpass spectral characteristics. The power of the higher frequency sinusoid is
four times that of the lower. This additive noise is the same as that presented in the adaptive filtering examples.
The number of observations available equals 8,192. The left column portrays the Bartlett spectral estimate
that uses a rectangular data window with no overlap, the right column a Hanning window with a 50% overlap.
The top row uses 128-point component periodograms, the bottom 512. Because of the smaller energy of the
Hanning window, the spectra produced by the Hanning window are scaled relative to the ones produced by
the rectangular window (both windows had unity height).

than the window’s duration. A 50% overlap is commonly used. With overlap, many more frames are obtained
from a given set of data. This increased number does not mean that the variance of the estimate is reduced
proportionally. The variance of the spectra resulting from Bartlett’s procedure is inversely proportional to
the number of statistically independent frames; overlapping frames introduces a dependence between them.
The number of statistically independent frames equals the number of nonoverlapping frames. The effect of
window shape and overlapping frames is illustrated in Fig. 4.14.

Consistency in this spectral estimate has been obtained at the expense of increased bias. The duration of a
frame is much smaller than the total, and this duration increases the effective width of the kernel that smooths
the spectrum. The variance is proportional to 1/K, and the width of the smoothing kernel is proportional
to 1/D. The product of these is thus proportional to 1/L, which is inversely related to the amount of avail-
able data. In this way, a fundamental tradeoff in spectral estimation emerges: The product of the degree of
smoothing of the spectral estimate and of the estimate’s variance is a constant. In statistical terms, the Bartlett
estimate may be consistent, but it is not (even) asymptotically unbiased because of spectral smoothing. Such
is the nature of the fundamental tradeoff of spectral estimation in the Bartlett procedure.

4.7.3 Minimum Variance Spectral Estimation

Bartlett’s procedure yields a consistent spectral estimate by averaging periodograms computed over short
frames of the observations. An alternate approach is to compute the covariance function over a few lags,
but compute it over the entire data set. After applying any tapered window to this estimate, computing the
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Fourier Transform results in a spectral estimate that does not differ greatly from that yielded by Bartlett’s
procedure. A more interesting use of the covariance estimate is the so-called minimum variance spectral
estimate [17];[18];[69: 350–57], which uses the covariance function in the solution of a somewhat artificial
optimization problem. The resulting estimate is a nonlinear function of the data; hence its characteristics are
not readily analyzed. Suffice it to say that its spectral resolution is greatly superior to Bartlett’s procedure, but
much more computation is needed to produce the estimate.

Similar to the FIR Wiener filter problem, assume that the observations are sent through a finite-duration
filter that passes a known signal with unity gain while minimizing the contribution to the filter’s output of
all other components in the observations. Let the known signal be denoted by the column matrix s and the
filter’s unit-sample response by h. Require the filter’s output to the signal component h′s to be unity while
minimizing the mean-squared value of the entire output E[|h′X|2] = h′KX h. The minimum variance approach
imposes the constrained optimization problem [51, 62]

min
h

h′KX h subject to h′s = 1

This kind of constrained optimization problem is easily solved using Lagrange multipliers (see §3.2 {47}).
The filter that yields the minimum variance∗ signal estimate has unit-sample response

h� =
K−1

X s
s′K−1

X s

To apply this somewhat arbitrary problem and its solution to spectral estimation, first note that the so-
lution depends on only the observations’ covariance matrix over the few lags that correspond to the as-
sumed filter duration. Given an estimate of this covariance matrix, we can approximate the optimal fil-
ter by using the estimate in the formula given earlier. To focus this reasoning further, let the “signal”
be a complex exponential corresponding to the frequency at which we want to estimate the spectrum:
s = e( f ) = col

[
1,e j2π f ,e j2·2π f , . . . ,e j(M−1)2π f

]
. Thus, the length-M filter passes this signal with unity gain—

performs a spectral analysis—while minimizing the mean-squared value of the filter’s output (asking for the
maximum resolution possible by rejecting the influence of all other spectral components). In this way, a
somewhat artificial optimal filtering problem has been recast as a potentially interesting spectral estimation
procedure. The power spectrum would correspond to the filter’s output power; this quantity equals the mean-
squared value of the filtered observations. Substituting the optimal unit-sample response into the expression
for the output’s mean-squared value results in the minimum variance spectrum.

S MV
X ( f ) = E[

∣∣h′�X∣∣2] = [e′( f )K−1
X e( f )

]−1
(4.36)

The minimum variance spectral estimate is obtained by replacing the covariance matrix by its estimate.

Ŝ MV
X ( f ) =

[
e′( f )K̂−1

X e( f )
]−1

K̂X
i, j =

1
D

D−|i− j|−1

∑
n=0

X(n)X(n+ |i− j|) , 0≤ i, j < M
(4.37)

This spectral estimate is not a simple Fourier Transform of the covariance estimate: The covariance matrix
estimate is formed from length-D observations, its inverse computed and used in a quadratic form that is
approximately equivalent to the Fourier Transform of a matrix, and the reciprocal evaluated. Conceptually,

∗The observations are assumed to be zero mean. Thus, the mean-squared value and the variance are equal. Historically, even in
nonzero mean cases the solution to the “minimum variance” problem is taken to be this minimum mean-squared value solution. So much
for the name of an algorithm suggesting what aspects of the data are considered important or how the result was derived.
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the quadratic form is the kernel’s Fourier Transform. The Fourier Transform of a column matrix is concisely
expressed as e′( f )X; the combination of pre-multiplying and post-multiplying a matrix by e amounts to a
Fourier Transform (see Problem 4.44). Fast Fourier Transform algorithms can be used to transform a column
matrix, but not a square one unless the matrix has many symmetries. Although a covariance matrix may
be Toeplitz as well as Hermitian, its inverse is only Hermitian, thereby obviating fast algorithms. Note that
the number M of covariance function lags used in the estimate is usually much smaller than the number of
observations D. In contrast to Bartlett’s procedure, where many covariance estimates computed over short
frames are averaged to produce a covariance estimate, here the entire set of observations is used to produce
estimates for a similar number of lags. A Bartlett-procedure-like variation of estimating the covariance matrix
is derived in Problem 4.43. Another consequence of M � D is the number of frequencies at which the
quadratic form can be evaluated to reflect the algorithm’s resolution accurately. In most cases, the width of
the smoothing function is comparable with that of the Féjer kernel implicit in rectangular data windows of
length D. Despite the comparatively small size of the matrix, the quadratic form needs evaluation at many
frequencies to capture the minimum variance algorithm’s resolution. A computational note: The inverse of
this matrix need not be computed directly. The minimum variance estimate is intimately related to the so-
called autoregressive (AR ) spectral estimate described in the next section (Eq. 4.40 {118}). This relationship
not only expresses the deep relationship between two very different spectral estimators but also provides a
computationally expedient method of calculating the minimum variance estimate.

The minimum variance spectrum is related to the signal’s power spectrum similarly to the periodogram:
The minimum variance spectrum is a smoothed version of the true spectrum. To demonstrate this property,
any spectral estimate ŜX ( f ) given by the mean-squared value of weighted observations is related to the
covariance function by

E
[
ŜX ( f )

]
= E

[∣∣h′X∣∣2]= ∑
k,l

h(k)KX (k− l)h(l)

Using Parseval’s Theorem, this expression for the spectrum at frequency f0 is given by

E
[
ŜX ( f0)

]
=
∫ 1

2

− 1
2

|H( f0, f )|2 SX ( f )d f

H( f0, f ) is the Fourier Transform of the filter’s unit-sample response h; for the minimum variance spectral
estimate, this smoothing function is given by

HMV( f0, f ) =
e′( f )K−1

X e( f0)
e′( f0)K−1

X e( f0)

Because the minimum variance smoothing function is itself dependent on the data’s characteristics, it changes
form according to the shape of the signal’s spectrum near the frequency of interest. In this way, the smoothing
function depends directly on the value of the analysis frequency ( f0), not on the difference between f0 and f .
The smoothing kernel is dependent on the structure of the spectrum; its resolution is therefore data dependent.

When the observations are Gaussian, the variance of the minimum variance spectral estimate is given
by [19]

var[Ŝ MV
X ( f )] =

1
D−M +1 E[Ŝ MV

X ( f )]

Thus, for fixed-size covariance matrices, the minimum variance spectral estimate is consistent. The estimate’s
expected value is proportional to the true minimum variance spectrum.

E[Ŝ MV
X ( f )] =

D−M +1
D

∫ 1
2

− 1
2

∣∣HMV( f0, f )
∣∣2 SX ( f )d f

The minimum variance spectral estimate is therefore asymptotically unbiased and consistent. For a slightly
larger variance than Bartlett’s procedure, the minimum variance estimator provides much better resolution.
Fig. 4.15 demonstrates this well.
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Figure 4.15: The plots depict minimum variance and AR spectral estimates computed from the same data
(D = 8,192) used in Fig. 4.14 {113}. Only the AR spectrum has a peak at the frequency of the smaller
sinusoid ( f = 0.1); however, that peak is mitigated by the presence of a spurious peak located at a lower
frequency. The size M of the covariance matrix is 16.

4.7.4 Spectral Estimates Based on Linear Models

The most prevalent model for the generation of a signal is passing white noise through a linear system.
The foundation of Wiener and Kalman filters, the same model can be used fruitfully in spectral estimation.
By estimating model parameters, we can find the transfer function and thereby deduce the output’s—the
signal’s—spectrum. Letting S denote the observations and W the input noise, the input-output relationship of
a rational linear model is

S(n) = a1S(n−1)+ · · ·+apS(n− p)+W (n)+b1W (n−1)+ · · ·+bqW (n−q) (4.38)

In statistics, this relationship governs “autoregressive-moving average” (ARMA ) models [69: 172–86]. The
word “autoregressive” refers to models where the signal depends on itself in a linear fashion. “Moving
average” refers to a linear combination of white-noise values. Thus, the model’s autoregressive portion refers
to the recursive aspect related to the poles and the moving average to the zeros of some linear system’s transfer
function. Spectral estimation based on this linear model for the signal amounts to estimation of the model’s
parameters. Given these values, the ARMA (p,q) spectral estimate has the form

Ŝ ARMA
S ( f ) = Σ̂

2
W

∣∣∣1+ b̂1e− j2π f + · · ·+ b̂qe− j2π f q
∣∣∣2∣∣∣1− â1e− j2π f −·· ·− âpe− j2π f p
∣∣∣2

AR spectral estimation. The AR method is by far the most popular parametric or model-based spectral
estimators [69: 189–274]. Translating into signal processing terms, an autoregressive signal is produced at
the output of an all-pole linear filter driven by white noise.

S(n) = a1S(n−1)+ · · ·+apS(n− p)+W (n)

The parameter p denotes the model’s order. One method of estimating the parameters of the AR spectral
estimate was given in a previous section (Eq. 4.11 {84}). The linear predictive solution is found by finding
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the minimum mean-squared error one-step predictor.∗

1
σ̂

2
W


1
−â1

...
−âp

=
(
K̂S
)−1


1
0
...
0


The variance estimate σ̂2

W is equal to the reciprocal of the first component of K̂−1
S δδδ , where δδδ = col[1,0, . . . ,0].

Because of the way the input term W (n) enters the difference equation for the signal, the mean-squared
prediction error equals σ̂2

W . The AR spectral estimate has the form

Ŝ AR
S ( f ) =

δδδ tK̂−1
S δδδ∣∣∣δδδ tK̂−1

S e( f )
∣∣∣2 =

σ̂2
W∣∣1− â1e− j2π f −·· ·− âpe− j2π f p

∣∣2 (4.39)

An example of this estimate is shown in Fig. 4.15 {116}. Another popular technique for estimating these
parameters is Burg’s method [69: 213–15].

The AR estimator is also known as the maximum entropy spectral estimate [12, 49]. How this name arose
is an interesting story that recalls the relation between the power spectrum and the covariance function. The
asymptotic resolution of the periodogram-based spectral estimates is directly related to how many lags of the
covariance function can be estimated accurately: More lags imply higher resolution. Suppose p+1 lags can
be well estimated. Can the higher lags be accurately extrapolated from the well-known ones in such a way
that the spectral resolution is increased? Seemingly, this approach is trying to “get something for nothing.”
Not any extrapolation, however, can result in a covariance function; the Fourier Transform of any potential
covariance function must be real and nonnegative. Imposing this restriction greatly reduces the number of
possible extrapolations, but an infinite number remain. From statistical arguments, one can show that the
spectral estimate that coincides with the known values of the covariance function and corresponds to the most
probable extrapolation of the covariance function maximizes the entropy H [S ] of the power spectrum S .

H [S ] =
∫ 1

2

− 1
2

lnS ( f )d f

This framework defines a constrained maximization problem, the solution to which is a AR spectral estimate
of the form given earlier! Thus, the AR, model-based technique holds the promise of greater resolution than
Bartlett’s procedure.

By noting that the squared magnitude of a sequence’s Fourier Transform equals the Fourier Transform of
its autocorrelation, we find an alternative to the denominator expression in the AR spectral estimate.

∣∣1− â1e− j2π f −·· ·− âpe− j2π f p∣∣2 =
p

∑
m=−p

RAR
â (m)e− j2π f m

RAR
â (|m|) =

p−m

∑
k=0

âkâk+m ,m≥ 0

For the purposes of this re-expression, â0 = −1. This re-expression is not particularly useful as it stands: It
provides no computational advantages. Its value lies in its relation to a similar expression for the minimum
variance spectral estimate [73]. Because the solution for the minimum variance estimator (Eq. 4.37 {114})
∗Note the care used in denoting the inverse of the covariance matrix estimate rather than the estimate of the inverse. Directly

estimating the inverse is touchy at best. We have discussed several methods of estimating the covariance matrix ({89} and {114}). The
linear predictive literature has developed even more [67].
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also contains the inverse of the covariance matrix, the minimum variance spectral estimate can be related to
the AR parameter estimates.

Ŝ MV
S ( f ) =

σ̂2
W

p
∑

m=−p
RMV

â (m)e− j2π f m

RMV
â (|m|) =

p−m

∑
k=0

(p+1−m−2k)âkâk+m ,m≥ 0

(4.40)

The correlation function resembles an expression for a windowed version of the AR parameter estimates’
autocorrelation. It does point out one of the ways that minimum variance and AR spectral estimates can be
related. More important, because efficient methods exist for computing the AR parameter estimates, those
algorithms can be used to compute the minimum variance estimate as well.

A critical issue in AR spectral estimation is value of the model order p. As model order is increased, more
parameters become available to model the signal’s spectrum, suggesting that mean-squared prediction error
decreases. Using larger values of p, however, implies accurate knowledge of the covariance function at larger
lags, which we know are less reliable statistically. Thus, a parsimonious criterion for selecting a value for p
is required. Two techniques are most well-known: the A information criterion (AIC ) [2] and the minimum
description length (MDL ) criterion [79, 81]. Each of these criteria seeks the model order that minimizes the
sum of two terms: The first is the negative logarithm of the likelihood function, where the AR parameters are
evaluated at their maximum likelihood estimates, and the second is a constant times the number of parameters
p+1. The criterion functions differ only in the constant used in the second term [67];[69: 230–31].∗

AIC(p) =− lnΛ(σ̂2
W , â1, . . . , âp)+ p

MDL(p) =− lnΛ(σ̂2
W , â1, . . . , âp)+

1
2

p lnD

As p increases, the first term decreases while the second increases, thereby guaranteeing a unique minimum.
For the AR parameter estimation problem, the negative logarithm of the likelihood function is proportional to
the logarithm of the prediction error. Minimizing either of these criteria selects a model order best fitting the
observations in terms of spectral variation with frequency and of data length [67].

AIC(p) = ln σ̂
2
W (p)+

2p
De

MDL(p) = ln σ̂
2
W (p)+

p lnD
De

The quantity De denotes the effective number of observations used in the analysis because of data windowing.
It is expressed by the ratio of the energy when the window is applied to that obtained when a rectangular
window is used. For example, De = 0.374D for the Hanning window. These criterion functions appear to
differ little but they do have important differences (Fig. 4.16). The AIC estimate is inconsistent [54]: The
estimate is usually too large no matter how many observations are available. In contrast, the MDL estimate
is always consistent [81]. Thus, the MDL criterion is more accurate when a “large”† number of observations
is available; with fewer observations, either model order method can be used to advantage.

Statistical characteristics of the AR spectral estimate are quite different from those of the others described
here [6, 15]. Although the probability distribution of the AR spectral estimate is not known, the estimate’s
∗Because we are only interested in the behavior of these criterion functions with variations in p, additive terms not depending on p

are dropped as they do not affect the location of the minimum. These criterion functions have been so manipulated to their simplest form.
†What is left unsaid is how large is “large.” Despite inconsistency, the larger value yielded by the AIC technique is the correct way

to err: better too many parameters than not enough.
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Figure 4.16: In the left panel, example AIC and MDL criterion functions are shown for the data used in
Fig. 4.15. The observations thus consist of two sinusoids and additive first-order lowpass noise. Each frame
has a duration of 512 samples and was viewed through a Hanning window. This sum of three autoregressive
sequences does not have an all-pole spectrum but serves to illustrate the difficulties in applying model-based
criteria in the real world. The “correct” model order is five; the example shows MDL correctly judging the
model order while AIC ’s estimate is high (eight). The right panel summarizes the two algorithm’s estimates
for 16 different realizations of the same prototypical signal. The “correct” choice of five is indicated by the
X. Although neither algorithm performed well, AIC ’s estimates are consistently higher than MDL ’s, which
theory predicts.

confidence interval has a F distribution having (2,D− p) degrees of freedom. This result means that the
spectral estimate can demonstrate fairly large deviations from the true spectrum, with deviations roughly
proportional to the true value.

Using matrix notation, we can express the AR spectral estimate by

Ŝ AR
S ( f ) = σ̂

2
W

∣∣∣e′( f )K̂−1
S δδδ

∣∣∣−2

Interestingly, this formula cannot be expressed as the expected value of a weighted combination of the ob-
servations. The AR estimate does have data-dependent spectral resolution, which tends to be superior to the
minimum variance estimate in many situations. The estimate also tends to produce ripples in the spectrum,
particularly when the spectrum spans a wide range of values (as when sinusoids are present in the observa-
tions). These ripples are akin to sidelobes in window-smoothing functions; because of the data-dependent
nature of the estimate, these ripples vary with the observations.

ARMA spectral estimation. Before turning to signal models having both poles and zeros, the simpler
case of moving average (MA ) spectral estimation should be mentioned. The MA power spectrum estimate
has the form

ŜS( f ) = σ̂
2
W
∣∣1+ b̂1e− j2π f + · · ·+ b̂qe− j2π f q∣∣2

The model parameters need not be found to compute this estimate: Given the first q+1 lags of the covariance
function, the MA estimate amounts to computing the Fourier Transform of these covariance function values.
This estimate is hardly novel and is not frequently referenced. It amounts to applying a much narrower
rectangular window than the observation length to the estimated covariance function.

In reality, models for the observations frequently require both poles and zeros. For example, consider the
simple case in which the observations consist of a sum of signals, each of which has a first-order spectrum.
The power spectrum of the sum has both poles and zeros, whereas neither component has zeros.

1
(1−a1e− j2π f )(1−a1e+ j2π f )

+
1

(1−a2e− j2π f )(1−a2e+ j2π f ) =(
1−a1e− j2π f

)(
1−a1e+ j2π f

)
+
(
1−a2e− j2π f

)(
1−a2e+ j2π f

)
(1−a1e− j2π f )(1−a1e+ j2π f )(1−a2e− j2π f )(1−a2e+ j2π f )
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An ARMA model for observations is quite realistic and can encompass a much wider variety of situations
than AR ones. Unfortunately, the equations that govern the ARMA model’s parameters are nonlinear. In
contrast, the equations governing the AR parameters are linear, and the only computational issue is how
quickly they can be solved. The issue in ARMA spectral estimation is how to solve them. We can derive a set
of equations that determine the ARMA parameters by considering the difference equation that governs the
observations’ covariance function. Using the difference equation for the observations (Eq. 4.38 {116}), we
find their covariance function obeys

KS(m) =


p
∑

k=1
akKS(m− k)+KWS(m)+

q
∑

k=1
bkKWS(m− k), m = 0, . . . ,q

p
∑

k=1
akKS(m− k), m > q

KWS(m−k) = E[W (l−k)S(l−m)] is the cross-covariance function between the observations and the model’s
input. Because the process W (·) is white, this cross-covariance function equals the model’s unit-sample
response times the variance of the white-noise input.

KWS(m− k) = E

[
l−m
∑

n=−∞

W (l− k) ·W (n)h(l−m−n)
]

= σ
2
W h(k−m)

The equations that must be solved for the ARMA parameters become

KS(m) =


p
∑

k=1
akKS(m− k)+σ2

W h(−m)+σ2
W

q
∑

k=1
bkh(k−m), m = 0, . . . ,q

p
∑

k=1
akKS(m− k), m > q

The unit-sample response is, of course, dependent on the values of the parameters ak and bk. The multiplica-
tion of the unit-sample response and the coefficients bk is thus nonlinear. Much active research is focused on
efficient methods of solving these equations [58: chapter 10];[69: chapter 10].

4.8 Probability Density Estimation
Many signal processing algorithms, implicitly or explicitly, assume that the signal and the observation noise
are each well described as Gaussian random sequences. Virtually all linear estimation and prediction filters
minimize the mean-squared error while not explicitly assuming any form for the amplitude distribution of
the signal or noise. In many formal waveform estimation theories where probability density is, for better
or worse, specified, the mean-squared error arises from Gaussian assumptions. A similar situation occurs
explicitly in detection theory. The matched filter is provably the optimum detection rule only when the ob-
servation noise is Gaussian. When the noise is non-Gaussian, the detector assumes some other form. Much
of what has been presented in this chapter is based implicitly on a Gaussian model for both the signal and
the noise. When non-Gaussian distributions are assumed, the quantities upon which optimal linear filtering
theory are based, covariance functions, no longer suffice to characterize the observations. While the joint am-
plitude distribution of any zero-mean, stationary Gaussian stochastic process is entirely characterized by its
covariance function; non-Gaussian processes require more. Optimal linear filtering results can be applied in
non-Gaussian problems, but we should realize that other informative aspects of the process are being ignored.

This discussion would seem to be leading to a formulation of optimal filtering in a non-Gaussian setting.
Would that such theories were easy to use; virtually all of them require knowledge of process characteristics
that are difficult to measure and the resulting filters are typically nonlinear [64: chapter 8]. Rather than present
preliminary results, we take the tack that knowledge is better than ignorance: At least the first-order amplitude
distribution of the observed signals should be considered during the signal processing design. If the signal is
found to be Gaussian, then linear filtering results can be applied with the knowledge than no other filtering
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strategy will yield better results. If non-Gaussian, the linear filtering can still be used and the engineer must
be aware that future systems might yield “better” results.∗

4.8.1 Types

When the observations are discrete-valued or made so by digital-to-analog converters, estimating the prob-
ability mass function is straightforward: Count the relative number of times each value occurs. Let
X(0), . . . ,X(L− 1) denote a sequence of observations, each of which takes on values from the set A =
{a1, . . . ,aN}. This set is known as an alphabet and each an is a letter in that alphabet. We estimate the
probability that an observation equals one of the letters according to

P̂X (an) =
1
L

L−1

∑
`=0

I
(
X(`) = an

)
,

where I(·) is the indicator function, equaling one if its argument is true and zero otherwise. This kind of
estimate is known in information theory as a type [23: Chap. 12], and types have remarkable properties. For
example, if the observations are statistically independent, the probability that a given sequence occurs equals

Pr[X = {X(0), . . . ,X(L−1)}] =
L−1

∏
`=0

PX (X(`)) .

Evaluating the logarithm, we find that

logPr[X] =
L−1

∑
`=0

logPX (X(`))

Note that the number of times each letter occurs equals LP̂X (an). Using this fact, we can convert this sum to
a sum over letters.

logPr[X] =
N−1

∑
n=0

LP̂X (an) logPX (an)

=L
N−1

∑
n=0

P̂X (an)

[
log P̂X (an)− log

P̂X (an)
PX (an)

]
logPr[X] =−L

[
H (P̂X )+D(P̂X‖PX )

]
which yields

Pr[X] =e
−L
[
H (P̂X )+D(P̂X‖PX )

]
(4.41)

We introduce the entropy [23: §2.1] and Kullback-Leibler distance.

H (P) =−
N−1

∑
n=0

P(an) logP(an)

D(P1‖P0) =
N−1

∑
n=0

P1(an) log
P1(an)
P0(an)

∗Note that linear filtering optimizes the mean-squared error whether the signals involved are Gaussian or not. Other error criteria might
better capture unexpected changes in signal characteristics and non-Gaussian processes contain internal statistical structure beyond that
described by the covariance function.
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Because the Kullback-Leibler distance is non-negative, equaling zero only when the two probability distribu-
tions equal each other, we maximize Eq. (4.41) with respect to P by choosing P = P̂: The type estimator is
the maximum likelihood estimator of PX .

The number of length-L observation sequences having a given type P̂ approximately equals e−LH (P̂).
The probability that a given sequence has a given type approximately equals e−LD(P̂‖P), which means that
the probability a given sequence has a type not equal to the true distribution decays exponentially with the
number of observations. Thus, while the coin flip sequences {H,H,H,H,H} and {T,T,H,H,T} are equally
likely (assuming a fair coin), the second is more typical because its type is closer to the true distribution.

4.8.2 Histogram Estimators

By far the most used technique for estimating the probability distribution of a continuous-valued random
variable is the histogram; more sophisticated techniques are discussed in [82]. For real-valued data, subdivide
the real line into N intervals (Xi,Xi+1] having widths δi = Xi+1−Xi, i = 1, . . . ,N. These regions are called
“bins” and they should encompass the range of values assumed by the data. For large values, the “edge bins”
can extend to infinity to catch the overflows. Given L observations of a stationary random sequence X(`),
` = 0, . . . ,L−1, the histogram estimate h(i) is formed by simply forming a type from the number Li of these
observations that fall into the ith bin and dividing by the binwidth δi.

p̂X (X) =


h(1) = L1

Lδ1
X1 < X ≤ X2

h(2) = L2
Lδ2

X2 < X ≤ X3
...

h(N) = LN
LδN

XN < X ≤ XN+1

The histogram estimate resembles a rectangular approximation to the density. Unless the underlying
density has the same form (a rare event), the histogram estimate does not converge to the true density as
the number L of observations grows. Presumably, the value of the histogram at each bin converges to the
probability that the observations lie in that bin.

lim
L→∞

Li

L
=
∫ Xi+1

Xi

pX (X)dX

To demonstrate this intuitive feeling, we compactly denote the histogram estimate by using indicator func-
tions. An indicator function Ii[X(`)] for the ith bin equals one if the observation X(`) lies in the bin and is zero
otherwise. The estimate is simply the average of the indicator functions across the observations.

h(i) =
1

Lδi

L−1

∑
`=0

Ii[X(`)]

The expected value of Ii[X(`)] is simply the probability Pi that the observation lies in the ith bin. Thus, the
expected value of each histogram value equals the integral of the actual density over the bin, showing that the
histogram is an unbiased estimate of this integral. Convergence can be tested by computing the variance of
the estimate. The variance of one bin in the histogram is given by

var[h(i)] =
Pi−P2

i

Lδ 2
i

+
1

L2δ 2
i

∑
k 6=`

(
E{Ii[X(k)]Ii[X(`)]}−P2

i
)

To simplify this expression, the correlation between the observations must be specified. If the values are sta-
tistically independent (we have white noise), each term in the sum becomes zero and the variance is given by
var[h(i)] = (Pi−P2

i )/(Lδ 2
i ). Thus, the variance tends to zero as L→∞ and the histogram estimate is consis-

tent, converging to Pi/δi. If the observations are not white, convergence becomes problematical. Assume, for
example, that Ii[X(k)] and Ii[X(`)] are correlated in a first-order, geometric fashion.

E{Ii[X(k)]Ii[X(`)]}−P2
i = P2

i ρ
|k−`|
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The variance does increase with this presumed correlation until, at the extreme (ρ = 1), the variance is a
constant independent of L! In summary, if the observations are mutually correlated and the histogram estimate
converges, the estimate converges to the proper value but more slowly than if the observations were white.
The estimate may not converge if the observations are heavily dependent from index to index. This type of
dependence structure occurs when the power spectrum of the observations is lowpass with an extremely low
cutoff frequency.

Convergence to the density rather than its integral over a region can occur if, as the amount of data grows,
we reduce the binwidth δi and increase N, the number of bins. However, if we choose the binwidth too small
for the amount of available data, few bins contain data and the estimate is inaccurate. Letting X ′ denote the
midpoint of a bin, using a Taylor expansion about this point reveals that the mean-squared error between the
histogram and the density at that point is [86: 44–59]

E
{
[pX (X ′)−h(i)]2

}
=

pX (X ′)
2Lδi

+
δ 4

i
36

[
d2 pX (X)

dX2

∣∣∣∣
X=X ′

]2

+O
(

1
L

)
+O(δ 5

i )

This mean-squared error becomes zero only if L→∞, Lδi→∞, and δi→0. Thus, the binwidth must decrease
more slowly than the rate of increase of the number of observations. We find the “optimum” compromise
between the decreasing binwidth and the increasing amount of data to be∗

δi =

[
9pX (X ′)

2 [d2 pX (X)/dX2|X=X ′ ]
2

]1/5

L−1/5

Using this binwidth, we find the the mean-squared error to be proportional to L−4/5. We have thus discovered
the famous “4/5” rule of density estimation; this is one of the few cases where the variance of a convergent
statistic decreases more slowly than the reciprocal of the number of observations. In practice, this optimal bin-
width cannot be used because the proportionality constant depends of the unknown density being estimated.
Roughly speaking, wider bins should be employed where the density is changing slowly. How the optimal
binwidth varies with L can be used to adjust the histogram estimate as more data become available.

4.8.3 Density Verification

Once a density estimate is produced, the class of density that best coincides with the estimate remains an
issue: Is the density just estimated statistically similar to a Gaussian? The histogram estimate can be used
directly in a hypothesis test to determine similarity with any proposed density. Assume that the observations
are obtained from a white, stationary, stochastic sequence. Let M0 denote the hypothesis that the data have
an amplitude distribution equal to the presumed density and M1 the dissimilarity hypothesis. If M0 is true,
the estimate for each bin should not deviate greatly from the probability of a randomly chosen datum lying
in the bin. We determine this probability from the presumed density by integrating over the bin. Summing
these deviations over the entire estimate, the result should not exceed a threshold. The theory of standard
hypothesis testing requires us to produce a specific density for the alternative hypothesis M1. We cannot
rationally assign such a density; consistency is being tested, not whether either of two densities provides the
best fit. However, taking inspiration from the Neyman-Pearson approach to hypothesis testing (§5.1.2 {145}),
we can develop a test statistic and require its statistical characteristics only under M0. The typically used, but
ad hoc test statistic S(L,N) is related to the histogram estimate’s mean-squared error [25: 416–41].

S(L,N) =
N

∑
i=1

(Li−LPi)2

LPi
=

N

∑
i=1

L2
i

LPi
−L

This statistic sums over the various bins the squared error of the number of observations relative to the ex-
pected number. For large L, S(L,N) has a χ2 probability distribution with N−1 degrees of freedom [25: 417].
∗This result assumes that the second derivative of the density is nonzero. If it is not, either the Taylor series expansion brings higher

order terms into play or, if all the derivatives are zero, no optimum binwidth can be defined for minimizing the mean-squared error.
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Thus, for a given number of observations L we establish a threshold ηN by picking a false-alarm probability
PF and using tables to solve Pr[χ2

N−1 > ηN ] = PF . To enhance the validity of this approximation, statisticians
recommend selecting the binwidth so that each bin contains at least ten observations. In practice, we fulfill
this criterion by merging adjacent bins until a sufficient number of observations occur in the new bin and
defining its binwidth as the sum of the merged bins’ widths. Thus, the number of bins is reduced to some
number N′, which determines the degrees of freedom in the hypothesis test. The similarity test between the
histogram estimate of a probability density function and an assumed ideal form becomes

S(L,N′)
M1
>
<

M0
ηN′

In many circumstances, the formula for the density is known but not some of its parameters. In the
Gaussian case, for example, the mean or variance are usually unknown. These parameters must be determined
from the same data used in the consistency test before the test can be used. Doesn’t the fact that we use
estimates rather than actual values affect the similarity test? The answer is “yes,” but in an interesting way:
The similarity test changes only in that the number of degrees of freedom of the χ2 random variable used to
establish the threshold is reduced by one for each estimated parameter. If a Gaussian density is being tested,
for example, the mean and variance usually need to be found. The threshold should then be determined
according to the distribution of a χ2

N′−3 random variable.

Example
Three sets of observations are considered: Two are drawn from a Gaussian distribution and the other
not. The first Gaussian example is white noise, a signal whose characteristics match the assumptions
of this section. The second is non-Gaussian, which should not pass the test. Finally, the last test
consists of colored Gaussian noise that, because of dependent samples, does not have as many degrees
of freedom as would be expected. The number of data available in each case is 2000. The histogram
estimator uses fixed-width bins and the χ2 test demands at least ten observations per merged bin. The
mean and variance estimates are used in constructing the nominal Gaussian density. The histogram
estimates and their approximation by the nominal density whose mean and variance were computed
from the data are shown in Fig. 4.17. The chi-squared test (PF = 0.1) yielded the following results.

Density N′ χ2
N′−3 S(2000,N′)

White Gaussian 70 82.2 78.4
White sech 65 76.6 232.6
Colored Gaussian 65 76.6 77.8

The white Gaussian noise example clearly passes the χ2 test. The test correctly evaluated the non-
Gaussian example, but declared the colored Gaussian data to be non-Gaussian, yielding a value near
the threshold. Failing in the latter case to correctly determine the data’s Gaussianity, we see that the
χ2 test is sensitive to the statistical independence of the observations.

Problems
4.1 Estimates of identical parameters are heavily dependent on the assumed underlying probability densi-

ties. To understand this sensitivity better, consider the following variety of problems, each of which
asks for estimates of quantities related to variance. Determine the bias and consistency in each case.

(a) Compute the maximum a posteriori and maximum likelihood estimates of θ based on L statisti-
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Figure 4.17: Three histogram density estimates are shown and compared with Gaussian densities having
the same mean and variance. The histogram on the top is obtained from Gaussian data that are presumed
to be white. The middle one is obtained from a non-Gaussian distribution related to the hyperbolic secant
[pX (X) = 1

2σ
sech2(πX/2σ)]. This density resembles a Gaussian about the origin but decreases exponentially

in the tails. The bottom histogram is taken from a first-order autoregressive Gaussian signal. Thus, these data
are correlated, but yield a histogram resembling the true amplitude distribution. In each case, 2000 data points
were used and the histogram contained 100 bins.

cally independent observations of a Maxwellian random variable X .

pX |θ (X |θ) =

√
2
π

θ
−3/2X2e−

1
2 X2/θ X > 0,θ > 0

pθ (θ) = λe−λθ , θ > 0

(b) Find the maximum a posteriori estimate of the variance σ2 from L statistically independent ob-
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servations having the exponential density

pX |σ2(X |σ2) =
1√
σ2

e−X/
√

σ2
X > 0

where the variance is uniformly distributed over the interval [0,σ2
max).

(c) Find the maximum likelihood estimate of the variance of L identically distributed, but depen-
dent Gaussian random variables. Here, the covariance matrix is written KX = σ2K̃X , where the
normalized covariance matrix has trace tr[K̃X ] = L. Assume the random variables have zero mean.

4.2 Imagine yourself idly standing on the corner in a large city when you note the serial number of a passing
beer truck. Because you are idle, you wish to estimate (guess may be more accurate here) how many
beer trucks the city has from this single observation.

(a) Making appropriate assumptions, the beer truck’s number is drawn from a uniform probability
density ranging between zero and some unknown upper limit, find the maximum likelihood esti-
mate of the upper limit.

(b) Show that this estimate is biased.
(c) In one of your extraordinarily idle moments, you observe throughout the city L beer trucks. As-

suming them to be independent observations, now what is the maximum likelihood estimate of
the total?

(d) Is this estimate of θ biased? asymptotically biased? consistent?

4.3 Faulty Geiger Counter
A Geiger counter detects the incidence of radioactive particles by counting the number hitting the
detector over each one second interval. Our faulty detector only counts each particle with probability
p. The physics of particle generation has the particles emitted according to a Poisson process, making
the number emitted each second governed by a Poisson distribution.

Pr[N = n] =
λ ne−λ

n!

(a) What is the probability distribution of number of particles the faulty Geiger actually detects in one
second?

(b) Find the minimum-mean-squared-error estimate of N based on observing the Geiger counter out-
put.

(c) Examine the estimator’s bias and variance characteristics.

4.4 Estimating a Bit
To send a bit, a discrete-time communications system transmits either +1 or −1 for L successive in-
dices. The channel adds white Gaussian noise and the receiver must determine which bit was sent from
these noise-corrupted observations. The bit’s values are equally likely.

(a) What is the MAP estimate of the bit’s value?
(b) Determine the bias, if any, of the MAP estimate?
(c) Is the MAP estimate in this case consistent?
(d) Find the minimum mean-squared error estimator of the bit.

4.5 We make L observations X1, . . . ,XL of a parameter θ corrupted by additive noise (X` = θ +N`). The pa-
rameter θ is a Gaussian random variable [θ ∼N (0,σ2

θ
)] and N` are statistically independent Gaussian

random variables [N` ∼N (0,σ2
N)].

(a) Find the MMSE estimate of θ .
(b) Find the maximum a posteriori estimate of θ .
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(c) Compute the resulting mean-squared error for each estimate.

(d) Consider an alternate procedure based on the same observations X`. Using the MMSE crite-
rion, we estimate θ immediately after each observation. This procedure yields the sequence of
estimates θ̂1(X1), θ̂2(X1,X2), . . . , θ̂L(X1, . . . ,XL). Express θ̂` as a function of θ̂`−1, σ2

`−1, and X`.
Here, σ2

` denotes the mean-squared estimation error of the `th estimate. Show that

1
σ2

`

=
1

σ2
θ

+
`

σ2
N

4.6 Phase Estimation
A sinusoid of known amplitude and frequency but unknown phase is observed in zero-mean white
Gaussian noise.

Xl = Acos(2π f0l +θ)+Nl , 0≤ l ≤ L−1

Assume the observation interval contains an integer number of the sinusoid’s periods.

(a) What is the maximum likelihood estimate of the phase?

(b) Is your estimate biased?

(c) What is the Cramér-Rao bound on the mean-squared estimation error?

4.7 Estimating Phase, Amplitude and Frequency
You are given the discrete-time signal Acos(2π f0`− θ) observed in the presence of white Gaussian
noise having zero-mean and variance σ2. Eventually, we want to find all the parameters, but let’s build
up to that by estimating first the phase θ , then the amplitude A, finally incorporating the frequency
f0. Throughout assume the number of observations L contains an integer number of periods of the
sinusoidal signal.

(a) What is the maximum likelihood estimate for the phase assuming the amplitude and frequency
are known?

(b) Find the Cramér-Rao bound for your estimate.

(c) Create a MATLAB simulation of your estimation procedure. Let A = 1 and f0 = 100/L, with
L = 1024. Run 1,000-trial simulations to estimate the phase for θ = π/4 for signal-to-noise ratios
A2/σ2 of 1.0 and 0.04. Calculate the empirical mean and standard deviation of your estimates.
Do they agree with theory?

(d) What are the maximum likelihood estimates of the phase and the amplitude? Find the Cramér-Rao
bound for this case.

(e) Using the same simulations as in part (c), do these estimates have the predicted statistics?

(f) Find the joint maximum likelihood estimates for all three parameters. Calculate the Cramér-Rao
lower bound for each parameter’s estimation error.
Note: The analytic maximum likelihood estimate of the frequency is difficult to apply to data.
Find an equivalent empirical estimate.

(g) For the data file sineinnoise.mat, estimate the amplitude, frequency and phase. Indicate the
possible range of values for your estimates (i.e., provide error bars).

4.8 Although the maximum likelihood estimation procedure was not clearly defined until early in the 20th
century, Gauss showed in 1805 that the Gaussian density∗ was the sole density for which the maximum
likelihood estimate of the mean equaled the sample average. Let {X0, . . . ,XL−1} be a sequence of
statistically independent, identically distributed random variables.

(a) What equation defines the maximum likelihood estimate m̂ML of the mean m when the common
probability density function of the data has the form p(X−m)?

∗It wasn’t called the Gaussian density in 1805; this result is one of the reasons why it is.
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(b) The sample average is, of course, ∑` X`/L. Show that it minimizes the mean-squared error
∑`[X`−m]2.

(c) Equating the sample average to m̂ML, combine this equation with the maximum likelihood equa-
tion to show that the Gaussian density uniquely satisfies the equations.

Note: Because both equations equal 0, they can be equated. Use the fact that they must hold for all L
to derive the result. Gauss thus showed that mean-squared error and the Gaussian density were closely
linked, presaging ideas from modern robust estimation theory.

4.9 A Non-Gaussian Problem
We observe a sequence of L statistically independent Laplacian random variables having an unknown
mean and variance.

(a) Find the maximum likelihood estimates of the mean and variance.

(b) Is the estimate of the mean biased?

(c) What are the smallest mean-squared errors that these estimates can achieve?

4.10 What’s In-Between the Samples?
We sample a stationary random process Xt every T seconds, ignoring whether the process is bandlimited
or not. To reconstruct the signal from the samples, we use linear interpolation.

X̂t = aX(n−1)T +bXnT , (n−1)T ≤ t ≤ nT

(a) Find the minimum mean-squared error linear interpolator. In other words, what are the best values
for a and b?

(b) Show that the maximum likelihood interpolator is also linear when Xt is a wide-sense stationary,
zero-mean, Gaussian process. In other words, if X(n−1)T and XnT comprise your observations,
show that the maximum likelihood estimate of Xt has the linear form given above. For this part,
you do not need to find a and b.

(c) Find the Cramér-Rao bound for the interpolation estimate of Xt .

4.11 In an example {59}, we derived the maximum likelihood estimate of the mean and variance of a Gaus-
sian random vector. You might wonder why we chose to estimate the variance σ2 rather than the stan-
dard deviation σ . Using the same assumptions provided in the example, let’s explore the consequences
of estimating a function of a parameter [87: Probs. 2.4.9, 2.4.10].

(a) Assuming that the mean is known, find the maximum likelihood estimates of first the variance,
then the standard deviation.

(b) Are these estimates biased?

(c) Describe how these two estimates are related. Assuming that f (·) is a monotonic function, how
are θ̂ML and f̂ (θ)ML related in general?
These results suggest a general question. Consider the problem of estimating some function of
a parameter θ , say f1(θ). The observed quantity is X and the conditional density pX |θ (X |θ) is
known. Assume that θ is a nonrandom parameter.

(d) What are the conditions for an efficient estimate f̂1(θ) to exist?

(e) What is the lower bound on the variance of the error of any unbiased estimate of f1(θ)?
(f) Assume an efficient estimate of f1(θ) exists; when can an efficient estimate of some other function

f2(θ) exist?

4.12 Let the observations X(`) consist of statistically independent, identically distributed Gaussian random
variables having zero mean but unknown variance. We wish to estimate σ2, their variance.

(a) Find the maximum likelihood estimate σ̂2ML and compute the resulting mean-squared error.
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(b) Show that this estimate is efficient.

(c) Consider a new estimate σ̂2NEW given by σ̂2NEW = ασ̂2ML, where α is a constant. Find the value
of α that minimizes the mean-squared error for σ̂2NEW. Show that the mean-squared error of
σ̂2NEW is less than that of σ̂2ML. Is this result compatible with part b?

4.13 Method of Moments
An early twentieth-century estimation approach used sample moments—sample average, average
mean-square value, etc.—as a basis for estimating appropriate quantities. While its properties are diffi-
cult to determine, it can yield a simpler estimate than “standard,” more modern methods. For example,
consider a wide-sense stationary, white process having an amplitude density given by a so-called mix-
ture distribution.

pX (X) = ap1(X)+(1−a)p2(X)

Here, a is known as the mixture parameter and p1(X), p2(X) are two known probability densities. We
want to estimate the mixture parameter for the special case wherein the two densities are zero-mean
Gaussians having variances σ2

1 , σ2
2 respectively. We have L statistically independent observations.

(a) What is the expected value of sample values of the first two moments: the sample average X and
sample mean-squared value X2?

X =
1
L

L−1

∑
`=0

X` X2 =
1
L

L−1

∑
`=0

X2
`

(b) Use your expected value expressions to derive an estimate for the mixture parameter.
(c) Is this estimate biased? consistent? Why or why not?
(d) Find the expected mean-squared error.

4.14 Optimal and Simple Communications
A multiplexed communication system needs to be designed that sends two numbers simultaneously.
Perhaps the simplest design represents the numbers as the amplitudes of two carrier signals. The re-
ceived signal has the form

Rl = A1c1(l)+A2c2(l)+Nl , l = 0, . . . ,L−1

where Nl is ubiquitous additive (not necessarily white) Gaussian noise. The carrier signals c1(l) and
c2(l) have unit energy; their detailed waveforms need to be selected to provide the best possible system
design.

(a) What is the maximum likelihood estimate of the amplitudes?
(b) Is the maximum likelihood estimate biased or not? If it is biased, what are the most general

conditions on the carrier signals and the noise would it make it unbiased?
(c) Under what conditions are the amplitude estimation errors uncorrelated and as small as possible?

4.15 MIMO Channels
Two parameters θ1, θ2 are transmitted over a MIMO (Multiple-Input, Multiple-Output) channel. The
two parameters constitute the channel’s two-dimensional vector input θθθ , and the channel output is Hθθθ .
H is the non-square “transfer function” matrix that represents the set of linear combinations of the
parameters found in the output. The observations consist of

R = Hθθθ +N ,

where the noise vector N is Gaussian, having zero mean and covariance matrix K.

(a) What is the maximum likelihood estimate of θθθ?
(b) Find this estimate’s total mean-squared error.
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(c) Is this estimate biased? Is it efficient?

4.16 Prediction
A signal s(`) can be described as a stochastic process that has zero mean and covariance function
Ks(`) = σ2

s a|`|. This signal is observed in additive white Gaussian noise having variance σ2. The signal
and noise are statistically independent of each other.

(a) Find the optimal predictor ŝ(`+ 1) that is based on observations that end at time ` and begin at
time `−L+1.

(b) How does this predictor change if we want to estimate s(`+ k) based on observations made over
[`, . . . , `+L−1]?

(c) How does the predictor’s mean-squared error vary with k?

4.17 Let the observations be of the form X = Hθθθ + n where θθθ and n are statistically independent Gaussian
random vectors.

θθθ ∼N (0,Kθ ) n∼N (0, Kn)

The vector θθθ has dimension M; the vectors X and n have dimension N.

(a) Derive the minimum mean-squared error estimate of θθθ , θ̂θθ MMSE, from the relationship θ̂θθ MMSE =
E[θθθ |X].

(b) Show that this estimate and the optimum linear estimate θ̂θθ LIN derived by the Orthogonality Prin-
ciple are equal.

(c) Find an expression for the mean-squared error when these estimates are used.

4.18 Suppose we consider an estimate of the parameter θ having the form θ̂ = L (X)+C, where X denotes
the vector of the observables and L (·) is a linear operator. The quantity C is a constant. This estimate
is not a linear function of the observables unless C = 0. We are interested in finding applications for
which it is advantageous to allow C 6= 0. Estimates of this form we term “quasi-linear.”

(a) Show that the optimum (minimum mean-squared error) quasi-linear estimate satisfies

E[〈L�(X)+C�−θ ,L (X)+C〉] = 0, for all L (·) and C

where θ̂QLIN = L�(X)+C�.
(b) Find a general expression for the mean-squared error incurred by the optimum quasi-linear esti-

mate.
(c) Such estimates yield a smaller mean-squared error when the parameter θ has a nonzero mean. Let

θ be a scalar parameter with mean m. The observables comprise a vector X having components
given by X` = θ +N`, ` = 1, . . . ,L where N` are statistically independent Gaussian random vari-
ables [N` ∼N (0,σ2

N)] independent of θ . Compute expressions for θ̂QLIN and θ̂LIN. Verify that
θ̂QLIN yields a smaller mean-squared error when m 6= 0.

4.19 On Page 69, we questioned the existence of an efficient estimator for signal parameters. We found
in the succeeding example that an unbiased efficient estimator exists for the signal amplitude. Can a
nonlinearly represented parameter, such as time delay, have an efficient estimator?

(a) Simplify the condition for the existence of an efficient estimator by assuming it to be unbiased.
Note carefully the dimensions of the matrices involved.

(b) Show that the only solution in this case occurs when the signal depends “linearly” on the parameter
vector.

4.20 Cramér-Rao Bound for Signal Parameters
In many problems, the signal as well as the noise are sometimes modeled as Gaussian processes. Let’s
explore what differences arise in the Cramér-Rao bounds for the stochastic and deterministic signal
cases. Assume that the signal contains unknown parameters θθθ , that it is statistically independent of the
noise, and that the noise covariance matrix is known.



Chap. 4 Problems 131

(a) What forms do the conditional densities of the observations take under the two assumptions?
What are the two covariance matrices?

(b) As a preliminary, show that
∂A−1

∂θ
=−A−1 ∂A

∂θ
A−1 .

(c) Assuming the stochastic signal model, show that each element of the Fisher information matrix
has the form

Fi j =
1
2

tr
[

K−1 ∂K
∂θi

K−1 ∂K
∂θ j

]
where K denotes the covariance matrix of the observations. Specialize this expression by assum-
ing the noise component has no unknown parameters.

(d) Compare the stochastic and deterministic bounds, the latter is given by Eq. 4.6 {68}, when the
unknown signal parameter is the amplitude. Assume the noise covariance matrix equals σ2

NI. Do
these bounds have similar dependence on signal-to-noise ratio?

4.21 Estimating the Amplitude of a Sinusoid
Suppose you observe a discrete-time sinusoid in additive Laplacian white noise having variance per
sample of σ2.

X` = Asin(2π f0`)+N`, ` = 0, . . . ,L−1

The frequency is known and is harmonic with the observation interval ( f0 = n/L for some integer n).

(a) What equation determines the maximum likelihood amplitude estimate?
(b) Because no closed form solution for the estimate is evident, write a MATLAB program that sim-

ulates the observations and finds the estimate. Set L = 1024 and f0 = 100/L. Let A = 1 and
σ2 = 1. Compute and plot the derivative of the log likelihood function for values of A close to the
true amplitude. What do you conclude from this result?

(c) For your dataset, find the maximum likelihood estimate of A.
(d) Find the Cramér-Rao bound for the error variance.
(e) In practice, using Gaussian-noise assumption provides far simpler answers than using a model

more closely describing the data. Simulate 1,000 observational trials using the Laplacian noise
description. Use two values for the noise variance 1 and 25 in each set of trials. Determine
the mean and variance of the Gaussian-derived amplitude estimate. What is the theoretical value
for the mean-squared error when the Gaussian-based estimate for the amplitude is used? Does the
simulated variance agree with this result?

4.22 BLUE
In addition to forcing a minimum-mean-squared-error estimator to be a linear function of the data, we
can also force it to be unbiased. Enforcing these requirements on the estimator makes it the Best Linear
Unbiased Estimator (BLUE). To explore the properties of this estimator, we consider the problem of
estimating the signal amplitude A when we observe

X` = As` +N`, 0≤ ` < L .

The signal s` is known and the noise N` is wide-sense stationary having covariance function KN(`).

(a) Find the BLUE estimator for the signal amplitude.
(b) What is an expression for the resultant mean-squared error?
(c) What signal choice minimizes the mean-squared error?

4.23 In Poisson problems, the number of events n occurring in the interval [0,T ) is governed by the proba-
bility distribution {15}

Pr[n] =
(λ0T )n

n!
e−λ0T ,

where λ0 is the average rate at which events occur.



132 Estimation Theory Chap. 4

(a) What is the maximum likelihood estimate of average rate?
(b) Does this estimate satisfy the Cramér-Rao bound?
(c) Now suppose the rate varies sinusoidally according to

λ (t) = λ0 exp{acos2π f0t} 0≤ t < T

where the frequency f0 is a harmonic of 1/T . What are the maximum likelihood estimates of λ0
and a in this case?
Note: The following facts will prove useful.

I0(a) =
1

2π

∫ 2π

0
eacosθ dθ is the modified Bessel function of the first kind, order 0.

I′0(a) = I1(a), the modified Bessel function of the first kind, order 1.

I′′0 (a) =
I2(a)+ I0(a)

2

(d) Find the Cramér-Rao bounds for the mean-squared estimation errors for λ̂0 and â assuming unbi-
ased estimators.

4.24 In the “classic” radar problem, not only is the time of arrival of the radar pulse unknown but also
the amplitude. In this problem, we seek methods of simultaneously estimating these parameters. The
received signal X(`) is of the form

X(`) = θ1s(`−θ2)+N(`)

where θ1 is Gaussian with zero mean and variance σ2
1 and θ2 is uniformly distributed over the observa-

tion interval. Assuming the noise is white and Gaussian, find the receiver that computes the maximum
a posteriori estimates of θ1 and θ2 jointly. Draw a block diagram of this receiver and interpret its
structure.

4.25 We stated without derivation the Cramér-Rao bound for estimates of signal delay (Eq. 4.7 {70}).
(a) The parameter θ is the delay of the signal s(·) observed in additive, white Gaussian noise:

X(`) = s(`−θ)+N(`), ` = 0, . . . ,L−1. Derive the Cramér-Rao bound for this problem.
(b) On Page 74, this bound is claimed to be given by σ2

N/Eβ 2, where β 2 is the mean-squared band-
width {74}. Derive this result from your general formula. Does the bound make sense for all
values of signal-to-noise ratio E/σ2

N?
(c) Using optimal detection theory, derive the expression {74} for the probability of error incurred

when trying to distinguish between a delay of τ and a delay of τ +∆. Consistent with the problem
posed for the Cramér-Rao bound, assume the delayed signals are observed in additive, white
Gaussian noise.

4.26 Estimating Filter Characteristics
White, discrete-time noise is passed through a first-order IIR filter to produce the observations.

X` = aX`−1 +W`, 0≤ ` < L

Here, W` is white Gaussian noise, each sample of which has variance σ2. Both the filter parameter a
and the input power σ2 (the variance of each W`) are to be estimated.

(a) Find the maximum likelihood estimates of these parameters.
(b) Find the Cramér-Rao bound for any unbiased estimator for this estimation problem.

4.27 Estimating Model Probabilities
We want to estimate the a priori probability π0 based on data obtained over N statistically independent
observation intervals. During each length-L observation interval, the observations consist of white
Gaussian noise having variance of either σ2

0 or σ2
1 (σ2

1 > σ2
0 ). π0 is the probability that the observations

have variance σ2
0 and we do not know which model applies for any observation interval.
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(a) One approach is to classify each observation interval according to its variance, count the number
of times the variance equals σ2

0 , and divide this count by N. What is the classification algorithm
that lies at the heart of this estimator?

(b) What classifier threshold yields an unbiased estimate of π0? Comment on the feasibility of this
approach.

(c) Rather than use this ad hoc approach, let’s use a systematic estimation approach: what is the
maximum likelihood estimate of π0 based on the N observation intervals?

4.28 Image Restoration
Nuclear medicine imaging systems can be modeled as a blurring process (lowpass filtering) plus addi-
tive noise.

x(m,n) = s(m,n)⊗g(m,n)+w(m,n)

with g(m,n) the unit-sample response of the blurring process, s(m,n) the true image, and w(m,n) white
noise. A sample image (spine.mat) and the DFT of g(m,n) (G.mat) are shown.

The spine image is blurred and noisy and the blurring system is indeed lowpass.

(a) Assume that the power density function of medical images has the form

Ss
(
e j2π f1 ,e j2π f2

)
=

σ2
s(

1+ k · (2π f1)2 + k · (2π f2)2
)α , −1

2
≤ f1, f2 ≤

1
2

where 1
2 ≤ α ≤ 3

2 , σ2
s is the DC power, and k is a constant related to the spatial sampling interval.

By examining the power spectrum of the spine image, determine reasonable values for σ2
s , k, and

α .

(b) What is the optimal mean-squared error transfer function? Express it in terms of the ratio R =
σ2

s /σ2
w.

(c) Implement the optimal restoration filter using MATLAB. Experiment with various choices for α

and R, and pick the best restored image you found.

4.29 The signal has a power spectrum given by

Ss( f ) =
17
20
·

1+ 8
17 cos2π f

1− 4
5 cos2π f

This signal is observed in additive white noise having variance equaling 6.

(a) Find the unit-sample response of the noncausal Wiener filter.

(b) Find the difference equation governing the causal Wiener filter (le = 0).

(c) Compare this equation with that of the Kalman filter.

(d) Calculate the signal processing gain of Wiener filter.
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4.30 The Eckhart filter is an optimum linear filter that maximizes the signal-to-noise ratio of its output [31].
To find the unit-sample response of the FIR Eckhart filter, consider observations of the form X = s+N
where the covariance matrix of the noise is known. The signal-to-noise ratio is computed according to
E[‖hts‖2]/E[‖htN‖2], where h is the desired unit-sample response.

(a) Assuming the signal is nonrandom, find the Eckhart filter’s unit-sample response.

(b) What is the signal-to-noise ratio produced by the Eckhart filter? How does it compare with that
produced by the corresponding Wiener filter?

(c) Now assume the signal is random, having covariance matrix Ks. Characterize the Eckhart filter.

4.31 Minimum-Output-Power Filtering
We can design filters for stochastic observations by minimizing the filter’s output power while con-
straining the filter to have certain characteristics. Assume the filter has finite duration L and is to filter
a zero-mean random process Xl .

(a) What filter minimizes its output power while having unity gain at zero frequency?

(b) Now suppose the filter must have a unit-sample response that has a mean-square value of one.
What is the unit-sample response of this filter? Is it unique?

(c) Suppose the unit-sample response is restricted to be a weighted sum of K signals, K < L, where the
weights are to be adapted according to filter design criteria. This requirement is most conveniently
expressed with a projection matrix P: Ph = h. Projection matrices have eigenvalues equal to one
or zero, with the eigenvectors corresponding to unity eigenvalues spanning the subspace to which
we want to restrict h (the unit-sample response of the filter written as a vector). What filter
minimizes its output power subject to this constraint?

4.32 Linear Phase Predictors
The standard one-step prediction problem uses an FIR predictor of the form

Ŝ(`) = h1s(`−1)+h2s(`−2)+ · · ·+hps(`− p)

The optimal coefficients are found from the Yule-Walker equations. Suppose we impose the constraint
that the predictor, considered as a FIR linear filter, have a linear phase. This additional requirement
means that the filter coefficients obey the symmetry condition hk = hp−k+1, k = 1, . . . , p/2. Let the
filter’s order, p, be an even integer.

(a) What are the system of equations the optimal linear phase predictor must satisfy?

(b) What equation governs the linear-phase LMS adaptive filter?

(c) Find conditions on the LMS filter’s adaptation coefficient µ that guarantee convergence.

4.33 We frequently employ matrix eigenanalysis to explore the convergence of dynamic adaptive methods.
Consider the vector difference equation

v(`) = Av(`−1)+u(`)

Assume the matrix A has distinct eigenvalues.

(a) Show that if you define a new state vector to be x(`) = Mv(`), where the matrix M is a unitary
matrix (A unitary matrix obeys the relation M′M = I), then the new state-transition matrix has the
same eigenvalues as A.

(b) There exists a choice for M that diagonalizes the state-transition matrix. What is the resulting
state-transition matrix? For this new state equation, under what conditions is the system stable?
Argue this condition applies to the original state equation.

(c) Suppose the input is a unit sample, which evokes a transient response from the system. When the
system is stable, the output eventually decays to zero. How quickly does this decay occur?
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4.34 On Page 86, the settling time of LMS filters was related to the eigenvalues of the observations’ co-
variance matrix. A little analysis coupled with engineering knowledge makes these claims clear. Let’s
discuss the vector difference equation v(l) = Av(l−1), with A a symmetric matrix.

(a) Because this vector difference equation is first order, it represents a set of coupled first-order dif-
ference equations. Thus, some homogeneous M-dimensional linear system is described. Show
that the homogeneous response can be expressed as a weighted linear combination of the eigen-
vectors of A.

(b) Use the matrix’s eigen decomposition to show that the norm of v remains bounded for any initial
condition if max |λA| < 1. Letting A = I−2µKX , show that this bound implies the convergence
condition 0 < µ < 1/maxλKX for the LMS algorithm.

(c) The rate at which a linear system reaches steady state is determined by the mode having the
largest time constant. Use this analogy to show that the decay rate of our difference equation is
determined by the eigenvalue of A having the largest magnitude and that the corresponding time
constant equals

τ =− 1
lnmax |λA|

(d) Find the convergence rate of the LMS adaptive filter that reaches steady state smoothly (no oscil-
latory adaptation).

4.35 LMS Prediction
We wish to find the one-step predictor for a second-order AR process using the LMS algorithm. Here,
the signal s(`) is governed by the all-pole difference equation

s(`) = a1s(`−1)+a2s(`−2)+w(`) ,

where w(`) is white Gaussian noise. The signal is observed directly; we seek to predict what its next
value will be at each moment of time. Let the LMS filter’s order be two for the special case of a1 =
1.2728, a2 =−.95, and σ2

w = 1.

(a) What is the theoretical worst-case mean-squared prediction error and the possible prediction error
produced by a causal Wiener filter. Express your answer in general terms of the signal generation
filter’s unit sample response.

(b) Compute the covariance matrix relevant to determining the adaptation parameter µ of the LMS
algorithm. What is the largest value this parameter can have?

(c) Simulate this LMS prediction filter for several values of µ . Show that larger values lead to quicker
convergence. Does the “steady-state” mean-square prediction error depend on µ? How does this
mean-square prediction error produced by the LMS algorithm compare with the theoretical worst-
and best-case bounds?

4.36 Adaptive Filtering for Communications
In digital communication, the signals frequently used to represent digital data are square waves. To
improve the signal-to-noise ratio, adaptive filters tailored to this problem are used. The filtered result
ŝ(l) equals h′(l)R, with the filter’s unit sample response h(l) updated at each index by the LMS algo-
rithm. As in many adaptive filtering problems, calculating the error signal is both essential to the LMS
algorithm and difficult to determine, the difficulty here being we don’t know which square wave was
sent. Here, the error criterion is adjusted to take into account the signal special property, namely at
every sample, the signal’s magnitude is a constant (normalized to be unity).

(a) Derive the adaptive filtering algorithm that minimizes the expected squared error, the error given
by ε(l) = |ŝ(l)|2−1.

(b) Show that the resulting algorithm will not yield accurate signal estimates. Indicate why the algo-
rithm is flawed.

(c) Change the definition of the error to fix this flaw and derive a better adaptive filtering algorithm.
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4.37 Adaptive Line Enhancement
Adaptive line enhancement illustrates well an important application of dynamic adaptive filters. Assume
the observations are known to contain a signal (as well as ever-present noise) having period P. This
signal is not known more precisely than this: It could be a sinusoid of arbitrary amplitude and phase, or
a distorted sinusoid having unknown harmonic structure. We want to design a FIR dynamic adaptive
filter that enhances the periodic signal (which has a line spectrum) and thereby reduce the observation
noise.

(a) The crucial part of the design is the selection of the error signal, whose energy is minimized by
the filter. Assuming the noise is white, how would the error signal be chosen to enhance signals
of period P? How long should the adaptive filter be in this application? Draw a block diagram of
the resulting line enhancer.

(b) The settling time and mean-squared error are governed by the characteristics of the observations’
covariance matrix. In this problem, however, we should not assume that the signal component is
random. As X = s + N, what is KX when the noise has zero mean? Determine the smallest and
largest eigenvalues of this matrix. Express the smallest settling time in terms of the signal-to-noise
ratio.

4.38 Adaptive Noise Cancellation
In adaptive noise cancellation, you use the LMS algorithm to estimate the noise rather than the signal.
Once estimated, the noise can be subtracted from the observations, leaving behind the signal and the
prediction residual.

X1(`) = N1(`)

X2(`) = s(`)+N2(`)

Here, the noise signals N1(`) and N2(`) are correlated Gaussian random processes. The idea is to use
X1(`) to estimate N2(`) and then subtract this estimate from X2(`).

(a) The correlated noise signals can be modeled as a common white noise source passing through two
filters in parallel.

H1(f)

H2(f)

W(l)

N1(l)

N2(l)

Find the optimal non-causal Wiener filter’s transfer function for adaptive noise cancellation. What
is the resulting mean-square error?

(b) Develop an LMS filter for this problem and show the block diagram showing the signal flow.

(c) Simulate adaptive noise cancellation for the following scenario.

s(`) = sin2π f0` , f0 = 0.25

H1( f ) =
1

1−a1e− j2π f ,a1 =−0.8

H2( f ) =
1

1−a2e− j2π f ,a2 = 0.6

σ
2
W = 1

What range of values of µ work the best? Show the noisy signal and the result of the noise
canceller. How does the mean-squared error compare with that of the optimal Wiener filter?
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4.39 Optimal Spectral Estimation
While many spectral estimation procedures are found in the literature, few take into account the pres-
ence of additive noise. Assume that the observations consist of a signal s and statistically independent,
additive, zero-mean noise N.

X(`) = s(`)+N(`), ` = 0, . . . ,L−1

Treat finding the optimal estimate of the signal’s spectrum as an optimal FIR filtering problem, where
the quantity to be estimated is ∑l s(`)e− j2π f `.

(a) Find the spectral estimate that minimizes the mean-squared estimation error.
(b) Find this estimate’s mean-squared error.
(c) Under what conditions is this estimate unbiased?

4.40 The covariance function estimate described on pages 105ff was biased (so the author claims) because
the number of terms used at each lag varied without a corresponding variation in the normalization.
Let’s explore that claim closely. Assume that we now estimate the covariance function according to

K̂X (m) =
1

D−|m|

D−|m|−1

∑
n=0

X(n)X(n+m) , 0≤ |m| ≤ D−1

(a) Find the expected value of this revised estimator, and show that it is indeed unbiased.
(b) To derive the variance of this estimate, we need the fourth moment of the observations, which

is conveniently given in Chapter 2 (§2.1.9 {11}). Derive the covariance estimate’s variance and
determine whether it is consistent or not.

(c) Evaluate the expected value and variance of the spectral estimate corresponding to this covariance
estimate.

(d) Does spectral estimate consistency become a reality with this new estimation procedure?

4.41 Let’s see how spectral estimators work on a “real” dataset. The file spectral.mat contains a signal
comprised of a sinusoid and additive noise.

(a) Evaluate the periodogram for this signal. What is your best guess for the sine wave’s frequency
and amplitude based on the periodogram? Are your estimates “good” in any sense?

(b) Use the Barlett spectral estimation procedure instead of the periodogram. Use a section length of
500, a Hanning window, and half-section overlap. Now what are your estimates of the sinusoid’s
frequency and amplitude?

(c) The default transform size in MATLAB’s fft function is the data’s length. Instead of using
the section length in your Bartlett estimate, use a longer transform to determine the frequency
resolution of the spectral peak presumably corresponding to the sinusoid. Compare the resolutions
that section lengths of 500 and 1000 provide. Also compare the resolutions the Hanning and
rectangular windows provide for these section lengths.

4.42 The data contained in welldata.mat is an actual recording of noise produced by a mechanical
system. The variable Fs contains the sampling frequency. As with any data about which you know
little, the transform length you ultimately use depends on what resolution you think you need.

(a) As a preliminary, produce a Gaussian process having a first-order spectrum (pole at 0.9; length
= 217). Compute the periodogram for increasingly larger data lengths of 128, 1024, 8192, and
65,536. Does the spectrum become smoother as the length increases?

(b) Use the Bartlett spectral estimation procedure, with these lengths defining both the section and
transform lengths. Now how does the error behave? Analytically predict how large the error
should be. Do your simulations agree with the predictions?

(c) Now apply the Bartlett spectral estimate to the dataset. Find a section length that seems best.
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(d) Compute the data’s minimum variance spectral estimate using a section length of 128. Use a
transform length of 1024. How does the minimum variance estimate compare with the Bartlett
spectral estimate? Consider resolution and the apparent error.

4.43 Rather than the covariance matrix estimate given in Eq. 4.37 {114}, we can use a Bartlett-
procedure-like maximum likelihood estimate. Imagine the length L observations segmented into
K frames each having duration D. The kth frame is formed into the column matrix Xk as
col[X(kD),X(kD+1), . . . ,X(kD+D−1)], k = 0, . . . ,K−1.

(a) Assuming the frames are statistically independent and are each distributed as a zero-mean Gaus-
sian random vector having covariance matrix KX , find the log-likelihood function.

(b) By evaluating the gradient of this expression with respect to the matrix K, find the maximum
likelihood estimate of the covariance matrix K̂X

ML.
(c) How does this estimate differ from that provided in Eq. 4.37 {114}?

Note: The matrix gradient identities provided in §B.3 {230} should prove useful.
4.44 The rather interesting form of the minimum variance spectral estimate (Eq. 4.37 {114}) has a peri-

odogram counterpart.

(a) Show that the quadratic form e′( f )K̂X e( f ) equals the periodogram.

(b) Show that the Bartlett spectral estimate can be written as e′( f )K̂X
MLe( f ), where K̂X

ML is the subject
of Problem 4.43.

4.45 Accurately estimating the parameters of an AR model using linear prediction is contingent on zero-
mean observations: We must use covariance rather than correlation matrix estimates to calculate these
parameters. To illustrate this point, consider a sequence of observations X(l) having mean m. Rather
than subtracting the mean, you calculate the parameters presuming zero-mean data.

(a) How is the “covariance matrix” calculated by ignoring the mean related to the actual one? Relate
the inverse of this matrix to the inverse of the true covariance matrix.

(b) Find an expression relating the true AR parameters to the computed ones. Show that the quantity
1/m2 +1tK−11 controls the deviation of the calculated parameters from the true ones.

4.46 Because of the special structure of the equation KX a = σ2
wδδδ that defines the linear prediction parame-

ters, the AR power spectrum can be directly related to the minimum variance power spectrum [13];[69:
354–56].

(a) Let ar = col[1,−ar
1, . . . ,−ar

r],r = 0, . . . , p, denote the solution to the rth-order linear prediction
problem. Form the matrix A having these vectors as its columns.

A =


1 0 · · · 0 0
−ap

1 1 · · · 0 0
−ap

2 −ap−1
1 · · · 0 0

...
...

. . . 1 0
−ap

p −ap−1
p−1 · · · −a1

1 1


Show that KX A = U, where U is an upper triangular matrix. Here, KX is a (p + 1)×(p + 1)
matrix.

(b) Show that AtKX A = D, where D is a diagonal matrix. What are its diagonal elements?

(c) Show that K−1
X = AD−1At .

(d) Let’s put these matrix properties of linear prediction to use. Using the result of part c and the
formula e′( f )K−1

X e( f ) for the reciprocal of the minimum variance spectrum, relate the spectra
produced by the two techniques.
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(e) From this relationship, predict which spectral estimation technique would have greater resolution.

4.47 The data contained in spectral.mat consist of a sinusoid contained in additive first-order, lowpass
Gaussian noise. It would seem that the autoregressive spectral estimate would work well on such data.

(a) How many poles and how many zeros should it take to model the data? Does the autoregressive
model indeed describe the data?

(b) Calculate autoregressive spectra for the dataset using model orders ranging from 1 to 50. Use the
MATLAB function xcorr to calculate the correlation function estimate (use the biased option)
and the function levinson to calculate the model parameters. Show the spectra in a mesh plot.

(c) Use the AIC and MDL methods to estimate the best model order. Do these model order estimates
match that needed to discern the presence of the sinusoid in the spectra?

4.48 To illustrate the importance of ARMA models, consider a simple, but ubiquitous variant of the AR
signal modeling [70]. We observe a AR signal s(l) (order p) in the presence of statistically independent
white noise N(l) having variance σ2

N .

(a) Express the power spectrum of the observations in terms of the signal’s linear predictive parame-
ters. Use this result to derive an equivalent ARMA model for the observations X(l). What are the
orders of this model?
The zeros introduced by the additive noise are undistinguished: Their locations depend entirely
on the pole locations and on the noise variance σ2

N . We seek an algorithm that might calculate the
AR parameters despite the presence of additive noise.

(b) Show that for any ARMA(p,q) model, the equations governing the covariance function of an
ARMA process {120} obey KX (m) = ∑

p
k=1 akKX (m− k) for m > q, which are known as the

higher-order Yule-Walker equations.∗

(c) Based on this equation, develop an algorithm for determining the AR parameters of an ARMA
process.

(d) How might you estimate the variance of the additive white noise?

4.49 Filter Coefficient Estimation
White Gaussian noise W (`) serves as the input to a simple digital filter governed by the difference
equation

X` = aX`−1 +W` .

We want to estimate the filter’s coefficient a by processing the output observed over ` = 0, . . . ,L−1.
Prior to ` = 0, the filter’s input is zero.

(a) Find an estimate of a.

(b) What is the Cramér-Rao bound for your estimate?

4.50 The histogram probability density estimator is a special case of a more general class of estimators
known as kernel estimators.

p̂X (x) =
1
L

L−1

∑
`=0

k
(
x−X(`)

)
Here, the kernel k(·) is usually taken to be a density itself.

(a) What is the kernel for the histogram estimator?

(b) Interpret the kernel estimator in signal processing terminology. Predict what the most time con-
suming computation of this estimate might be. Why?

(c) Show that the sample average equals the expected value of a random variable having the density
p̂X (x) regardless of the choice of kernel.

∗The estimates calculated this way often have much larger variances than those computed from the usual Yule-Walker equations [80].
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4.51 Experiments in Compressive Sensing
In the compressive sensing (CS) framework, an unobserved signal x, L = dim(x), has a K-sparse basis
expansion: x = ΦΦΦa. The columns of ΦΦΦ form an orthonormal basis and a are the expansion coefficients.
To be K-sparse, the coefficient vector a has only K non-zero entries at unknown locations. M inner-
product-type measurements are made with the M× L measurement matrix ΨΨΨ: y = ΨΨΨx. From these
M� L measurements, we want to construct x.
According to CS theory, the number of measurements needed to construct x with high probability is
of the order O(K log(L/K)) when a “random” measurement matrix is used. The coefficient vector a is
found as a solution of the `1 optimization problem

min‖a‖1 subject to ΨΨΨΦΦΦa = y .

In practice, we may not know how sparse the signal actually is. In this problem, we try to find how well
solving the CS problem works in a scenario where the sparsity is known.
Software. The following Matlab commands produce a sparse length-N coefficient vector,∗ with random
non-zero values and locations.

a = zeros(N, 1);
q = randperm(N);
a(q(1:K)) = randn(K,1);

We form a measurement matrix ΨΨΨ from Gaussian random numbers. NOTE: The rows of ΨΨΨ should form
an orthonormal set. Use the Matlab function orth() to make the matrix have this property.

Psi = randn(M, L);
Psi = orth(Psi’)’;

The function l1eq() solves the constrained optimization problem and has the calling sequence

A = Psi*Phi;
% a0 = initial starting point, here the least-squares solution
a0 = A’*inv(A*A’)*y;
a_hat = l1eq(a0,A,[],y);

(a) For the first experiment, let the signal itself be a sparse waveform, having K = 20 non-zero values.
In this case, N = L; use L = 512. In this case, the matrix ΦΦΦ is the identity matrix. Using M = 120
measurements, compare the least-squares solution to the actual sparse signal for one example. Is
the least-squares solution sparse?

(b) Solve the `1 optimization problem for the same data and measurements. Now is the solution
sparse? Find the normalized root-mean-squared (rms) error (normalized by the signal’s rms value)
using the Matlab function norm(): ε2 =norm(a_hat-a)/norm(a) and compare with the
normalized rms error resulting from the least-squares solution.

(c) For the second round of experiments, let the signal be sparse with respect to a cosine-only Fourier
series.

x` =
L/2

∑
j=0

a j

√
2
L

cos
2π j`

L
, ` = 0, . . . ,L−1

Set up the matrix ΦΦΦ and solve the compressive sensing problem for the same values of K, L and
M.

(d) The major issue is how many measurements are needed. Using the same sparse signal x, find the
normalized rms error as the number of measurements M varies from K to 120. Plot the normalized
rms error as a function of M. Did you find anything surprising about your plot?

(e) Now set K = 10 and create a new signal that is sparse with respect to the Fourier basis. Plot
the normalized error as in part (d). Does the threshold number of measurements necessary for
accurate reconstruction follow the predicted behavior?

∗In some cases, the signal’s dimension (N) is smaller than its length.



Chapter 5

Detection Theory

5.1 Elementary Hypothesis Testing
In statistics, hypothesis testing is some times known as decision theory or simply testing. Here, one of several
models M are presumed to describe a set of observed data, and you want to find which model best describes
the observations. The key result around which all decision theory revolves is the likelihood ratio test.

5.1.1 The Likelihood Ratio Test

In a binary hypothesis testing problem, four possible outcomes can result. Model M0 did in fact represent the
best model for the data and the decision rule said it was (a correct decision) or said it wasn’t (an erroneous
decision). The other two outcomes arise when model M1 was in fact true with either a correct or incorrect
decision made. The decision process operates by segmenting the range of observation values into two disjoint
decision regions ℜ0 and ℜ1. All values of X fall into either ℜ0 or ℜ1. If a given X lies in ℜ0, for example,
we will announce our decision “model M0 was true”; if in ℜ1, model M1 would be proclaimed. To derive
a rational method of deciding which model best describes the observations, we need a criterion to assess the
quality of the decision process. Optimizing this criterion will specify the decision regions.

The Bayes’ decision criterion seeks to minimize a cost function associated with making a decision. Let
Ci j be the cost of mistaking model j for model i (i 6= j) and Cii the presumably smaller cost of correctly
choosing model i: Ci j > Cii, i 6= j. Let πi be the a priori probability of model i. The so-called Bayes’ cost C
is the average cost of making a decision.

C = ∑
i, j

Ci j Pr[say Mi when M j true]

= ∑
i, j

Ci jπ j Pr[say Mi|M j true]

The Bayes’ cost can be expressed as

C = ∑
i, j

Ci jπ j Pr[X ∈ℜi|M j true]

= ∑
i, j

Ci jπ j

∫
ℜi

pX|M j(X|M j)dX

=
∫

ℜ0

{C00π0 pX|M0(x|M0)+C01π1 px|M1(x|M1)}dX

+
∫

ℜ1

{C10π0 pX|M0(x|M0)+C11π1 px|M1(x|M1)}dX

pX|Mi(x|Mi) is the conditional probability density function of the observed data X given that model Mi was
true. To minimize this expression with respect to the decision regions ℜ0 and ℜ1, ponder which integral

141
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would yield the smallest value if its integration domain included a specific observation vector. This selection
process defines the decision regions; for example, we choose M0 for those values of X which yield a smaller
value for the first integral.

ℜ0 = {X : π0C00 pX|M0(x|M0)+π1C01 px|M1(x|M1) < π0C10 pX|M0(x|M0)+π1C11 px|M1(x|M1)}

We choose M1 when the inequality is reversed. This expression is easily manipulated to obtain the decision
rule known as the likelihood ratio test.

px|M1(x|M1)
pX|M0(x|M0)

M1
>
<

M0

π0(C10−C00)
π1(C01−C11)

(5.1)

The comparison relation means selecting model M1 if the left-hand ratio exceeds the value on the right;
otherwise, M0 is selected. Thus, the likelihood ratio px|M1(x|M1)/pX|M0(x|M0), symbolically repre-
sented by Λ(X), is computed from the observed value of X and then compared with a threshold η equaling[
π0(C10−C00)

]/[
π1(C01−C11)

]
. Thus, when two models are hypothesized, the likelihood ratio test can be

succinctly expressed as the comparison of the likelihood ratio with a threshold.

Λ(X)
M1
>
<

M0
η (5.2)

The data processing operations are captured entirely by the likelihood ratio px|M1(x|M1)/pX|M0(x|M0).
Furthermore, note that only the value of the likelihood ratio relative to the threshold matters; to simplify the
computation of the likelihood ratio, we can perform any positively monotonic operations simultaneously on
the likelihood ratio and the threshold without affecting the comparison. We can multiply the ratio by a positive
constant, add any constant, or apply a monotonically increasing function which simplifies the expressions. We
single one such function, the logarithm, because it simplifies likelihood ratios that commonly occur in signal
processing applications. Known as the log-likelihood, we explicitly express the likelihood ratio test with it as

lnΛ(X)
M1
>
<

M0
lnη . (5.3)

Useful simplifying transformations are problem-dependent; by laying bare that aspect of the observations
essential to the model testing problem, we reveal the sufficient statistic ϒ(X): the scalar quantity which best
summarizes the data [63: pp. 18-22]. The likelihood ratio test is best expressed in terms of the sufficient
statistic.

ϒ(X)
M1
>
<

M0
γ (5.4)

We will denote the threshold value by γ when the sufficient statistic is used or by η when the likelihood ratio
appears prior to its reduction to a sufficient statistic.

As we shall see, if we use a different criterion other than the Bayes’ criterion, the decision rule often
involves the likelihood ratio. The likelihood ratio is comprised of the quantities pX|Mi(x|Mi), termed the
likelihood function, which is also important in estimation theory. It is this conditional density that portrays
the probabilistic model describing data generation. The likelihood function completely characterizes the kind
of “world” assumed by each model; for each model, we must specify the likelihood function so that we can
solve the hypothesis testing problem.

A complication, which arises in some cases, is that the sufficient statistic may not be monotonic. If mono-
tonic, the decision regions ℜ0 and ℜ1 are simply connected (all portions of a region can be reached without
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Figure 5.1: Conditional densities for the grade distributions assuming that a student did not study (M0) or did
(M1) are shown in the top row. The lower portion depicts the likelihood ratio formed from these densities.

crossing into the other region). If not, the regions are not simply connected and decision region islands are
created (see Problem 5.2). Such regions usually complicate calculations of decision performance. Monotonic
or not, the decision rule proceeds as described: the sufficient statistic is computed for each observation vector
and compared to a threshold.

Example
An instructor in a course in detection theory wants to determine if a particular student studied for his
last test. The observed quantity is the student’s grade, which we denote by X . Failure may not indicate
studiousness: conscientious students may fail the test. Define the models as

M0 : did not study
M1 : studied

The conditional densities of the grade are shown in Fig. 5.1. Based on knowledge of student behavior,
the instructor assigns a priori probabilities of π0 = 1/4 and π1 = 3/4. The costs Ci j are chosen to
reflect the instructor’s sensitivity to student feelings: C01 = 1 = C10 (an erroneous decision either way
is given the same cost) and C00 = 0 = C11. The likelihood ratio is plotted in Fig. 5.1 and the threshold
value η , which is computed from the a priori probabilities and the costs to be 1/3, is indicated. The
calculations of this comparison can be simplified in an obvious way.

X
50

M1
>
<

M0

1
3

or X
M1
>
<

M0

50
3

= 16.7

The multiplication by the factor of 50 is a simple illustration of the reduction of the likelihood ratio to
a sufficient statistic. Based on the assigned costs and a priori probabilities, the optimum decision rule
says the instructor must assume that the student did not study if the student’s grade is less than 16.7;
if greater, the student is assumed to have studied despite receiving an abysmally low grade such as 20.
Note that as the densities given by each model overlap entirely: the possibility of making the wrong
interpretation always haunts the instructor. However, no other procedure will be better!
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5.1.2 Criteria in Hypothesis Testing

The criterion used in the previous section—minimize the average cost of an incorrect decision—may seem to
be a contrived way of quantifying decisions. Well, often it is. For example, the Bayesian decision rule depends
explicitly on the a priori probabilities; a rational method of assigning values to these—either by experiment
or through true knowledge of the relative likelihood of each model—may be unreasonable. In this section,
we develop alternative decision rules that try to answer such objections. One essential point will emerge from
these considerations: the fundamental nature of the decision rule does not change with choice of optimization
criterion. Even criteria remote from error measures can result in the likelihood ratio test (see Problem 5.4).
Such results do not occur often in signal processing and underline the likelihood ratio test’s significance.

Maximum Probability of a Correct Decision

As only one model can describe any given set of data (the models are mutually exclusive), the probability of
being correct Pc for distinguishing two models is given by

Pc = Pr[say M0 when M0 true]+Pr[say M1 when M1 true] .

We wish to determine the optimum decision region placement by maximizing Pc. Expressing the probability
correct in terms of the likelihood functions pX|Mi(x|Mi), the a priori probabilities, and the decision regions,

Pc =
∫

ℜ0

π0 pX|M0(x|M0)dX+
∫

ℜ1

π1 px|M1(x|M1)dX .

We want to maximize Pc by selecting the decision regions ℜ0 and ℜ1. The probability correct is maximized
by associating each value of X with the largest term in the expression for Pc. Decision region ℜ0, for example,
is defined by the collection of values of X for which the first term is largest. As all of the quantities involved
are non-negative, the decision rule maximizing the probability of a correct decision is

Given X, choose Mi for which the product πi pX|Mi(x|Mi) is largest.

Simple manipulations lead to the likelihood ratio test.

px|M1(x|M1)
pX|M0(x|M0)

M1
>
<

M0

π0

π1

Note that if the Bayes’ costs were chosen so that Cii = 0 and Ci j = C, (i 6= j), we would have the same
threshold as in the previous section.

To evaluate the quality of the decision rule, we usually compute the probability of error Pe rather than the
probability of being correct. This quantity can be expressed in terms of the observations, the likelihood ratio,
and the sufficient statistic.

Pe = π0

∫
ℜ1

pX|M0(x|M0)dX+π1

∫
ℜ0

px|M1(x|M1)dX

= π0

∫
Λ>η

pΛ|M0(Λ|M0)dΛ+π1

∫
Λ<η

pΛ|M1(Λ|M1)dΛ

= π0

∫
ϒ>γ

pϒ|M0(ϒ|M0)dϒ+π1

∫
ϒ<γ

pϒ|M1(ϒ|M1)dϒ

(5.5)

When the likelihood ratio is non-monotonic, the first expression is most difficult to evaluate. When monotonic,
the middle expression proves the most difficult. Furthermore, these expressions point out that the likelihood
ratio and the sufficient statistic can be considered a function of the observations X; hence, they are random
variables and have probability densities for each model. Another aspect of the resulting probability of error is
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that no other decision rule can yield a lower probability of error. This statement is obvious as we minimized
the probability of error in deriving the likelihood ratio test. The point is that these expressions represent a
lower bound on performance (as assessed by the probability of error). This probability will be non-zero if the
conditional densities overlap over some range of values of X, such as occurred in the previous example. In
this region of overlap, the observed values are ambiguous: either model is consistent with the observations.
Our “optimum” decision rule operates in such regions by selecting that model which is most likely (has the
highest probability) of generating any particular value.

Neyman-Pearson Criterion

Situations occur frequently where assigning or measuring the a priori probabilities Pi is unreasonable. For
example, just what is the a priori probability of a supernova occurring in any particular region of the sky?
We clearly need a model evaluation procedure which can function without a priori probabilities. This kind of
test results when the so-called Neyman-Pearson criterion is used to derive the decision rule. The ideas behind
and decision rules derived with the Neyman-Pearson criterion [74] will serve us well in sequel; their result is
important!

Using nomenclature from radar, where model M1 represents the presence of a target and M0 its absence,
the various types of correct and incorrect decisions have the following names [95: pp. 127–9].∗

PD = Pr[say M1|M1 true] Detection–we say it’s there when it is
PF = Pr[say M1|M0 true] False-alarm–we say it’s there when it’s not
PM = Pr[say M0|M1 true] Miss–we say it’s not there when it is

The remaining probability Pr[say M0|M0 true] has historically been left nameless and equals 1−PF . We
should also note that the detection and miss probabilities are related by PM = 1−PD. As these are conditional
probabilities, they do not depend on the a priori probabilities and the two probabilities PF and PD characterize
the errors when any decision rule is used.

These two probabilities are related to each other in an interesting way. Expressing these quantities in
terms of the decision regions and the likelihood functions, we have

PF =
∫

ℜ1

pX|M0(x|M0)dX, PD =
∫

ℜ1

px|M1(x|M1)dX .

As the region ℜ1 shrinks, both of these probabilities tend toward zero; as ℜ1 expands to engulf the entire
range of observation values, they both tend toward unity. This rather direct relationship between PD and PF
does not mean that they equal each other; in most cases, as ℜ1 expands, PD increases more rapidly than PF
(we had better be right more often than we are wrong!). However, the “ultimate” situation where a rule is
always right and never wrong (PD = 1, PF = 0) cannot occur when the conditional distributions overlap. Thus,
to increase the detection probability we must also allow the false-alarm probability to increase. This behavior
represents the fundamental tradeoff in hypothesis testing and detection theory.

One can attempt to impose a performance criterion that depends only on these probabilities with the
consequent decision rule not depending on the a priori probabilities. The Neyman-Pearson criterion assumes
that the false-alarm probability is constrained to be less than or equal to a specified value α while we attempt
to maximize the detection probability PD.

max
ℜ1

PD subject to PF ≤ α

A subtlety of the succeeding solution is that the underlying probability distribution functions may not be
continuous, with the result that PF can never equal the constraining value α . Furthermore, an (unlikely)
possibility is that the optimum value for the false-alarm probability is somewhat less than the criterion value.
Assume, therefore, that we rephrase the optimization problem by requiring that the false-alarm probability
equal a value α ′ that is less than or equal to α .
∗In hypothesis testing, a false-alarm is known as a type I error and a miss a type II error.
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This optimization problem can be solved using Lagrange multipliers (see Appendix 3.2 {47}); we seek to
find the decision rule that maximizes

F = PD +λ (PF −α
′),

where λ is the Lagrange multiplier. This optimization technique amounts to finding the decision rule that
maximizes F , then finding the value of the multiplier that allows the criterion to be satisfied. As is usual in
the derivation of optimum decision rules, we maximize these quantities with respect to the decision regions.
Expressing PD and PF in terms of them, we have

F =
∫

ℜ1

px|M1(x|M1)dX+λ

(∫
ℜ1

pX|M0(x|M0)dX−α
′
)

=−λα
′+
∫

ℜ1

[
px|M1(x|M1)+λ pX|M0(x|M0)

]
dX .

To maximize this quantity with respect to ℜ1, we need only to integrate over those regions of X where
the integrand is positive. The region ℜ1 thus corresponds to those values of X where px|M1(x|M1) >
−λ pX|M0(x|M0) and the resulting decision rule is

px|M1(x|M1)
pX|M0(x|M0)

M1
>
<

M0
−λ

The ubiquitous likelihood ratio test again appears; it is indeed the fundamental quantity in hypothesis testing.
Using the logarithm of the likelihood ratio or the sufficient statistic, this result can be expressed as either

lnΛ(X)
M1
>
<

M0
ln(−λ ) or ϒ(X)

M1
>
<

M0
γ .

We have not as yet found a value for the threshold. The false-alarm probability can be expressed in terms
of the Neyman-Pearson threshold in two (useful) ways.

PF =
∫

∞

−λ

pΛ|M0(Λ|M0)dΛ

=
∫

∞

γ

pϒ|M0(ϒ|M0)dϒ

(5.6)

One of these implicit equations must be solved for the threshold by setting PF equal to α ′. The selection
of which to use is usually based on pragmatic considerations: the easiest to compute. From the previous
discussion of the relationship between the detection and false-alarm probabilities, we find that to maximize
PD we must allow α ′ to be as large as possible while remaining less than α . Thus, we want to find the
smallest value of −λ (note the minus sign) consistent with the constraint. Computation of the threshold is
problem-dependent, but a solution always exists.

Example
An important application of the likelihood ratio test occurs when X is a Gaussian random vector for
each model. Suppose the models correspond to Gaussian random vectors having different mean values
but sharing the same identity covariance.

M0 : X∼N (0, σ
2I)

M1 : X∼N (m, σ
2I)
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Thus, X is of dimension L and has statistically independent, equal variance components. The vector of
means m = col[m0, . . . ,mL−1] distinguishes the two models. The likelihood functions associated this
problem are

pX|M0(x|M0) =
L−1

∏
l=0

1√
2πσ2

exp

{
−1

2

(
Xl

σ

)2
}

px|M1(x|M1) =
L−1

∏
l=0

1√
2πσ2

exp

{
−1

2

(
Xl−ml

σ

)2
}

The likelihood ratio Λ(X) becomes

Λ(X) =

L−1

∏
l=0

exp

{
−1

2

(
Xl−ml

σ

)2
}

L−1

∏
l=0

exp

{
−1

2

(
Xl

σ

)2
}

This expression for the likelihood ratio is complicated. In the Gaussian case (and many others), we
use the logarithm the reduce the complexity of the likelihood ratio and form a sufficient statistic.

lnΛ(X) =
L−1

∑
l=0

{
−1

2
(Xl−ml)2

σ2 +
1
2

X2
l

σ2

}
=

1
σ2

L−1

∑
l=0

mlXl−
1

2σ2

L−1

∑
l=0

m2
l

The likelihood ratio test then has the much simpler, but equivalent form

L−1

∑
l=0

mlXl

M1
>
<

M0
σ

2 lnη +
1
2

L−1

∑
l=0

m2
l .

To focus on the model evaluation aspects of this problem, let’s assume means be equal to a positive
constant: ml = m (> 0).∗

L−1

∑
l=0

Xl

M1
>
<

M0

σ2

m
lnη +

Lm
2

Note that all that need be known about the observations {Xl} is their sum. This quantity is the sufficient
statistic for the Gaussian problem: ϒ(X) = ∑Xl and γ = σ2 lnη/m+Lm/2.

When trying to compute the probability of error or the threshold in the Neyman-Pearson criterion,
we must find the conditional probability density of one of the decision statistics: the likelihood ratio,
the log-likelihood, or the sufficient statistic. The log-likelihood and the sufficient statistic are quite
similar in this problem, but clearly we should use the latter. One practical property of the sufficient
statistic is that it usually simplifies computations. For this Gaussian example, the sufficient statistic is
a Gaussian random variable under each model.

M0 : ϒ(X)∼N (0,Lσ
2)

M1 : ϒ(X)∼N (Lm,Lσ
2)

To find the probability of error from the expressions found on Page 144, we must evaluate the area
under a Gaussian probability density function. These integrals are succinctly expressed in terms of

∗Why did the author assume that the mean was positive? What would happen if it were negative?
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x Q−1(x)
10−1 1.281
10−2 2.396
10−3 3.090
10−4 3.719
10−5 4.265
10−6 4.754

Table 5.1: The table displays interesting values for Q−1(·) that can be used to determine thresholds in the
Neyman-Pearson variant of the likelihood ratio test. Note how little the inverse function changes for decade
changes in its argument; Q(·) is indeed very nonlinear.

Q(x), which denotes the probability that a unit-variance, zero-mean Gaussian random variable exceeds
x (see chapter 2 {8}). As 1−Q(x) = Q(−x), the probability of error can be written as

Pe = π1Q
(

Lm− γ√
Lσ

)
+π0Q

(
γ√
Lσ

)
.

An interesting special case occurs when π0 = 1/2 = π1. In this case, γ = Lm/2 and the probability of
error becomes

Pe = Q

(√
Lm

2σ

)
.

As Q(·) is a monotonically decreasing function, the probability of error decreases with increasing val-
ues of the ratio

√
Lm/2σ . However, as shown in appendix Fig. 2.1 {9}, Q(·) decreases in a nonlinear

fashion. Thus, increasing m by a factor of two may decrease the probability of error by a larger or a
smaller factor; the amount of change depends on the initial value of the ratio.

To find the threshold for the Neyman-Pearson test from the expressions given on Page 146, we
need the area under a Gaussian density.

PF = Q
(

γ√
Lσ2

)
= α

′ (5.7)

As Q(·) is a monotonic and continuous function, we can now set α ′ equal to the criterion value α with
the result

γ =
√

LσQ−1(α) .

where Q−1(·) denotes the inverse function of Q(·). The solution of this equation cannot be performed
analytically as no closed form expression exists for Q(·) (much less its inverse function); the criterion
value must be found from tables or numerical routines. Because Gaussian problems arise frequently,
the accompanying table provides numeric values for this quantity at the decade points. The detection
probability is given by

PD = Q

(
Q−1(α)−

√
Lm
σ

)
.

5.1.3 Performance Evaluation

We alluded earlier {145} to the relationship between the false-alarm probability PF and the detection prob-
ability PD as one varies the decision region. Because the Neyman-Pearson criterion depends on specifying
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Figure 5.2: The densities of the sufficient statistic ϒ(X) conditioned on two hypotheses are shown for the
Gaussian example. The threshold γ used to distinguish between the two models is indicated. The false-alarm
probability is the area under the density corresponding to M0 to the right of the threshold; the detection
probability is the area under the density corresponding to M1.
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Figure 5.3: A plot of the receiver operating characteristic for the densities shown in the previous figure. Three
ROC curves are shown corresponding to different values for the parameter

√
Lm/σ .

the false-alarm probability to yield an acceptable detection probability, we need to examine carefully how
the detection probability is affected by a specification of the false-alarm probability. The usual way these
quantities are discussed is through a parametric plot of PD versus PF : the receiver operating characteristic or
ROC.

As we discovered in the Gaussian example {146}, the sufficient statistic provides the simplest way of
computing these probabilities; thus, they are usually considered to depend on the threshold parameter γ . In
these terms, we have

PD =
∫

∞

γ

pϒ|M1(ϒ|M1)dϒ and PF =
∫

∞

γ

pϒ|M0(ϒ|M0)dϒ . (5.8)

These densities and their relationship to the threshold γ are shown in Fig. 5.2. We see that the detection
probability is greater than or equal to the false-alarm probability. Since these probabilities must decrease
monotonically as the threshold is increased, the ROC curve must be concave-down and must always exceed
the equality line (Fig. 5.3). The degree to which the ROC departs from the equality line PD = PF measures the
relative “distinctiveness” between the two hypothesized models for generating the observations. In the limit,
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the two models can be distinguished perfectly if the ROC is discontinuous and consists of the point (1,0).
The two are totally confused if the ROC lies on the equality line (this would mean, of course, that the two
models are identical); distinguishing the two in this case would be “somewhat difficult”.

Example
Consider the Gaussian example we have been discussing where the two models differ only in the
means of the conditional distributions. In this case, the two model-testing probabilities are given by

PF = Q
(

γ√
Lσ

)
and PD = Q

(
γ−Lm√

Lσ

)
.

By re-expressing γ as σ2

m γ ′+ Lm
2 , we discover that these probabilities depend only on the ratio

√
Lm/σ .

PF = Q

(
γ ′√

Lm/σ
+
√

Lm
2σ

)
, PD = Q

(
γ ′√

Lm/σ
−
√

Lm
2σ

)

As this signal-to-noise ratio increases, the ROC curve approaches its “ideal” form: the northwest
corner of a square as illustrated in Fig. 5.3 by the value of 7.44 for

√
Lm/σ , which corresponds to a

signal-to-noise ratio of 7.442≈ 17 dB. If a small false-alarm probability (say 10−4) is specified, a large
detection probability (0.9999) can result. Such values of signal-to-noise ratios can thus be considered
“large” and the corresponding model evaluation problem relatively easy. If, however, the signal-to-
noise ratio equals 4 (6 dB), the figure illustrates the worsened performance: a 10−4 specification
on the false-alarm probability would result in a detection probability of essentially zero. Thus, in a
fairly small signal-to-noise ratio range, the likelihood ratio test’s performance capabilities can vary
dramatically. However, no other decision rule can yield better performance.

Specification of the false-alarm probability for a new problem requires experience. Choosing a “reason-
able” value for the false-alarm probability in the Neyman-Pearson criterion depends strongly on the problem
difficulty. Too small a number will result in small detection probabilities; too large and the detection proba-
bility will be close to unity, suggesting that fewer false alarms could have been tolerated. Problem difficulty is
assessed by the degree to which the conditional densities pX|M0(x|M0) and px|M1(x|M1) overlap, a problem
dependent measurement. If we are testing whether a distribution has one of two possible mean values as in our
Gaussian example, a quantity like a signal-to-noise ratio will probably emerge as determining performance.
The performance in this case can vary drastically depending on whether the signal-to-noise ratio is large or
small. In other kinds of problems, the best possible performance provided by the likelihood ratio test can be
poor. For example, consider the problem of determining which of two zero-mean probability densities de-
scribes a given set of data consisting of statistically independent observations (Problem 5.2). Presumably, the
variances of these two densities are equal as we are trying to determine which density is most appropriate. In
this case, the performance probabilities can be quite low, especially when the general shapes of the densities
are similar. Thus a single quantity, like the signal-to-noise ratio, does not emerge to characterize problem
difficulty in all hypothesis testing problems. In sequel, we will analyze each model evaluation and detection
problem in a standard way. After the sufficient statistic has been found, we will seek a value for the threshold
that attains a specified false-alarm probability. The detection probability will then be determined as a function
of “problem difficulty”, the measure of which is problem-dependent. We can control the choice of false-alarm
probability; we cannot control over problem difficulty. Confusingly, the detection probability will vary with
both the specified false-alarm probability and the problem difficulty.

We are implicitly assuming that we have a rational method for choosing the false-alarm probability cri-
terion value. In signal processing applications, we usually make a sequence of decisions and pass them to
systems making more global determinations. For example, in digital communications problems the model
evaluation formalism could be used to “receive” each bit. Each bit is received in sequence and then passed
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to the decoder which invokes error-correction algorithms. The important notions here are that the decision-
making process occurs at a given rate and that the decisions are presented to other signal processing systems.
The rate at which errors occur in system input(s) greatly influences system design. Thus, the selection of a
false-alarm probability is usually governed by the error rate that can be tolerated by succeeding systems. If
the decision rate is one per day, then a moderately large (say 0.1) false-alarm probability might be appropri-
ate. If the decision rate is a million per second as in a one megabit communication channel, the false-alarm
probability should be much lower: 10−12 would suffice for the one-tenth per day error rate.

5.1.4 Beyond Two Models

Frequently, more than two viable models for data generation can be defined for a given situation. The clas-
sification problem is to determine which of several models best “fits” a set of measurements. For example,
determining the type of airplane from its radar returns forms a classification problem. The model evaluation
framework has the right structure if we can allow more than two model. We happily note that in deriving the
likelihood ratio test we did not need to assume that only two possible descriptions exist. Go back and examine
the expression for the maximum probability correct decision rule {144}. If K models seem appropriate for a
specific problem, the decision rule maximizing the probability of making a correct choice is

Choose the largest of πi pX|Mi(x|Mi), i = 1, . . . ,K .

To determine the largest of K quantities, exactly K− 1 numeric comparisons need be made. When we have
two possible models (K = 2), this decision rule reduces to the computation of the likelihood ratio and its com-
parison to a threshold. In general, K−1 likelihood ratios need to be computed and compared to a threshold.
Thus the likelihood ratio test can be viewed as a specific method for determining the largest of the decision
statistics πi pX|Mi(x|Mi).

Since we need only the relative ordering of the K decision statistics to make a decision, we can apply
any transformation T (·) to them that does not affect ordering. In general, possible transformations must be
positively monotonic to satisfy this condition. For example, the needless common additive components in the
decision statistics can be eliminated, even if they depend on the observations. Mathematically, “common”
means that the quantity does not depend on the model index i. The transformation in this case would be of
the form T (zi) = zi− a, clearly a monotonic transformation. A positive multiplicative factor can also the
“canceled”; if negative, the ordering would be reversed and that cannot be allowed. The simplest resulting
expression becomes the sufficient statistic ϒi(X) for the model. Expressed in terms of the sufficient statistic,
the maximum probability correct or the Bayesian decision rule becomes

Choose the largest of Ci +ϒi(X), i = 1, . . . ,K ,

where Ci summarizes all additive terms that do not depend on the observation vector X. The quantity ϒi(X)
is termed the sufficient statistic associated with model i. In many cases, the functional form of the sufficient
statistic varies little from one model to another and expresses the necessary operations that summarize the
observations. The constants Ci are usually lumped together to yield the threshold against which we compare
the sufficient statistic. For example, in the binary model situation, the decision rule becomes

ϒ1(X)+C1

M1
>
<

M0
ϒ0(X)+C0 or ϒ1(X)−ϒ0(X)

M1
>
<

M0
C0−C1.

Thus, the sufficient statistic for the decision rule is ϒ1(X)−ϒ0(X) and the threshold γ is C0−C1.

Example
In the Gaussian problem just discussed, the logarithm of the likelihood function is

ln pX|Mi(x|Mi) =−L
2

ln2πσ
2− 1

2σ2

L−1

∑
`=0

(X`−m(i))2 ,
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where m(i) is the mean under model i. After appropriate simplification that retains the ordering, we
have

ϒi(X) =
m(i)

σ2

L−1

∑
`=0

X` Ci =−1
2

Lm(i)2

σ2 + ci.

The term ci is a constant defined by the error criterion; for the maximum probability correct criterion,
this constant is lnπi.

When employing the Neyman-Pearson test, we need to specify the various error probabilities
Pr[say Mi|M j true]. These specifications amount to determining the constants ci when the sufficient statistic
is used. Since K−1 comparisons will be used to home in on the optimal decision, only K−1 error probabil-
ities need be specified. Typically, the quantities Pr[say Mi|M0 true], i = 1, . . . ,K− 1, are used, particularly
when the model M0 represents the situation when no signal is present (see Problem 5.7).

5.1.5 Model Consistency Testing

In many situations, we seek to check consistency of the observations with some preconceived model. Alterna-
tive models are usually difficult to describe parametrically since inconsistency may be beyond our modeling
capabilities. We need a test that accepts consistency of observations with a model or rejects the model without
pronouncing a more favored alternative. Assuming we know (or presume to know) the probability distribution
of the observations under M0, the models are

M0 : X∼ pX|M0(x|M0)

M1 : X 6∼ pX|M0(x|M0)

Null hypothesis testing seeks to determine if the observations are consistent with this description. The best
procedure for consistency testing amounts to determining whether the observations lie in a highly probable
region as defined by the null probability distribution. However, no one region defines a probability that is
less than unity. We must restrict the size of the region so that it best represents those observations maximally
consistent with the model while satisfying a performance criterion. Letting PF be a false-alarm probability
established by us, we define the decision region ℜ0 to satisfy

Pr[X ∈ℜ0|M0] =
∫

ℜ0

pX|M0(x|M0)dX = 1−PF and min
ℜ0

∫
ℜ0

dX .

Usually, this region is located about the mean, but may not be symmetrically centered if the probability density
is skewed. Our null hypothesis test for model consistency becomes

X ∈ℜ0 =⇒ “say observations are consistent”
X 6∈ℜ0 =⇒ “say observations are not consistent”

.

Example
Consider the problem of determining whether the sequence X`, ` = 1, . . . ,L, is white and Gaussian
with zero mean and unit variance. Stated this way, the alternative model is not provided: is this model
correct or not? We could estimate the probability density function of the observations and test the
estimate for consistency. Here we take the null-hypothesis testing approach of converting this prob-
lem into a one-dimensional one by considering the statistic X = ∑` X2

` , which has a χ2
L distribution.

Because this probability distribution is unimodal, the decision region can be safely assumed to be an
interval [X ′,X ′′].∗ In this case, we can find an analytic solution to the problem of determining the

∗This one-dimensional result for the consistency test may extend to the multi-dimensional case in the obvious way.
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Figure 5.4: Ten trials of testing a 100-element sequence for consistency with a white, Gaussian
model X` ∼N (0,1) for three situations. In the first (shown by the circles), the observations do con-
form to the model. In the second (boxes), the observations are zero-mean Gaussian but with variance two.
Finally, the third example (crosses) has white observations with a density closely resembling the Gaussian:
a hyperbolic secant density having zero mean and unit variance. The sum of squared observations for each
example are shown with the optimal χ2

100 interval displayed. Note how dramatically the test statistic departs
from the decision interval when parameters disagree.

decision region. Letting X = X ′′−X ′ denote the width of the interval, we seek the solution of the
constrained optimization problem

min
X ′

X subject to PX (X ′+X)−PX (X ′) = 1−PF .

We convert the constrained problem into an unconstrained one using Lagrange multipliers.

min
X ′

{
X +λ

[
PX (X ′+X)−PX (X ′)− (1−PF)

]}
Evaluation of the derivative of this quantity with respect to X ′ yields the result pX (X ′+X) = pX (X ′):
to minimize the interval’s width, the probability density function’s values at the interval’s endpoints
must be equal. Finding these endpoints to satisfy the constraints amounts to searching the probability
distribution at such points for increasing values of X until the required probability is contained within.
For L = 100 and PF = 0.05, the optimal decision region for the χ2

L distribution is [78.82,128.5].
Fig. 5.4 demonstrates ten testing trials for observations that fit the model and for observations that
don’t.

5.1.6 Stein’s Lemma

As important as understanding the false-alarm, miss and error probabilities of the likelihood ratio test might
be, no general expression exists for them. In analyzing the Gaussian problem, we find these in terms of Q(·),
which has no closed form expression. In the general problem, the situation is much worse: No expression of
any kind can be found! The reason is that we don’t have the probability distribution of the sufficient statistic
in the likelihood ratio test, which is needed in the expressions (5.8) {149}. We are faced with the curious
situation that while knowing the decision rule that optimizes the performance probabilities, we usually don’t
know what the resulting performance probabilities will be.

Some general expressions are known for the asymptotic form of these error probabilities: limiting ex-
pressions as the number of observations L becomes large. These results go by the generic name of Stein’s
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Lemma [23: §12.8].∗ To develop these, we need to define the Kullback-Leibler and Chernoff distances.
Respectively,

D(p1‖p0) =
∫

p1(X) log
p1(X)
p0(X)

dX (5.9)

C (p0, p1) =− min
0≤s≤1

log
∫

[p0(X)]1−s [p1(X)]s dX (5.10)

The Kullback-Leibler distance is a special case of an Ali-Silvey distance (Appendix C {237}). If it were not
for the optimization in the definition of the Chernoff distance, it too would be in the Ali-Silvey class. These
distances have the following properties.

1. D(p1‖p0)≥ 0 and C (p1, p0)≥ 0. Furthermore, these distances equal zero only when p0(X) = p1(X).
The Kullback-Leibler and Chernoff distances are always non-negative, with zero distance occurring
only when the probability distributions are the same.

2. D(p1‖p0) = ∞ whenever, for some X , p0(X) = 0 and p1(X) 6= 0. If p1(X) = 0, the value of
p1(X) log p1(X)

p0(X) is defined to be zero.

3. When the underlying stochastic quantities are random vectors having statistically independent compo-
nents with respect to both p0 and p1, the Kullback-Leibler distance equals the sum of the component
distances. Stated mathematically, if p0(X) = ∏` p0(X`) and p1(X) = ∏` p1(X`),

D(p1(X)‖p0(X)) = ∑
`

D(p1(X`)‖p0(X`)) . (5.11)

The Chernoff distance does not have this additivity property unless the components are identically
distributed.

4. D(p1‖p0) 6= D(p0‖p1); C (p0, p1) = C (p1, p0).
The Kullback-Leibler distance is usually not a symmetric quantity. In some special cases, it can be sym-
metric (like the just described Gaussian example), but symmetry cannot, and should not, be expected.
The Chernoff distance is always symmetric.

5. D(p(X1,X2)‖p(X1)p(X2)) = I(X1;X2).
The Kullback-Leibler distance between a joint probability density and the product of the marginal dis-
tributions equals what is known in information theory as the mutual information between the random
variables X1, X2. From the properties of the Kullback-Leibler distance, we see that the mutual informa-
tion equals zero only when the random variables are statistically independent.

These quantities are not actually distances in the strict mathematical sense {20}. The Kullback-Leibler dis-
tance D(·‖·) is not symmetric in its arguments and the Chernoff distance C (·, ·) does not obey the triangle
inequality {20}. Nonetheless, the name “distance” is frequently attached to them for reasons that will become
clear later.

In the case that the L observations are statistically independent according to both models, Stein’s Lemma
states that the false-alarm probability resulting from using the Neyman-Pearson hypothesis test has the
form [52]

lim
L→∞

1
L

logPF =−D(pX|M1‖pX|M0) or PF
L→∞−→ f (L)e−LD(pX|M1‖pX|M0) , (5.12)

where f (L) is a slowly varying function compared to the exponential: limL→∞[log f (L)]/L = 0. This function
is problem- and PM-dependent, and thus usually not known. What this asymptotic formula says is that as the
number of observations increases, the false-alarm probability of a Neyman-Pearson hypothesis test plotted
on semilogarithmic coordinates will eventually become a straight line, the slope of which is −D(p1‖p0).
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Figure 5.5: Using the Gaussian and Poisson classification problems as examples, we plot the false-alarm
probability (left panels) and average probability of error (right panels) for each as a function of the amount
of statistically independent data used by the optimal classifier. The miss-probability criterion was that it be
less than or equal to 0.1. The a priori probabilities are 1/2 in the right-column examples. As shown here,
the average error probability produced by the minimum Pe classifier typically decays more slowly than the
false-alarm probability for the classifier that fixes the miss probability. The dashed lines depict the behavior
of the error probabilities as predicted by asymptotic theory (5.12). In each case, these theoretical lines have
been shifted vertically for ease of comparison.

Figure 5.5 demonstrates this effect. A similar result holds for the miss probability if it is optimized and the
false-alarm probability is constrained. Thus, in all model evaluation problems solved using the Neyman-
Pearson approach, the optimized probability will always (eventually) decay exponentially in the number of
observations. For this reason, D(pX|M1‖pX|M0) is known as the exponential rate.

Showing this result relies on, believe it or not, the law of large numbers. Define the decision region ℜ1(L)
according to

ℜ1(L) =
{

X : eL(D(pX |M1
‖pX |M0

)−δ ) ≤
pX|M1

pX|M0

≤ eL(D(pX |M1
‖pX |M0

)+δ )
}

This decision region will vary with the number of observations as is typical of Neyman-Pearson decision
rules. First of all, we must show that the decision region corresponding to this rule is equivalent to specifying
a criterion on the miss probability.

1−PM = Pr

[
1
L ∑

`

log
p(X`|M1)
p(X`|M0)

∈
(
D(pX|M1‖pX|M0)−δ ,D(pX|M1‖pX|M0)+δ

)∣∣∣∣∣M1

]
∗The attribution to statistician Charles Stein is probably incorrect. Herman Chernoff wrote a paper [22] providing a derivation of

this result. A reviewer stated that he thought Stein had derived the result in a technical report, which Chernoff had not seen. Chernoff
modified his paper to include the reference without checking it. Chernoff’s paper provided the link to Stein. However, Stein later denied
he had proved the result; so much for not questioning reviewers! Stein’s Lemma should be known as Chernoff’s Lemma.
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This sum is the average of the log-likelihood ratios computed at each observation assuming that M1 is true.
Because of the strong law of large numbers, as the number of observations increases, this sum converges to its
expected value, which is D(pX|M1‖pX|M0). Therefore, limL→∞ 1−PM = 1 for any δ , which means PM → 0.
Thus, this decision region guarantees not only that the miss probability is less than some specified number,
but also that it decreases systematically as the number of observations increases.

To analyze how the false-alarm probability varies with L, we note that in this decision region

pX|M0 ≤ pX|M1e−L(D(pX |M1
‖pX |M0

)−δ )

pX|M0 ≥ pX|M1e−L(D(pX |M1
‖pX |M0

)+δ )

Integrating these over ℜ1(L) yields upper and lower bounds on PF .

e−L(D(pX |M1
‖pX |M0

)+δ )(1−PM)≤PF ≤ e−L(D(pX |M1
‖pX |M0

)−δ )(1−PM)

or

−D(pX |M1‖pX |M0)−δ +
1
L

log(1−PM)≤1
L

logPF ≤−D(pX |M1‖pX |M0)+δ +
1
L

log(1−PM)

Because δ can be made arbitrarily small as the number of observations increases, we obtain Stein’s Lemma.
For the average probability of error, the Chernoff distance is its exponential rate.

Pe
L→∞−→ f (L)e−LC (pX|M0 , pX|M1)

Showing this result leads to more interesting results. For the minimum-probability-of-error detector, the
decision region ℜ1 is defined according to π1 pX|M1 > π0 pX|M0 . Using this fact, we can write the expression
for Pe as

Pe = π0

∫
ℜ1

pX|M0(X|M0)dX+π1

∫
ℜ0

pX|M1(X|M1)dX

=
∫

min{π0 pX|M0 ,π1 pX|M1}dX

The minimum function has the property min{a,b} ≤ a1−sbs, 0≤ s≤ 1 for non-negative quantities a, b.∗ With
this bound, we can find an upper bound for the average error probability.

Pe ≤
∫ [

π0 pX|M0(X|M0)
]1−s [

π1 pX|M1(X|M1)
]s dX

≤
∫ [

pX|M0(X|M0)
]1−s [pX|M1(X|M1)

]s dX

When X has statistically independent and identically distributed components,

Pe ≤
∫ [

∏
`

pX`|M0(X`|M0)

]1−s[
∏
`

pX`|M1(X`|M1)

]s

dX

= ∏
`

∫ [
pX`|M0(X`|M0)

]1−s [pX`|M1(X`|M1)
]s dX`

=
{∫ [

pX |M0(X |M0)
]1−s [pX |M1(X |M1)

]s dX
}L

∗To see this, simply plot the minimum function versus one of its arguments with the other one fixed. Plotting a1−sbs the same way
shows that it indeed is an upper bound.
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Consequently, we have that

1
L

logPe ≤ log
∫ [

pX |M0(X |M0)
]1−s [pX |M1(X |M1)

]s dX , for all s .

Asymptotically, this bound is tight (Gaussian example shows this to be true). Thus, the exponential rate for
the average probability of error is the minimum of this bound with respect to s. This quantity is the negative
of the Chernoff distance (5.10) and we arrive at the expression for the average probability of error.

The Kullback-Leibler and Chernoff distances are related in an important way. Define ps to be p1−s
0 ps

1/J(s),
where J(s) provides the normalization so that ps integrates to one. Note that this quantity corresponds to the
integral optimized in the definition of the Chernoff distance (Eq. (5.10) {154}). The Chernoff distance equals
the Kullback-Leibler distance between the ps equi-distant from p0 and p1. Call the value of s corresponding
to this equi-distant distribution s∗; this value corresponds to the result of the optimization and

C (p0, p1) = D(ps∗‖p0) = D(ps∗‖p1) .

Fig. 5.5 shows that the exponential rates of minimum Pe and Neyman-Pearson hypothesis tests are not neces-
sarily the same. In other words, the distance to the equi-distant distribution need not equal the total distance,
which seems to make sense.

The larger the distance, the greater the rate at which the error probability decreases, which corresponds to
an easier problem (smaller error probabilities). However, Stein’s Lemma does not allow a precise calculation
of error probabilities. The quantity f (·) depends heavily on the underlying probability distributions in ways
that are problem dependent. All a distance calculation gives us is the exponential rate.

Example
For the Gaussian example we have been considering, set the miss probability’s criterion value to be
α . Because PM = Q

(
Lm−γ√

Lσ

)
, we find the threshold value γ to be Lm−

√
LσQ−1(α), which yields a

false-alarm probability of Q
(√

Lm
σ
−Q−1(α)

)
. The Kullback-Leibler distance between two Gaussians

p0 = N (0,σ2) and p1 = N (m,σ2) equals

D(p1‖p0) =
∫ 1√

2πσ2
e−

x2

2σ2

[
− x2

2σ2 +
(x−m)2

2σ2

]
dx

=
∫ 1√

2πσ2
e−

x2

2σ2

[
−2mx+m2

2σ2

]
dx

=
m2

2σ2

In this Gaussian case the Kullback-Leibler distance is symmetric: D(p1‖p0) = D(p0‖p1). Verify
this atypical (most cases are asymmetric) result for yourself. The Chernoff distance equals m2/8σ2

(the value of s∗ is 1
2 ). Stein’s Lemma predicts that the false-alarm probability has the asymptotic

form f (L)exp{−Lm2/2σ2}. Thus, does Q
(√

Lm
σ
−Q−1(α)

)
→ f (L)exp{−Lm2/2σ2}, where f (L)

is slowly varying compare to the exponential? An asymptotic formula (equation (2.1) {8}) for Q(x) is

Q(x) x→∞−→ 1√
2πx

e−x2/2 .
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As L increases, so does the argument of Q(·) in the expression for the false-alarm probability. Thus

PF
L→∞−→ 1√

2π
(√

Lm/σ −Q−1(α)
) exp

−
(√

Lm
σ
−Q−1(α)

)2

/2


=

1√
2π
(√

Lm/σ −Q−1(α)
) exp

{√
Lm
σ

Q−1(α)− [Q−1(α)]2/2

}
· e−Lm2/2σ2

The quantity multiplying the final exponential corresponds to f (L), which satisfies the slowly varying
property. We have verified Stein’s Lemma prediction for the asymptotic behavior of the false-alarm
probability in the Gaussian case. Note how the criterion value α occurs only in the expression for
f (L), and hence does not affect the exponential rate; Stein’s Lemma says this situation always occurs.

5.2 Sequential Hypothesis Testing
In many circumstances, the observations to be used in evaluating models arrive sequentially rather than all
at once. For example, you may not want to wait until all the data become availabel to make a time-critical
decision. The decision rules we have derived implicitly assume the entire block of data is available. You might
wonder whether a hypothesis test could be developed that takes the sequential arrival of data into account,
making decisions as the data arrive, with the possibility of determining early in the data collection procedure
the validity of one model, while maintaining the same performance specifications. Answering this question
leads to the formulation of sequential hypothesis testing [78: pp. 136–156],[88]. Not only do sequential tests
exist, they can provide performance superior to that of block tests in certain cases.

To make decisions as the data become available, we must generalize the decision-making process. Assume
as before that the observed data comprise an observation vector X of length L. The decision rule (in the two-
model case) now consists of determining which model is valid or that more data are required. Thus, the range
of values of X is partitioned into three regions ℜ0, ℜ1, and ℜ?. Making the latter decision implies that the data
gathered to that point are insufficient to meet the performance requirements. More data must be obtained to
achieve the required performance and the test re-applied once these additional data become available. Thus,
a variable number of observations are required to make a decision. An issue in this kind of procedure is
the number of observations required to satisfy the performance criteria: for a common set of performance
specifications, does this procedure result in a decision rule requiring, on the average, fewer observations than
does a fixed-length block test?

5.2.1 Sequential Likelihood Ratio Test

In a manner similar to the Neyman-Pearson criterion, we specify the false-alarm probability PF ; in addition,
we need to specify the detection probability PD. These constraints over-specify the model evaluation problem
where the number of observations is fixed: enforcing one constraint forces violation of the other. In contrast,
both may be specified the sequential test as we shall see.

Assuming a likelihood ratio test, two thresholds are required to define to the three decision regions.

ΛL(X) < η0 say M0
η0 < ΛL(X) < η1 say “need more data”
η1 < ΛL(X) say M1 ,

where ΛL(X) is the usual likelihood ratio where the dimension L of the vector X is explicitly denoted. The
threshold values η0 and η1 are found from the constraints, which are expressed as

PF =
∫

ℜ1

pX|M0(x|M0)dX = α and PD =
∫

ℜ1

px|M1(x|M1)dX = β .
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Here, α and β are design constants that you choose according to the application. Note that the probabilities
PF , PD are associated not with what happens on a given trial, but what the sequential test yields in terms of
performance when a decision is made. Thus, PM = 1−PD, but the probability of correctly saying M1 on a
given trial does not equal one minus the probability of incorrectly saying M0 is true: The “need more data”
region must be accounted for on an individual trial but not when considering the sequential test’s performance
when it terminates.

Rather explicitly attempting to relate thresholds to performance probabilities, we obtain simpler results
by using bounds and approximations. Note that the expression for PD may be written as

PD =
∫

ℜ1

px|M1(x|M1)
pX|M0(x|M0)

pX|M0(x|M0)dX

=
∫

ℜ1

ΛL(X)pX|M0(x|M0)dX .

In the decision region ℜ1, ΛL(X) ≥ η1; thus, a lower bound on the detection probability can be established
by substituting this inequality into the integral.

PD ≥ η1

∫
ℜ1

pX|M0(x|M0)dX

The integral is the false-alarm probability PF of the test when it terminates. In this way, we find that PD/PF ≥
η1. Using similar arguments on the miss probability, we obtain a similar bound on the threshold η0. These
inequalities are summarized as

η0 ≥
1−PD

1−PF
and η1 ≤

PD

PF
.

These bounds, which relate the thresholds in the sequential likelihood ratio test with the false-alarm and
detection probabilities, are general, applying even when sequential tests are not being used. In the usual
likelihood ratio test, there is a single threshold η ; these bounds apply to it as well, implying that in a likelihood
ratio test the error probabilities will always satisfy

PD

PF
≥ 1−PD

1−PF
. (5.13)

This relationship can be manipulated to show PD ≥ PF , indicating that the likelihood ratio test is, at the very
least, a reasonable decision rule and that the ROC curves of §5.1.3 {148} have the right general form.

Only with difficulty can we solve the inequality constraints on the sequential test’s thresholds in the
general case. Surprisingly, by approximating the inequality constraints by equality constraints we can obtain
a result having pragmatically important properties. As an approximation, we thus turn to solving for η0 and
η1 under the conditions

η0 =
1−β

1−α
and η1 =

β

α
.

In this way, the threshold values are explicitly specified in terms of the desired performance probabilities. We
use the criterion values for the false-alarm and detection probabilities because when we use these equalities,
the test’s resulting performance probabilities PF and PD usually do not satisfy the design criteria. For example,
equating η1 to a value potentially larger than its desired value might result in a smaller detection probability
and a larger false-alarm rate. We will want to understand how much actual performance departs from what
we want.

The relationships derived above between the performance levels and the thresholds apply no matter how
the thresholds are chosen.

1−β

1−α
≥ 1−PD

1−PF

β

α
≤ PD

PF
(5.14)
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From these inequalities, two important results follow:

PF ≤
α

β
1−PD ≤

1−β

1−α
and PF +(1−PD)≤ α +(1−β ).

The first result follows directly from the threshold bounds. To derive the second result, we must work a
little harder. Multiplying the first inequality by (1−α)(1−PF) yields (1−β )(1−PF) ≥ (1−α)(1−PD).
Considering the reciprocal of the second inequality in (5.14) and multiplying it by βPD yields αPD ≥ βPF .
Adding these two inequalities yields the second result.

The first set of inequalities suggest that the false-alarm and miss (which equals 1−PD) probabilities will
increase only slightly from their specified values: the denominators on the right sides are very close to unity
in the interesting cases (e.g., small error probabilities like 0.01). The second inequality suggests that the
sum of the false-alarm and miss probabilities obtained in practice will be less than the sum of the specified
error probabilities. Taking these results together, one of two situations will occur when we approximate the
inequality criterion by equality: either the false alarm probability will decrease and the detection probability
increase (a most pleasing but unlikely circumstance) or one of the error probabilities will increase while the
other decreases. The false-alarm and miss probabilities cannot both increase. Furthermore, whichever one
increases, the first inequalities suggest that the incremental change will be small. Our ad hoc approximation
to the thresholds does indeed yield a level of performance close to that specified.

Usually, the likelihood is manipulated to derive a sufficient statistic. The resulting sequential decision rule
is

ϒL(X) < γ0(L) say M0
γ0(L) < ϒL(X) < γ1(L) say “need more data”
γ1(L) < ϒL(X) say M1 .

Note that the thresholds γ0(L) and γ1(L), derived from the thresholds η0 and η1, usually depend on the number
of observations used in the decision rule.

Example
Let X be a Gaussian random vector as in our previous examples with statistically independent compo-
nents.

M0 : X∼N (0,σ2I)

M1 : X∼N (m,σ2I)

The mean vector m is assumed for simplicity to consist of equal positive values: m = col[m, . . . ,m],
m > 0. Using the previous derivations, our sequential test becomes

L−1

∑
l=0

Xl <
σ2

m
lnη0 +

Lm
2

say M0

σ2

m
lnη0 +

Lm
2

<
L−1

∑
l=0

Xl <
σ2

m
lnη1 +

Lm
2

say “need more data”

σ2

m
lnη1 +

Lm
2

<
L−1

∑
l=0

Xl say M1 .

Starting with L = 1, we gather the data and compute the sum. The sufficient statistic will lie in
the middle range between the two thresholds until one of them is exceeded as shown in Fig. 5.6.
The model evaluation procedure then terminates and the chosen model announced. Note how the
thresholds depend on the amount of data available (as expressed by L). This variation typifies the
sequential hypothesis tests.
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Figure 5.6: The sufficient statistic wanders between the two thresholds in a sequential decision rule until one
of them is crossed by the statistic. The number of observations used to obtain a decision is L0.

5.2.2 Average Number of Required Observations

The awake reader might wonder whether that the sequential likelihood ratio test just derived has the disturb-
ing property that it may never terminate: can the likelihood ratio wander between the two thresholds forever?
Fortunately, the sequential likelihood ratio test has been shown to terminate with probability one [88]. Con-
fident of eventual termination, we need to explore how many observations are required to meet performance
specifications. The number of observations is variable, depending on the observed data and the stringency
of the specifications. The average number of observations required can be determined in the interesting case
when the observations are statistically independent.

Assuming that the observations are statistically independent and identically distributed, the likelihood
ratio is equal to the product of the likelihood ratios evaluated at each observation. Considering lnΛL0(X), the
logarithm of the likelihood ratio when a decision is made on observation L0, we have

lnΛL0(X) =
L0−1

∑
l=0

lnΛ(Xl) ,

where Λ(Xl) is the likelihood ratio corresponding to the lth observation. We seek an expression for E[L0],
the expected value of the number of observations required to make the decision. To derive this quantity, we
evaluate the expected value of the likelihood ratio when the decision is made. This value will usually vary
with which model is actually valid; we must consider both models separately. Using the laws of conditional
expectation (see §2.1.5 {7}), we find that the expected value of lnΛL0(X), assuming that model M1 was true,
is given by

E[lnΛL0(X)|M1] = E
[
E[lnΛL0(X)|M1,L0]

]
The outer expected value is evaluated with respect to the probability distribution of L0; the inner expected
value is average value of the log-likelihood assuming that L0 observations were required to choose model
M1. In the latter case, the log-likelihood is the sum of L0 component log-likelihood ratios

E[lnΛL0(X)|M1,L0] = L0 E[lnΛ1(X)|M1]



162 Detection Theory Chap. 5

Noting that the expected value on the right is a constant with respect to the outer expected value, we find that

E[lnΛL0(X)|M1] = E[L0|M1] ·E[lnΛ1(X)|M1] .

The average number of observations required to make a decision, correct or incorrect, assuming that M1 is
true is thus expressed by

E[L0|M1] =
E[lnΛL0(X)|M1]
E[lnΛ1(X)|M1]

.

Assuming that the other model was true, we have the complementary result

E[L0|M0] =
E[lnΛL0(X)|M0]
E[lnΛ1(X)|M0]

.

The numerator is difficult to calculate exactly but easily approximated; assuming that the likelihood ratio
equals its threshold value when the decision is made,

E[lnΛL0(X)|M0]≈ PF lnη1 +(1−PF) lnη0

= PF ln
(

PD

PF

)
+(1−PF) ln

(
1−PD

1−PF

)
,

E[lnΛL0(X)|M1]≈ PD lnη1 +(1−PD) lnη0

= PD ln
(

PD

PF

)
+(1−PD) ln

(
1−PD

1−PF

)
.

Note these expressions are not problem dependent; they depend only on the specified probabilities. The
denominator cannot be approximated in a similar way with such generality; it must be evaluated for each
problem.

Example
In the Gaussian example we have been exploring, the log-likelihood of each component observation
Xl is given by

lnΛ(Xl) =
mXl

σ2 −
m2

2σ2

The conditional expected values required to evaluate the expression for the average number of required
observations are

E[lnΛ1(X)|M0] =−
m2

2σ2 E[lnΛ1(X)|M1] =
m2

2σ2 .

For simplicity, let’s assume that the false-alarm and detection probabilities are symmetric (i.e.,
PF = 1−PD). The expressions for the average number of observations are equal for each model and
we have

E[L0|M0] = E[L0|M1] = f (PF)
σ2

m2 ,

where f (PF) is a function equal to (2− 4PF) ln
( 1−PF

PF

)
. Thus, the number of observations decreases

with increasing signal-to-noise ratio m/σ and increases as the false-alarm probability is reduced.
Suppose we used a likelihood ratio test where all data were considered once and a decision made;

how many observations would be required to achieve a specified level of performance and how would
this fixed number compare with the average number of observations in a sequential test? In this
example, we find from our earlier calculations {148} that PF = Q

(√Lm
2σ

)
so that

L = 4
[
Q−1(PF)

]2 σ2

m2 .
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Figure 5.7: The numbers of observations required by the sequential test (on the average) and by the block
test for Gaussian observations are proportional to σ2/m2; the coefficients of these expressions ( f (PF) and
4
[
Q−1(PF)

]2 respectively) are shown.

The duration of the sequential and block tests depend on the signal-to-noise ratio in the same way;
however, the dependence on the false-alarm probability is quite different. As depicted in Fig. 5.7, the
disparity between these quantities increases rapidly as the false alarm probability decreases, with the
sequential test requiring correspondingly fewer observations on the average.

We must not forget that these results apply to the average number of observations required to make a
decision. Expressions for the distribution of the number of observations are complicated and depend heavily
on the problem. When an extremely large number of observation are required to resolve a difficult case to
the required accuracy, we are forced to truncate the sequential test, stopping when a specified number of
observations have been used. A decision would then be made by dividing the region between the boundaries
in half and selecting the model corresponding to the boundary nearest to the sufficient statistic. If this trun-
cation point is larger than the expected number, the performance probabilities will change little. “Larger” is
again problem dependent; analytic results are few, leaving the option of computer simulations to estimate the
distribution of the number of observations required for a decision.

5.3 Detection in the Presence of Unknowns
We assumed in the previous sections that we have a few well-specified models (hypotheses) for a set of
observations. These models were probabilistic; to apply the techniques of statistical hypothesis testing, the
models take the form of conditional probability densities. In many interesting circumstances, the exact nature
of these densities may not be known. For example, we may know a priori that the mean is either zero or
some constant (as in the Gaussian example). However, the variance of the observations may not be known or
the value of the non-zero mean may be in doubt. In a signal processing context, these respective situations
could occur when the background noise level is unknown (a likely possibility in applications) or when the
signal amplitude is not known because of far-field range uncertainties (the further the source of propagating
energy, the smaller its received energy at each sensor). In an extreme case, we can question the exact nature of
the probability densities (everything is not necessarily Gaussian!). The model evaluation problem can still be
posed for these situations; we classify the “unknown” aspects of a model testing problem as either parametric
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(the variance is not known, for example) or nonparametric (the formula for the density is in doubt). The
former situation has a relatively long history compared to the latter; many techniques can be used to approach
parametric problems while the latter is a subject of current research [36]. We concentrate on parametric
problems here.

We describe the dependence of the conditional density on a set of parameters by incorporating the param-
eter vector θθθ as part of the condition. We write the likelihood function as pX|Mi,θθθ (x|Mi,θθθ) for the parametric
problem. In statistics, this situation is said to be a composite hypothesis [25: p. 528]. Such situations can
be further categorized according to whether the parameters are random or nonrandom. For a parameter to
be random, we have an expression for its a priori density, which could depend on the particular model. As
stated many times, a specification of a density usually expresses some knowledge about the range of values
a parameter may assume and the relative probability of those values. Saying that a parameter has a uniform
distribution implies that the values it assumes are equally likely, not that we have no idea what the values
might be and express this ignorance by a uniform distribution. If we are ignorant of the underlying probabil-
ity distribution that describes the values of a parameter, we will characterize them simply as being unknown
(not random). Once we have considered the random parameter case, nonrandom but unknown parameters will
be discussed.

5.3.1 Random Parameters

When we know the density of θθθ , the likelihood function can be expressed as

pX|Mi(x|Mi) =
∫

pX|Mi,θθθ (x|Mi,θθθ)pθθθ (θθθ |Mi)dθθθ

and the likelihood ratio in the random parameter case becomes

Λ(X) =

∫
px|M1,θθθ (x|M1,θθθ)pθθθ (θθθ |Mi)dθθθ∫
pX|M0,θθθ (x|M0,θθθ)pθθθ (θθθ |Mi)dθθθ

.

Unfortunately, there are many examples where either the integrals involved are intractable or the sufficient
statistic is virtually the same as the likelihood ratio, which can be difficult to compute.

Example
A simple, but interesting, example that results in a computable answer occurs when the mean of
Gaussian random variables is either zero (model 0) or is ±m with equal probability (hypothesis 1).
The second hypothesis means that a non-zero mean is present, but its sign is not known. We are
therefore stating that if hypothesis one is in fact valid, the mean has fixed sign for each observation—
what is random is its a priori value. As before, L statistically independent observations are made.

M0 : X∼N (0, σ2I)

M1 : X∼N (m, σ2I) m =

{
col[m, . . . ,m] Prob = 1/2
col[−m, . . . ,−m] Prob = 1/2

The numerator of the likelihood ratio is the sum of two Gaussian densities weighted by 1/2 (the a
priori probability values), one having a positive mean, the other negative. The likelihood ratio, after
simple cancellation of common terms, becomes

Λ(X) =
1
2

exp

{
2m
(
∑

L−1
l=0 Xl

)
−Lm2

2σ2

}
+

1
2

exp

{
−2m

(
∑

L−1
l=0 Xl

)
−Lm2

2σ2

}
and the decision rule takes the form

cosh

(
m
σ2

L−1

∑
l=0

Xl

)M1
>
<

M0
η exp

{
Lm2

2σ2

}
,



Sec. 5.3 Detection in the Presence of Unknowns 165

where cosh(x) is the hyperbolic cosine given simply as (ex + e−x)/2. As this quantity is an even
function, the sign of its argument has no effect on the result. The decision rule can be written more
simply as ∣∣∣∣∣L−1

∑
l=0

Xl

∣∣∣∣∣
M1
>
<

M0

σ2

|m|
cosh−1

[
η exp

{
Lm2

2σ2

}]
.

The sufficient statistic equals the magnitude of the sum of the observations in this case. While the right
side of this expression, which equals γ , is complicated, it need only be computed once. Calculation of
the performance probabilities can be complicated; in this case, the false-alarm probability is easy to
find and the others more difficult.

5.3.2 Non-Random Parameters

In those cases where a probability density for the parameters cannot be assigned, the model evaluation problem
can be solved in several ways; the methods used depend on the form of the likelihood ratio and the way in
which the parameter(s) enter the problem. In the Gaussian problem we have discussed so often, the threshold
used in the likelihood ratio test η may be unity. In this case, examination of the resulting computations
required reveals that implementing the test does not require knowledge of the variance of the observations
(see Problem 5.35). Thus, if the common variance of the underlying Gaussian distributions is not known, this
lack of knowledge has no effect on the optimum decision rule. This happy situation—knowledge of the value
of a parameter is not required by the optimum decision rule—occurs rarely, but should be checked before
using more complicated procedures.

A second fortuitous situation occurs when the sufficient statistic as well as its probability density under
one of the models do not depend on the unknown parameter(s). Although the sufficient statistic’s threshold γ

expressed in terms of the likelihood ratio’s threshold η depends on the unknown parameters, γ may be com-
puted as a single value using the Neyman-Pearson criterion if the computation of the false-alarm probability
does not involve the unknown parameters.

Example
Continuing the example of the previous section, let’s consider the situation where the value of the
mean of each observation under model M1 is not known. The sufficient statistic is the sum of the
observations (that quantity doesn’t depend on m) and the distribution of the observation vector under
model M0 does not depend on m (allowing computation of the false-alarm probability). However, a
subtlety emerges; in the derivation of the sufficient statistic, we had to divide by the value of the mean.
The critical step occurs once the logarithm of the likelihood ratio is manipulated to obtain

m
L−1

∑
l=0

Xl

M1
>
<

M0
σ

2 lnη +
Lm2

2
.

Recall that only positively monotonic transformations can be applied; if a negatively monotonic oper-
ation is applied to this inequality (such as multiplying both sides by−1), the inequality reverses. If the
sign of m is known, it can be taken into account explicitly and a sufficient statistic results. If, however,
the sign is not known, the above expression cannot be manipulated further and the left side constitutes
the sufficient statistic for this problem. The sufficient statistic then depends on the unknown parameter
and we cannot develop a decision rule in this case. If the sign is known, we can proceed. Assuming
the sign of m is positive, the sufficient statistic is the sum of the observations and the threshold γ is
found by

γ =
√

LσQ−1(PF).

Note that if the variance σ2 instead of the mean were unknown, we could not compute the threshold.
The difficulty lies not with the sufficient statistic (it doesn’t depend on the variance), but with the
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false alarm probability as the expression indicates. Another approach is required to deal with the
unknown-variance problem.

When this situation occurs—the sufficient statistic and the false-alarm probability can be computed with-
out needing the parameter in question, we have established what is known as a uniformly most powerful test
(or UMP test) [25: pp. 529–531],[87: p. 89ff]. If an UMP test does not exist, which can only be demonstrated
by explicitly finding the sufficient statistic and evaluating its probability distribution, then the composite hy-
pothesis testing problem cannot be solved without some value for the parameter being used.

This seemingly impossible situation—we need the value of parameter that is assumed unknown—can be
approached by noting that some data is available for “guessing” the value of the parameter. If a reasonable
guess could be obtained, it could then be used in our model evaluation procedures developed in this chap-
ter. The data available for estimating unknown parameters are precisely the data used in the decision rule.
Procedures intended to yield “good” guesses of the value of a parameter are said to be parameter estimates.
Estimation procedures are the topic of the next chapter; there we will explore a variety of estimation tech-
niques and develop measures of estimate quality. For the moment, these issues are secondary; even if we knew
the size of the estimation error, for example, the more pertinent issue is how the imprecise parameter value
affects the performance probabilities. We can compute these probabilities without explicitly determining the
estimate’s error characteristics.

One parameter estimation procedure that fits nicely into the composite hypothesis testing problem is the
maximum likelihood estimate.∗ Letting X denote the vector of observables and θθθ a vector of parameters, the
maximum likelihood estimate of θθθ , θ̂θθ ML, is that value of θθθ that maximizes the conditional density pX|θθθ (X|θθθ)
of the observations given the parameter values. To use θ̂θθ ML in our decision rule, we estimate the parameter
vector separately for each model, use the estimated value in the conditional density of the observations, and
compute the likelihood ratio. This procedure is termed the generalized likelihood ratio test for the unknown
parameter problem in hypothesis testing [63: p. 16],[87: p. 92ff].

Λ(X) =
max

θθθ

pX|M1,θθθ (X|M1,θθθ)

max
θθθ

pX|M0,θθθ (X|M0,θθθ)
(5.15)

Note that we do not find that value of the parameter that (necessarily) maximizes the likelihood ratio. Rather,
we estimate the parameter value most consistent with the observed data in the context of each assumed model
(hypothesis) of data generation. In this way, the estimate conforms with each potential model rather than
being determined by some amalgam of supposedly mutually exclusive models.

Example
Returning to our Gaussian example, assume that the variance σ2 is known but that the mean under
M1 is unknown.

M0 : X∼N (0, σ2I)
M1 : X∼N (m, σ2I) m = col[m, . . . ,m], m =?

The unknown quantity occurs only in the exponent of the conditional density under M1; to maximize
this density, we need only to maximize the exponent. Thus, we consider the derivative of the exponent
with respect to m.

∂

∂m

[
− 1

2σ2

L−1

∑
l=0

(Xl−m)2

]∣∣∣∣∣
m=m̂ML

= 0

=⇒
L−1

∑
l=0

(Xl− m̂ML) = 0

∗The maximum likelihood estimation procedure and its characteristics are fully described in §4.2.3 {58}.
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The solution of this equation is the average value of the observations.

m̂ML =
1
L

L−1

∑
l=0

Xl

To derive the decision rule, we substitute this estimate in the conditional density for M1. The critical
term, the exponent of this density, is manipulated to obtain

− 1
2σ2

L−1

∑
l=0

(
Xl−

1
L

L−1
∑

k=0
Xk

)2

=− 1
2σ2

L−1

∑
l=0

X2
l −

1
L

(
L−1

∑
l=0

Xl

)2
 .

Noting that the first term in this exponent is identical to the exponent of the denominator in the likeli-
hood ratio, the generalized likelihood ratio becomes

Λ(X) = exp

+
1

2Lσ2

(
L−1

∑
l=0

Xl

)2
 .

The sufficient statistic thus becomes the square (or equivalently the magnitude) of the summed obser-
vations. Compare this result with that obtained in the example {165}. There, an UMP test existed if
we knew the sign of m and the sufficient statistic was the sum of the observations. Here, where we
employed the generalized likelihood ratio test, we made no such assumptions about m; this generality
accounts for the difference in sufficient statistic. Which test do you think would lead to a greater
detection probability for a given false-alarm probability?

Once the generalized likelihood ratio is determined, we need to determine the threshold. If the a priori
probabilities π0 and π1 are known, the evaluation of the threshold proceeds in the usual way. If they are
not known, all of the conditional densities must not depend on the unknown parameters lest the performance
probabilities also depend upon them. In most cases, the original model evaluation problem is posed in such
a way that one of the models does not depend on the unknown parameter; a criterion on the performance
probability related to that model can then be established via the Neyman-Pearson procedure. If not the case,
the threshold cannot be computed and the threshold must be set experimentally: we force one of the models
to be true and modify the threshold on the sufficient statistic until the desired level of performance is reached.
Despite this non-mathematical approach, the overall performance of the model evaluation procedure will be
optimum because of the results surrounding the Neyman-Pearson criterion.

5.4 Detection of Signals in Gaussian Noise
For the moment, we assume we know the joint distribution of the noise values. In most cases, the various
models for the form of the observations—the hypotheses—do not differ because of noise characteristics.
Rather, the signal component determines model variations and the noise is statistically independent of the
signal; such is the specificity of detection problems in contrast to the generality of model evaluation. For
example, we may want to determine whether a signal characteristic of a particular ship is present in a sonar
array’s output (the signal is known) or whether no ship is present (zero-valued signal).

To apply optimal hypothesis testing procedures previously derived, we first obtain a finite number L of
observations—X(`), ` = 0, . . . ,L− 1. These observations are usually obtained from continuous-time obser-
vations in one of two ways. Two commonly used methods for passing from continuous-time to discrete-time
are known: integrate-and-dump and sampling. These techniques are illustrated in figure 5.8.

Integrate-and-Dump
In this procedure, no attention is paid to the bandwidth of the noise in selecting the sampling rate.
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Figure 5.8: The two most common methods of converting continuous-time observations into discrete-time
ones are shown. In the upper panel, the integrate-and-dump method is shown: the input is integrated over an
interval of duration ∆ and the result sampled. In the lower panel, the sampling method merely samples the
input every ∆ seconds.

Instead, the sampling interval ∆ is selected according to the characteristics of the signal set. Because
of the finite duration of the integrator, successive samples are statistically independent when the noise
bandwidth exceeds 1/∆. Consequently, the sampling rate can be varied to some extent while retaining
this desirable analytic property.

Sampling
Traditional engineering considerations governed the selection of the sampling filter and the sampling
rate. As in the integrate-and-dump procedure, the sampling rate is chosen according to signal properties.
Presumably, changes in sampling rate would force changes in the filter. As we shall see, this linkage
has dramatic implications on performance.

With either method, the continuous-time detection problem of selecting between models (a binary selec-
tion is used here for simplicity)

M0 : X(t) = s0(t)+N(t) 0≤ t < T
M1 : X(t) = s1(t)+N(t) 0≤ t < T

where {si(t)} denotes the known signal set and N(t) denotes additive noise modeled as a stationary stochastic
process∗ is converted into the discrete-time detection problem

M0 : X` = s0
` +N` 0≤ ` < L

M1 : X` = s1
` +N` 0≤ ` < L

where the sampling interval is always taken to divide the observation interval T : L = T/∆. We form the
discrete-time observations into a vector: X = col[X(0), . . . ,X(L− 1)]. The binary detection problem is to
distinguish between two possible signals present in the noisy output waveform.

M0 : X = s0 +N
M1 : X = s1 +N

To apply our model evaluation results, we need the probability density of X under each model. As the only
probabilistic component of the observations is the noise, the required density for the detection problem is
∗We are not assuming the amplitude distribution of the noise to be Gaussian.
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given by
pX|Mi(X|Mi) = pN(X− si)

and the corresponding likelihood ratio by

Λ(X) =
pN(X− s1)
pN(X− s0)

.

Much of detection theory revolves about interpreting this likelihood ratio and deriving the detection threshold
(either threshold or γ).

5.4.1 White Gaussian Noise

By far the easiest detection problem to solve occurs when the noise vector consists of statistically independent,
identically distributed, Gaussian random variables. In this book, a “white” sequence consists of statistically
independent random variables. The white sequence’s mean is usually taken to be zero∗ and each component’s
variance is σ2. The equal-variance assumption implies the noise characteristics are unchanging throughout
the entire set of observations. The probability density of the zero-mean noise vector evaluated at X−si equals
that of Gaussian random vector having independent components (K = σ2I) with mean si.

pN(X− si) =
(

1
2πσ2

)L/2

exp
{
− 1

2σ2 (X− si)t(X− si)
}

The resulting detection problem is similar to the Gaussian example examined so frequently in the hypothesis
testing sections, with the distinction here being a non-zero mean under both models. The logarithm of the
likelihood ratio becomes

(X− s0)t(X− s0)− (X− s1)t(X− s1)
M1
>
<

M0
2σ

2 lnη

and the usual simplifications yield in

(
Xts1−

st
1s1

2

)
−
(

Xts0−
st

0s0

2

)M1
>
<

M0
σ

2 lnη .

The quantities in parentheses express the signal processing operations for each model. If more than two
signals were assumed possible, quantities such as these would need to be computed for each signal and the
largest selected. This decision rule is optimum for the additive, white Gaussian noise problem.

Each term in the computations for the optimum detector has a signal processing interpretation. When
expanded, the term st

isi equals ∑
L−1
`=0 s2

i (`), which is the signal energy Ei. The remaining term—Xtsi—is the
only one involving the observations and hence constitutes the sufficient statistic ϒi(X) for the additive white
Gaussian noise detection problem.

ϒi(X) = Xtsi

An abstract, but physically relevant, interpretation of this important quantity comes from the theory of linear
vector spaces. There, the quantity Xtsi would be termed the dot product between X and si or the projection of
X onto si. By employing the Schwarz inequality, the largest value of this quantity occurs when these vectors
are proportional to each other. Thus, a dot product computation measures how much alike two vectors are:
they are completely alike when they are parallel (proportional) and completely dissimilar when orthogonal
(the dot product is zero). More precisely, the dot product removes those components from the observations
which are orthogonal to the signal. The dot product thereby generalizes the familiar notion of filtering a
∗The zero-mean assumption is realistic for the detection problem. If the mean were non-zero, simply subtracting it from the observed

sequence results in a zero-mean noise component.
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Figure 5.9: The detector for signals contained in additive, white Gaussian noise consists of a matched filter,
whose output is sampled at the duration of the signal and half of the signal energy is subtracted from it. The
optimum detector incorporates a matched filter for each signal compares their outputs to determine the largest.

signal contaminated by broadband noise. In filtering, the signal-to-noise ratio of a bandlimited signal can be
drastically improved by lowpass filtering; the output would consist only of the signal and “in-band” noise.
The dot product serves a similar role, ideally removing those “out-of-band” components (the orthogonal ones)
and retaining the “in-band” ones (those parallel to the signal).

Expanding the dot product, Xtsi = ∑
L−1
`=0 X(`)si(`), another signal processing interpretation emerges. The

dot product now describes a finite impulse response (FIR) filtering operation evaluated at a specific index.
To demonstrate this interpretation, let h(`) be the unit-sample response of a linear, shift-invariant filter where
h(`) = 0 for ` < 0 and ` ≥ L. Letting X(`) be the filter’s input sequence, the convolution sum expresses the
output.

X(k)?h(k) =
k

∑
`=k−(L−1)

X(`)h(k− `) ,

Letting k = L− 1, the index at which the unit-sample response’s last value overlaps the input’s value at the
origin, we have

X(k)?h(k)|k=L−1 =
L−1

∑
`=0

X(`)h(L−1− `).

If we set the unit-sample response equal to the index-reversed, then delayed signal
(
h(`) = si(L−1− `)

)
, we

have

X(k)?si(L−1− k)|k=L−1 =
L−1

∑
`=0

X(`)si(`),

which equals the observation-dependent component of the optimal detector’s sufficient statistic. Fig. 5.9
depicts these computations graphically. The sufficient statistic for the ith signal is thus expressed in signal
processing notation as X(k)?si(L−1− k)|k=L−1−Ei/2. The filtering term is called a matched filter because
the observations are passed through a filter whose unit-sample response “matches” that of the signal being
sought. We sample the matched filter’s output at the precise moment when all of the observations fall within
the filter’s memory and then adjust this value by half the signal energy. The adjusted values for the two
assumed signals are subtracted and compared to a threshold.

To compute the performance probabilities, the expressions should be simplified in the ways discussed in
the hypothesis testing sections. As the energy terms are known a priori, they can be incorporated into the
threshold with the result

L−1

∑
`=0

X(`)[s1(`)− s0(`)]
M1
>
<

M0
σ

2 lnη +
E1−E0

2
.

The left term constitutes the sufficient statistic for the binary detection problem. Because the additive noise is
presumed Gaussian, the sufficient statistic is a Gaussian random variable no matter which model is assumed.
Under Mi, the specifics of this probability distribution are

L−1

∑
`=0

X(`)[s1(`)− s0(`)]∼N

(
∑si(`)[s1(`)− s0(`)],σ2

∑[s1(`)− s0(`)]2
)

.
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The false-alarm probability is given by

PF = Q

(
σ2 lnη +(E1−E0)/2−∑s0(`)[s1(`)− s0(`)]

σ · {∑[s1(`)− s0(`)]2}1/2

)
.

The signal-related terms in the numerator of this expression can be manipulated with the false-alarm proba-
bility (and the detection probability) for the optimal white Gaussian noise detector succinctly expressed by

PF = Q

 lnη + 1
2σ2 ∑[s1(`)− s0(`)]2

1
σ {∑[s1(`)− s0(`)]2}1/2


PD = Q

 lnη− 1
2σ2 ∑[s1(`)− s0(`)]2

1
σ {∑[s1(`)− s0(`)]2}1/2


Note that the only signal-related quantity affecting this performance probability (and all of the others) is

the ratio of energy in the difference signal to the noise variance. The larger this ratio, the better (smaller)
the performance probabilities become. Note that the details of the signal waveforms do not greatly affect
the energy of the difference signal. For example, consider the case where the two signal energies are equal
(E0 = E1 = E); the energy of the difference signal is given by 2E−2∑s0(`)s1(`). The largest value of this
energy occurs when the signals are negatives of each other, with the difference-signal energy equaling 4E.
Thus, equal-energy but opposite-signed signals such as sine waves, square-waves, Bessel functions, etc. all
yield exactly the same performance levels. The essential signal properties that do yield good performance
values are elucidated by an alternate interpretation. The term ∑[s1(`)− s0(`)]2 equals ‖s1− s0‖2, the L2 norm
of the difference signal. Geometrically, the difference-signal energy is the same quantity as the square of the
Euclidean distance between the two signals. In these terms, a larger distance between the two signals will
mean better performance.

Example
A common detection problem is to determine whether a signal is present (M1) or not (M0) in an
observed signal. In this case, s0(`) = 0. The optimal detector relies on filtering the observations with
a matched filter having an impulse response based on the assumed signal. Letting the signal under M1
be denoted simply by s(`), the optimal detector consists of

X(`)?s(L−1− `)|`=L−1−E/2
M1
>
<

M0
σ

2 lnη

or X(`)?s(L−1− `)|`=L−1

M1
>
<

M0
γ .

The false-alarm and detection probabilities are given by

PF = Q
(

γ

E1/2/σ

)
PD = Q

(
Q−1(PF)−

√
E
σ

)
.

Fig. 5.10 displays the probability of detection as a function of the signal-to-noise ratio E/σ2 for several
values of false-alarm probability. Given an estimate of the expected signal-to-noise ratio, these curves
can be used to assess the trade-off between the false-alarm and detection probabilities.
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Figure 5.10: The probability of detection is plotted versus signal-to-noise ratio for various values of the false-
alarm probability PF . False-alarm probabilities range from 10−1 down to 10−6 by decades. The matched
filter receiver was used since the noise is white and Gaussian. Note how the range of signal-to-noise ratios
over which the detection probability changes shrinks as the false-alarm probability decreases. This effect is a
consequence of the non-linear nature of the function Q(·).

The important parameter determining detector performance derived in this example is the signal-to-noise
ratio E/σ2: the larger it is, the smaller the false-alarm probability is (generally speaking). Signal-to-noise
ratios can be measured in many different ways. For example, one measure might be the ratio of the rms
signal amplitude to the rms noise amplitude. Note that the important one for the detection problem is much
different. The signal portion is the sum of the squared signal values over the entire set of observed values—
the signal energy; the noise portion is the variance of each noise component—the noise power. Thus, energy
can be increased in two ways that increase the signal-to-noise ratio: the signal can be made larger or the
observations can be extended to encompass a larger number of values.

To illustrate this point, two signals having the same energy are shown in Fig. 5.11. When these signals
are shown in the presence of additive noise, the signal is visible on the left because its amplitude is larger; the
one on the right is much more difficult to discern. The instantaneous signal-to-noise ratio—the ratio of signal
amplitude to average noise amplitude—is the important visual cue. However, the kind of signal-to-noise
ratio that determines detection performance belies the eye. The matched filter outputs have similar maximal
values, indicating that total signal energy rather than amplitude determines the performance of a matched
filter detector.

Validity of the White Noise Assumption

The optimal detection paradigm for the additive, white Gaussian noise problem has a relatively simple solu-
tion: construct FIR filters whose unit-sample responses are related to the presumed signals and compare the
filtered outputs with a threshold. We may well wonder which assumptions made in this problem are most
questionable in “real-world” applications. Noise is additive in most cases. In many situations, the additive
noise present in observed data is Gaussian. Because of the Central Limit Theorem, if numerous noise sources
impinge on a measuring device, their superposition will be Gaussian to a great extent. As we know from
the discussion in §2.1.10 {11}, glibly appealing to the Central Limit Theorem is not without hazards; the
non-Gaussian detection problem will be discussed in some detail later. Interestingly, the weakest assump-
tion is the “whiteness” of the noise. Note that the observation sequence is obtained as a result of sampling
the sensor outputs. Assuming white noise samples does not mean that the continuous-time noise was white.
White noise in continuous time has infinite variance and cannot be sampled; discrete-time white noise has a
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Figure 5.11: Two signals having the same energy are shown at the top of the figure. The one on the left
equals one cycle of a sinusoid having ten samples/period (sin(2π fo`) with fo = 0.1). On the right, ten cycles
of similar signal is shown, with an amplitude a factor of

√
10 smaller. The middle portion of the figure

shows these signals with the same noise signal added; the duration of this signal is 200 samples. The lower
portion depicts the outputs of matched filters for each signal. The detection threshold was set by specifying a
false-alarm probability of 10−2.

finite variance with a constant power spectrum. The Sampling Theorem suggests that a signal is represented
accurately by its samples only if we choose a sampling frequency commensurate with the signal’s bandwidth.
One should note that fidelity of representation does not mean that the sample values are independent. In most
cases, satisfying the Sampling Theorem means that the samples are correlated. As shown in §2.2.3 {13}, the
correlation function of sampled noise equals samples of the original correlation function. For the sampled
noise to be white, E[N(`1T )N(`2T )] = 0 for `1 6= `2: the samples of the correlation function at locations other
than the origin must all be zero. While some correlation functions have this property, many examples satisfy
the sampling theorem but do not yield uncorrelated samples. In many practical situations, undersampling
the noise will reduce inter-sample correlation. Thus, we obtain uncorrelated samples either by deliberately
undersampling, which wastes signal energy, or by imposing anti-aliasing filters that have a bandwidth larger
than the signal and sampling at the signal’s Nyquist rate. Since the noise power spectrum usually extends to
higher frequencies than the signal, this intentional undersampling can result in larger noise variance. In either
case, by trying to make the problem at hand match the solution, we are actually reducing performance! We
need a direct approach to attacking the correlated noise issue that arises in virtually all sampled-data detection
problems rather than trying to work around it.
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5.4.2 Colored Gaussian Noise

When the additive Gaussian noise in the sensors’ outputs is colored (i.e., the noise values are correlated in
some fashion), the linearity of beamforming algorithms means that the array processing output X also contains
colored noise. The solution to the colored-noise, binary detection problem remains the likelihood ratio, but
differs in the form of the a priori densities. The noise will again be assumed zero mean, but the noise vector
has a non-trivial covariance matrix K: N∼N (0,K).

pN(N) =
1√

det[2πK]
exp
{
−1

2
NtK−1N

}
In this case, the logarithm of the likelihood ratio is

(X− s1)tK−1(X− s1)− (X− s0)tK−1(X− s0)
M1
>
<

M0
2lnη

which, after the usual simplifications, is written

[
XtK−1s1−

st
1K−1s1

2

]
−
[

XtK−1s0−
st

0K−1s0

2

]M1
>
<

M0
lnη .

The sufficient statistic for the colored Gaussian noise detection problem is

ϒi(X) = XtK−1si . (5.16)

The quantities computed for each signal have a similar, but more complicated interpretation than in the
white noise case. XtK−1si is a dot product, but with respect to the so-called kernel K−1. The effect of the
kernel is to weight certain components more heavily than others. A positive-definite symmetric matrix (the
covariance matrix is one such example) can be expressed in terms of its eigenvectors and eigenvalues.

K−1 =
L

∑
k=1

1
λk

vkvt
k

The sufficient statistic can thus be written as the complicated summation

XtK−1si =
L

∑
k=1

1
λk

(Xtvk)(vt
ksi) ,

where λk and vk denote the kth eigenvalue and eigenvector of the covariance matrix K. Each of the constituent
dot products is largest when the signal and the observation vectors have strong components parallel to vk.
However, the product of these dot products is weighted by the reciprocal of the associated eigenvalue. Thus,
components in the observation vector parallel to the signal will tend to be accentuated; those components
parallel to the eigenvectors having the smaller eigenvalues will receive greater accentuation than others. The
usual notions of parallelism and orthogonality become “skewed” because of the presence of the kernel. A
covariance matrix’s eigenvalue has “units” of variance; these accentuated directions thus correspond to small
noise variances. We can therefore view the weighted dot product as a computation that is simultaneously
trying to select components in the observations similar to the signal, but concentrating on those where the
noise variance is small.

The second term in the expressions constituting the optimal detector are of the form st
iK−1si. This quantity

is a special case of the dot product just discussed. The two vectors involved in this dot product are identical;
they are parallel by definition. The weighting of the signal components by the reciprocal eigenvalues remains.
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Figure 5.12: These diagrams depict the signal processing operations involved in the optimum detector when
the additive noise is not white. The upper diagram shows a matched filter whose unit-sample response depends
both on the signal and the noise characteristics. The lower diagram is often termed the whitening filter
structure, where the noise components of the observed data are first whitened, then passed through a matched
filter whose unit-sample response is related to the “whitened” signal.

Recalling the units of the eigenvectors of K, st
iK−1si has the units of a signal-to-noise ratio, which is computed

in a way that enhances the contribution of those signal components parallel to the “low noise” directions.
To compute the performance probabilities, we express the detection rule in terms of the sufficient statistic.

XtK−1(s1− s0)
M1
>
<

M0
lnη +

1
2
(st

1K−1s1− st
0K−1s0)

The distribution of the sufficient statistic on the left side of this equation is Gaussian because it consists as a
linear transformation of the Gaussian random vector X. Assuming the ith model to be true,

XtK−1(s1− s0)∼N
(
st

iK
−1(s1− s0),(s1− s0)tK−1(s1− s0)

)
.

The false-alarm probability for the optimal Gaussian colored noise detector is given by

PF = Q

(
lnη + 1

2 (s1− s0)tK−1(s1− s0)
[(s1− s0)tK−1(s1− s0)]1/2

)
. (5.17)

As in the white noise case, the important signal-related quantity in this expression is the signal-to-noise ratio
of the difference signal. The distance interpretation of this quantity remains, but the distance is now warped
by the kernel’s presence in the dot product.

The sufficient statistic computed for each signal can be given two signal processing interpretations in the
colored noise case. Both of these rest on considering the quantity XtK−1si as a simple dot product, but with
different ideas on grouping terms. The simplest is to group the kernel with the signal so that the sufficient
statistic is the dot product between the observations and a modified version of the signal s̃i = K−1si. This
modified signal thus becomes the equivalent to the unit-sample response of the matched filter. In this form,
the observed data are unaltered and passed through a matched filter whose unit-sample response depends on
both the signal and the noise characteristics. The size of the noise covariance matrix, equal to the number of
observations used by the detector, is usually large: hundreds if not thousands of samples are possible. Thus,
computation of the inverse of the noise covariance matrix becomes an issue. This problem needs to be solved
only once if the noise characteristics are static; the inverse can be precomputed on a general purpose computer
using well-established numerical algorithms. The signal-to-noise ratio term of the sufficient statistic is the dot
product of the signal with the modified signal s̃i. This view of the receiver structure is shown in Fig. 5.12.
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A second and more theoretically powerful view of the computations involved in the colored noise detector
emerges when we factor covariance matrix. The Cholesky factorization of a positive-definite, symmetric
matrix (such as a covariance matrix or its inverse) has the form K = LDLt . With this factorization, the
sufficient statistic can be written as

XtK−1si =
(

D−1/2L−1X
)t (

D−1/2L−1si

)
.

The components of the dot product are multiplied by the same matrix (D−1/2L−1), which is lower-triangular.
If this matrix were also Toeplitz, the product of this kind between a Toeplitz matrix and a vector would be
equivalent to the convolution of the components of the vector with the first column of the matrix. If the matrix
is not Toeplitz (which, inconveniently, is the typical case), a convolution also results, but with a unit-sample
response that varies with the index of the output—a time-varying, linear filtering operation. The variation of
the unit-sample response corresponds to the different rows of the matrix D−1/2L−1 running backwards from
the main-diagonal entry. What is the physical interpretation of the action of this filter? The covariance of
the random vector x = AX is given by Kx = AKX At . Applying this result to the current situation, we set
A = D−1/2L−1 and KX = K = LDLt with the result that the covariance matrix Kx is the identity matrix!
Thus, the matrix D−1/2L−1 corresponds to a (possibly time-varying) whitening filter: we have converted the
colored-noise component of the observed data to white noise! As the filter is always linear, the Gaussian
observation noise remains Gaussian at the output. Thus, the colored noise problem is converted into a simpler
one with the whitening filter: the whitened observations are first match-filtered with the “whitened” signal
s+

i = D−1/2L−1si (whitened with respect to noise characteristics only) then half the energy of the whitened
signal is subtracted (Fig. 5.12).

Example
To demonstrate the interpretation of the Cholesky factorization of the covariance matrix as a time-
varying whitening filter, consider the covariance matrix

K =


1 a a2 a3

a 1 a a2

a2 a 1 a
a3 a2 a 1

 .

This covariance matrix indicates that the noise was produced by passing white Gaussian noise through
a first-order filter having coefficient a: N(`) = aN(`−1) +

(
1−a2

)1/2 w(`), where w(`) is unit-
variance white noise. Thus, we would expect that if a whitening filter emerged from the matrix ma-
nipulations (derived just below), it would be a first-order FIR filter having an unit-sample response
proportional to

h(`) =


1, ` = 0
−a, ` = 1
0, otherwise .

Simple arithmetic calculations of the Cholesky decomposition suffice to show that the matrices L and
D are given by

L =


1 0 0 0
a 1 0 0
a2 a 1 0
a3 a2 a 1

 D =


1 0 0 0
0 1−a2 0 0
0 0 1−a2 0
0 0 0 1−a2
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and that their inverses are

L−1 =


1 0 0 0
−a 1 0 0
0 −a 1 0
0 0 −a 1

 D−1 =


1 0 0 0
0 1

1−a2 0 0

0 0 1
1−a2 0

0 0 0 1
1−a2

 .

Because D is diagonal, the matrix D−1/2 equals the term-by-term square root of the inverse of D. The
product of interest here is therefore given by

D−1/2L−1 =


1 0 0 0
−a√
1−a2

1√
1−a2

0 0

0 −a√
1−a2

1√
1−a2

0

0 0 −a√
1−a2

1√
1−a2

 .

Let X̃ express the product D−1/2L−1X. This vector’s elements are given by

X̃0 = X0, X̃1 =
1√

1−a2
[X1−aX0], etc.

Thus, the expected FIR whitening filter emerges after the first term. The expression could not be of
this form as no observations were assumed to precede X0. This edge effect is the source of the time-
varying aspect of the whitening filter. If the system modeling the noise generation process has only
poles, this whitening filter will always stabilize—not vary with time—once sufficient data are present
within the memory of the FIR inverse filter. In contrast, the presence of zeros in the generation system
would imply an IIR whitening filter. With finite data, the unit-sample response would then change on
each output sample.

5.5 Detection in the Presence of Uncertainties
5.5.1 Unknown Signal Parameters

Applying the techniques described in the previous section may be difficult to justify when the signal and/or
noise models are uncertain. For example, we must “know” a signal down to the precise value of every sample.
In other cases, we may know the signal’s waveform, but not the waveform’s amplitude as measured by a
sensor. A ubiquitous example of this uncertainty is propagation loss: the range of a far-field signal can only
be lower-bounded, which leads to the known waveform, unknown amplitude detection problem. Another
uncertainty is the signal’s time origin: Without this information, we do not know when to start the matched
filtering operation! In other circumstances, the noise may have a white power spectrum but its variance is
unknown. Much worse situations (from the point of view of detection theory) can be imagined: the signal
may not be known at all and one may want to detect the presence of any disturbance in the observations other
than that of well-specified noise. These problems are very realistic, but the detection schemes as presented are
inadequate to attack them. The detection results we have derived to date need to be extended to incorporate
the presence of unknowns just as we did in hypothesis testing (§5.3 {163}).
Unknown Signal Amplitude

Assume that a signal’s waveform is known exactly, but the amplitude is not. We need an algorithm to detect
the presence or absence of this signal observed in additive noise at an array’s output. The models can be
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formally stated as
M0 : X(`) = N(`)
M1 : X(`) = As(`)+N(`) , A =? ` = 0, . . . ,L−1 .

As usual, L observations are available and the noise is Gaussian. This problem is equivalent to an unknown
parameter problem described in §5.3 {163}. We learned there that the first step is to ascertain the existence of
a uniformly most powerful test. For each value of the unknown parameter A, the logarithm of the likelihood
ratio is written

A XtK−1s−A2 stK−1s
M1
>
<

M0
lnη

Assuming that A > 0, a typical assumption in array processing problems, we write this comparison as

XtK−1s
M1
>
<

M0

1
A

lnη +A stK−1s = γ

As the sufficient statistic does not depend on the unknown parameter and one of the models (M0) does
not depend on this parameter, a uniformly most powerful test exists: the threshold term, despite its explicit
dependence on a variety of factors, can be determined by specifying a false-alarm probability. If the noise
is not white, the whitening filter or a spectral transformation may be used to simplify the computation of the
sufficient statistic.

Example
Assume that the waveform, but not the amplitude of a signal is known. The Gaussian noise is white
with a variance of σ2. The decision rule expressed in terms of a sufficient statistic becomes

Xts
M1
>
<

M0
γ .

The false-alarm probability is given by

PF = Q
(

γ√
Eσ2

)
,

where E is the assumed signal energy which equals ‖s‖2. The threshold γ is thus found to be

γ =
√

Eσ2Q−1(PF).

The probability of detection for the matched filter detector is given by

PD = Q
(

γ−AE√
Eσ2

)
= Q

(
Q−1(PF)−

√
A2E
σ2

)
,

where A is the signal’s actual amplitude relative to the assumed signal having energy E. Thus, the
observed signal, when it is present, has energy A2E. The probability of detection is shown in Fig. 5.13
as a function of the observed signal-to-noise ratio. For any false-alarm probability, the signal must be
sufficiently energetic for its presence to be reliably determined.
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Figure 5.13: The false-alarm probability of the detector was fixed at 10−2. The signal equaled Asin(2π fo`),
` = 0, . . . ,L−1, where fo was 0.1 and L = 100; the noise was white and Gaussian. The detection probabilities
that result from a matched filter detector, a sign detector, and a square-law detector are shown. These detectors
make progressively fewer assumptions about the signal, consequently yielding progressively smaller detection
probabilities.

All too many interesting problems exist where a uniformly most powerful decision rule cannot be found.
Suppose in the problem just described that the amplitude is known (A = 1, for example), but the variance of
the noise is not. Writing the covariance matrix as σ2K̃, where we normalize the covariance matrix to have
unit variance entries by requiring tr[K̃] = L, unknown values of σ2 express the known correlation structure,
unknown noise power problem. From the results just given, the decision rule can be written so that the
sufficient statistic does not depend on the unknown variance.

XtK̃−1s
M1
>
<

M0
σ

2 lnη + stK̃−1s = γ.

However, as both models depend on the unknown parameter, performance probabilities cannot be computed
and we cannot design a detection threshold.

Hypothesis testing ideas show the way out; estimate the unknown parameter(s) under each model sepa-
rately and then use these estimates in the likelihood ratio (Eq. 5.15 {166}). Using the maximum likelihood es-
timates for the parameters results in the generalized likelihood ratio test for the detection problem [59, 60, 87].
Letting θθθ denote the vector of unknown parameters, be they for the signal or the noise, the generalized likeli-
hood ratio test for detection problems is expressed by

Λ(X) =
max

θθθ

pN|θθθ (X− s1(θθθ))

max
θθθ

pN|θθθ (X− s0(θθθ))

M1
>
<

M0
η .

Again, the use of separate estimates for each model (rather than for the likelihood ratio as a whole) must be
stressed. Unknown signal-related parameter problems and unknown noise-parameter problems have different
characteristics; the signal may not be present in one of the observation models. This simplification allows a
threshold to be established objectively. In contrast, the noise is present in each model; establishing a threshold
value objectively will force new techniques to be developed. We first continue our adventure in unknown-
signal-parameter problems, deferring the more challenging unknown-noise-parameter ones to §5.5.2 {183}.
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L
l

0

D

∆

Figure 5.14: Despite uncertainties in the signal’s delay ∆, the signal is assumed to lie entirely within the ob-
servation interval. Hence the signal’s duration D, the duration L of the observation interval, and the maximum
expected delay are assumed to be related by max∆ + D− 1 < L. The figure shows a signal falling properly
within the allowed window and a grey one falling just outside.

Unknown Signal Delay

A uniformly most powerful decision rule may not exist when an unknown parameter appears in a nonlinear
way in the signal model. Most pertinent to array processing is the unknown time origin case: the signal
has been subjected to an unknown delay (s(`−∆), ∆ =?) and we must determine the signal’s presence. The
likelihood ratio cannot be manipulated so that the sufficient statistic can be computed without having a value
for ∆. Thus, the search for a uniformly most powerful test ends in failure and other methods must be sought.
As expected, we resort to the generalized likelihood ratio test.

More specifically, consider the binary test where a signal is either present (M1) or not (M0). The signal
waveform is known, but its time origin is not. For all possible values of ∆, the delayed signal is assumed to lie
entirely in the observations (see Fig. 5.14). This signal model is ubiquitous in active sonar and radar, where
the reflected signal’s exact time-of-arrival is not known and we want to determine whether a return is present
or not and the value of the delay.∗ Additive white Gaussian noise is assumed present. The conditional density
of the observations under M1 is

pX|M1,∆(X|M1,∆) =
1

(2πσ2)L/2 exp

{
− 1

2σ2

L−1

∑
`=0

[X(`)− s(`−∆)]2
}

.

The exponent contains the only portion of this conditional density that depends on the unknown quantity
∆. Maximizing the conditional density with respect to ∆ is equivalent to maximizing ∑

L−1
`=0 [X(`)s(`−∆)−

1
2 s2(`−∆)]. As the signal is assumed to be contained entirely in the observations for all possible values of
∆, the second term does not depend on ∆ and equals half of the signal energy E. Rather than analytically
maximizing the first term now, we simply write the logarithm of the generalized likelihood ratio test as

max
∆

∆+D−1

∑
`=∆

X(`)s(`−∆)
M1
>
<

M0
σ

2 lnη +
E
2

,

where the non-zero portion of the summation is expressed explicitly. Using the matched filter interpretation
of the sufficient statistic, this decision rule is expressed by

max
∆

[X(`)?s(D−1− `)]
∣∣∣∣
`=D−1+∆

M1
>
<

M0
γ

This formulation suggests that the matched filter having a unit-sample response equal to the zero-origin signal
be evaluated for each possible value of ∆ and that we use the maximum value of the resulting output in the de-
cision rule. In the known-delay case, the matched-filter output is sampled at the “end” of the signal; here, the
filter, which has a duration D less than the observation interval L, is allowed to continue processing over the
allowed values of signal delay with the maximum output value chosen. The result of this procedure is illus-
trated in Fig. 5.11 {173}. There two signals, each having the same energy, are passed through the appropriate
∗For a much more realistic (and harder) version of the active radar/sonar problem, see Problem 5.56.
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matched filter. Note that the index at which the maximum output occurs is the maximum likelihood estimate
of ∆. Thus, the detection and the estimation problems are solved simultaneously. Furthermore, the amplitude
of the signal need not be known as it enters in expression for the sufficient statistic in a linear fashion and an
UMP test exists in that case. We can easily find the threshold γ by establishing a criterion on the false-alarm
probability; the resulting simple computation of γ can be traced to the lack of a signal-related quantity or an
unknown parameter appearing in M0.

We have argued the doubtfulness of assuming that the noise is white in discrete-time detection problems.
The approach for solving the colored noise problem is to use spectral detection. Handling the unknown delay
problem in this way is relatively straightforward. Since a sequence can be represented equivalently by its
values or by its DFT, maximization can be calculated in either the time or the frequency domain without
affecting the final answer. Thus, the spectral detector’s decision rule for the unknown delay problem is

max
∆

L−1

∑
k=0

(
Re[X∗(k)S(k)e− j2πk∆/L]

σ2
k

− 1
2
|S(k)|2

σ2
k

)M1
>
<

M0
γ ,

where, as usual in unknown delay problems, the observation interval captures the entire signal waveform no
matter what the delay might be. The energy term is a constant and can be incorporated into the threshold.
The maximization amounts to finding the best linear phase fit to the observations’ spectrum once the signal’s
phase has been removed. A more interesting interpretation arises by noting that the sufficient statistic is itself
a Fourier Transform; the maximization amounts to finding the location of the maximum of a sequence given
by

Re

[
L−1

∑
k=0

X∗(k)S(k)
σ2

k
e− j2πk∆/L

]
.

The spectral detector thus becomes a succession of two Fourier Transforms with the final result determined
by the maximum of a sequence!

Unfortunately, the solution to the unknown-signal-delay problem in either the time or frequency domains
is confounded when two or more signals are present. Assume two signals are known to be present in the array
output, each of which has an unknown delay: X(`) = s1(`−∆1)+s2(`−∆2)+N(`). Using arguments similar
those used in the one-signal case, the generalized likelihood ratio test becomes

max
∆1,∆2

L−1

∑
`=0

X(`)s1(`−∆1)+X(`)s2(`−∆2)− s1(`−∆1)s2(`−∆2)
M1
>
<

M0
σ

2 lnη +
E1 +E2

2
.

Not only do matched filter terms for each signal appear, but also a cross-term between the two signals. It is
this latter term that complicates the multiple signal problem: if this term is not zero for all possible delays, a
non-separable maximization process results and both delays must be varied in concert to locate the maximum.
If, however, the two signals are orthogonal regardless of the delay values, the delays can be found separately
and the structure of the single signal detector (modified to include matched filters for each signal) will suffice.
This seemingly impossible situation can occur, at least approximately. Using Parseval’s Theorem, the cross
term can be expressed in the frequency domain.

L−1

∑
`=0

s1(`−∆1)s2(`−∆2) =
1

2π

∫
π

−π

S1(ω)S∗2(ω)e jω·(∆2−∆1) dω

For this integral to be zero for all ∆1,∆2, the product of the spectra must be zero. Consequently, if the two
signals have disjoint spectral support, they are orthogonal no matter what the delays may be.∗ Under these
conditions, the detector becomes

max
∆1

[
X(`)?s1(D−1− `)

]∣∣∣∣
`=D−1+∆1

+ max
∆2

[
X(`)?s2(D−1− `)

]∣∣∣∣
`=D−1+∆2

M1
>
<

M0
γ

∗We stated earlier that this situation happens “at least approximately.” Why the qualification?
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with the threshold again computed independently of the received signal amplitudes.†

PF = Q

(
γ√

(E1 +E2)σ2

)
This detector has the structure of two parallel, independently operating, matched filters, each of which is
tuned to the specific signal of interest.

Reality is insensitive to mathematically simple results. The orthogonality condition on the signals that
yielded the relatively simple two-signal, unknown-delay detector is often elusive. The signals often share
similar spectral supports, thereby violating the orthogonality condition. In fact, we may be interested in
detecting the same signal repeated twice (or more) within the observation interval. Because of the complexity
of incorporating inter-signal correlations, which are dependent on the relative delay, the idealistic detector is
often used in practice. In the repeated signal case, the matched filter is operated over the entire observation
interval and the number of excursions above the threshold noted. An excursion is defined to be a portion of
the matched filter’s output that exceeds the detection threshold over a contiguous interval. Because of the
signal’s non-zero duration, the matched filter’s response to just the signal has a non-zero duration, implying
that the threshold can be crossed at more than a single sample. When one signal is assumed, the maximization
step automatically selects the peak value of an excursion. As shown in lower panels of Fig. 5.11 {173}, a
low-amplitude excursion may have a peak value less than a non-maximal value in a larger excursion. Thus,
when considering multiple signals, the important quantities are the times at which excursion peaks occur, not
all of the times the output exceeds the threshold.

Fig. 5.11 illustrates the two kinds of errors prevalent in multiple signal detectors. In the left panel, we
find two excursions, the first of which is due to the signal, the second due to noise. This kind of error cannot
be avoided; we never said that detectors could be perfect! The right panel illustrates a more serious problem:
the threshold is crossed by four excursions, all of which are due to a single signal. Hence, excursions must
be sorted through, taking into account the nature of the signal being sought. In the example, excursions
surrounding a large one should be discarded if they occur in close proximity. This requirement means that
closely spaced signals cannot be distinguished from a single one.

Unknown Signal Waveform

The most general unknown signal parameter problem occurs when the signal itself unknown. This phrasing
of the detection problem can be applied to two different sorts of situations. The signal’s waveform may
not be known precisely because of propagation effects (rapid multipath, for example) or because of source
uncertainty. Another situation is the “Hello, is anyone out there?” problem: you want to determine if any non-
noise-like quantity is present in the observations. These problems impose severe demands on the detector,
which must function with little a priori knowledge of the signal’s structure. Consequently, we cannot expect
superlative performance.

M0 : X(`) = N(`)
M1 : X(`) = s(`)+N(`), s(`) =?

The noise is assumed to be Gaussian with a covariance matrix K. The conditional density under M1 is given
by

pX|M1,s(X|M1,s) =
1√

det[2πK]
exp
{
−1

2
(X− s)tK−1(X− s)

}
.

Using the generalized likelihood ratio test, the maximum value of this density with respect to the unknown
“parameters”—the signal values—occurs when X = s.

max
s

pX|M1,s(X|M1,s) =
1√

det[2πK]
†Not to be boring, but we emphasize that E1 and E2 are the energies of the signals s1(`) and s2(`) used in the detector, not those of

their received correlates A1s1(`) and A2s2(`).
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The other model does not depend on the signal and the generalized likelihood ratio test for the unknown signal
problem, often termed the square-law detector, is

XtK−1X
M1
>
<

M0
γ .

For example, if the noise were white, the sufficient statistic is the sum of the squares of the observations.

L−1

∑
`=0

X2(`)
M1
>
<

M0
γ

If the noise is not white, the detection problem can be formulated in the frequency domain, where the decision
rule becomes

L−1

∑
k=0

|X(k)|2

σ2
k

M1
>
<

M0
γ.

Computation of the false-alarm probability in, for example, the white noise case is relatively straightforward.
The probability density of the sum of the squares of L statistically independent zero-mean, unit-variance,
Gaussian random variables is termed chi-squared with L degrees of freedom {222}: χ2(L). The percentiles
of this density are tabulated in many standard statistical references [1].

Example
Assume that the additive noise is white and Gaussian, having a variance σ2. The sufficient statistic
ϒ = ∑X2(`) of the square-law detector has the probability density

ϒ/σ
2 ∼ χ

2(L)

when no signal is present. The threshold γ for this statistic is established by Pr(χ2(L) > γ/σ2) = PF .
The probability of detection is found from the density of a non-central chi-squared random variable
having χ ′2(L,λ ) having L degrees of freedom and “centrality” parameter λ = ∑

L−1
`=0 E[X2(`)]. In this

example, λ = E, the energy of the observed signal. In Fig. 5.13 {179}, the false-alarm probability
was set to 10−2 and the resulting probability of detection shown as a function of signal-to-noise ratio.
Clearly, the inability to specify the signal waveform leads to a significant reduction in performance. In
this example, roughly 10 dB more signal-to-noise ratio is required by the square-law detector than the
matched-filter detector, which assumes knowledge of the waveform but not of the amplitude, to yield
the same performance.

5.5.2 Unknown Noise Parameters

When aspects of the noise, such as the variance or power spectrum, are in doubt, the detection problem be-
comes more difficult to solve. Although a decision rule can be derived for such problems using the techniques
we have been discussing, establishing a rational threshold value is impossible in many cases. The reason
for this inability is simple: all models depend on the noise, thereby disallowing a computation of a thresh-
old based on a performance probability. The solution is innovative: derive decision rules and accompanying
thresholds that do not depend on false-alarm probabilities!

Consider the case where the variance of the noise is not known and the noise covariance matrix is written
as σ2K̃ where the trace of K̃ is normalized to L. The conditional density of the observations under a signal-
related model is

pX|Mi,σ2(X|Mi,σ
2) =

1

(σ2)L/2
√

det[2πK̃]
exp
{
− 1

2σ2 (X− si)tK̃−1(X− si)
}

.
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Using the generalized-likelihood-ratio approach, the maximum value of this density with respect to σ2 occurs
when

σ̂
2
ML =

(X− si)tK̃−1(X− si)
L

.

This seemingly complicated answer is easily interpreted. The presence of K̃−1 in the dot product can be
considered a whitening filter. Under the ith model, the expected value of the observation vector is the signal.
This computation amounts to subtracting the expected value from the observations, whitening the result, then
averaging the squared values—the usual form for the estimate of a variance. Using this estimate for each
model, the logarithm of the generalized likelihood ratio becomes

L
2

ln

(
(X− s0)tK̃−1(X− s0)

(X− s1)tK̃−1(X− s1)

)M1
>
<

M0
lnη .

Computation of the threshold remains. Both models depend on the unknown variance. However, a false-
alarm probability, for example, can be computed if the probability density of the sufficient statistic does not
depend on the variance of the noise. In this case, we would have what is known as constant false-alarm rate
or CFAR detector [20],[44: p. 317ff]. If a detector has this property, the value of the statistic will not change if
the observations are scaled about their presumed mean. Unfortunately, the statistic just derived does not have
this property. Let there be no signal under M0. The scaling property can be checked in this zero-mean case
by replacing X by cX. With this substitution, the statistic becomes c2XtK̃−1X/(cX− s1)tK̃−1(cX− s1). The
constant c cannot be eliminated and the detector does not have the CFAR property. If, however, the amplitude
of the signal is also assumed to be in doubt, a CFAR detector emerges. Express the signal component of model
i as Asi, where A is an unknown constant. The maximum likelihood estimate of this amplitude under model i
is

ÂML =
XtK̃−1si

st
iK̃−1si

.

Using this estimate in the likelihood ratio, we find the decision rule for the CFAR detector.∗

L
2

ln


XtK̃−1X−

(
XtK̃−1s0

)2

st
0K̃−1s0

XtK̃−1X−

(
XtK̃−1s1

)2

st
1K̃−1s1


M1
>
<

M0
lnη

Now we find that when X is replaced by cX, the statistic is unchanged. Thus, the probability distribution of
this statistic does not depend on the unknown variance σ2. In many applications, no signal is assumed present
in model M0; in this case, M0 does not depend on the unknown amplitude A and a threshold can be found
to ensure a specified false-alarm rate for any value of the unknown variance. For this specific problem, the
likelihood ratio can be manipulated to yield the CFAR decision rule(

XtK̃−1s1

)2

XtK̃−1X · st
1K̃−1s1

M1
>
<

M0
γ.

∗Note that K̃ is the normalized noise covariance matrix.
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Figure 5.15: The false-alarm probability for the CFAR receiver is plotted against the threshold value γ for
several values of L, the number of observations. Note that the test statistic, and thereby the threshold, does
not exceed one.

Example
Let’s extend the previous example to the CFAR statistic just discussed to the white noise case. The
sufficient statistic is

ϒ(X) =
[∑X(`)s(`)]2

∑X2(`) ·∑s2(`)
.

We first need to find the false-alarm probability as a function of the threshold γ . Using the tech-
niques described in [94], the probability density of ϒ(X) under M0 is given by a Beta density (Ta-
ble A.2 {222}), the parameters of which do not depend on either the noise variance (expectedly) or
the signal values (unexpectedly).

pϒ|M0(ϒ|M0) = β

(
ϒ,

1
2
,

L−1
2

)
,

We express the false-alarm probability derived from this density as an incomplete Beta function [1],
resulting in the curves shown in Fig. 5.15. The statistic’s density under model M1 is related to the
non-central F distribution, expressible by the fairly simple, quickly converging, infinite sum of Beta
densities

pϒ|M1(ϒ|M1) =
∞

∑
k=0

e−d2 (d2)k

k!
β

(
ϒ,k +

1
2
,

L−1
2

)
,

where d2 equals a signal-to-noise ratio: d2 = ∑` s2(`)/2σ2. The results of using this CFAR detector
are shown in Fig. 5.16.

5.6 Non-Gaussian Detection Theory
5.6.1 Partial Knowledge of Probability Distributions

In previous chapters, we assumed we knew the mathematical form of the probability distribution for the
observations under each model; some of these distribution’s parameters were not known and we developed
decision rules to deal with this uncertainty. A more difficult problem occurs when the mathematical form
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Figure 5.16: The probability of detection for the CFAR detector and the matched filter detector is shown as a
function of signal-to-noise ratio. The signal and the false-alarm criterion are the same as in Fig. 5.13 {179}.
Note how little performance has been lost in this case!

is not known precisely. For example, the data may be approximately Gaussian, containing slight departures
from the ideal. More radically, so little may be known about an accurate model for the data that we are only
willing to assume that they are distributed symmetrically about some value. We develop model evaluation
algorithms in this section that tackle both kinds of problems. However, be forewarned that solutions to such
general models come at a price: the more specific a model can be that accurately describes a given problem,
the better the performance. In other words, the more specific the model, the more the signal processing
algorithms can be tailored to fit it with the obvious result that we enhance the performance. However, if
our specific model is in error, our neatly tailored algorithms can lead us drastically astray. Thus, the best
approach is to relax those aspects of the model which seem doubtful and to develop algorithms that will cope
well with worst-case situations should they arise (“And they usually do,” echoes every person experienced
in the vagaries of data). These considerations lead us to consider nonparametric variations in the probability
densities compatible with our assessment of model accuracy and to derive decision rules that minimize the
impact of the worse-case situation.

Worst-Case Probability Distributions

In model evaluation problems, there are “optimally” hard problems, those where the models are the most
difficult to distinguish. The impossible problem is to distinguish models that are identical. In this situation,
the conditional densities of the observed data are equal and the likelihood ratio is constant for all possible
values of the observations. It is obvious that identical models are indistinguishable; this elaboration suggests
that in terms of the likelihood ratio, hard problems are those in which the likelihood ratio is constant. Thus,
“hard problems” are those in which the class of conditional probability densities has a constant ratio for wide
ranges of observed data values.

The most relevant model evaluation problem for us is the discrimination between two models that differ
only in the means of statistically independent observations: the conditional densities of each observation are
related as pX`|M1(X`|M1) = pX`|M0(X`−m|M0). Densities that would make this model evaluation problem
hard would satisfy the functional equation

p(x−m) = C(m) · p(x), ∀ x≥ m

where C(m) is quantity depending on the mean m, but not the variable x.∗ For probability densities satisfying
∗The uniform density does not satisfy this equation as the domain of the function p(·) is assumed to be infinite.
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this equation, any value of the observed datum which has a value greater than m cannot be used to distinguish
the two models. If one considers only those zero-mean densities p(·) which are symmetric about the origin,
then by symmetry the likelihood ratio would also be constant for x ≤ 0. Hypotheses having these densities
could only be distinguished when the observations lay in the interval (0,m); such model evaluation problems
are hard!

From the functional equation, we see that the quantity C(m) must be inversely proportional to p(m)
(substitute x = m into the equation). Incorporating this fact into our functional equation, we find that the only
solution is the exponential function.

p(z−m) = C(m) · p(z) =⇒ p(z) ∝ e−z,z≥ 0

If we insist that the density satisfying the functional equation be symmetric, the solution is the so-called
Laplacian (or double-exponential) density.

pz(z) =
1√
2σ2

exp

{
− |z|√

σ2/2

}

When this density serves as the underlying density for our hard model-testing problem, the likelihood ratio
has the form [47],[48],[78: pp. 175–187]

lnΛ(X`) =



− m√
σ2/2

, X` < 0

2X`−m√
σ2/2

, 0 < X` < m

m√
σ2/2

, m < X`

Indeed, the likelihood ratio is constant over much of the range of values of X`, implying that the two models
are very similar over those ranges. This worst-case result will appear repeatedly as we embark on searching
for the model evaluation rules that minimize the effect of modeling errors on performance.

5.6.2 Robust Hypothesis Testing

“Robust” is a technical word that implies insensitivity to modeling assumptions. As we have seen, some
algorithms are robust while others are not. The intent of robust signal processing to derive algorithms that are
explicitly insensitive to the underlying signal and/or noise models. The way in which modeling uncertainties
are described is typified by the approach we shall use in the following discussion of robust model evaluation.

We assume that two nominal models of the generation of the statistically independent observations are
known; the “actual” conditional probability density that describes the data under the assumptions of each
model is not known exactly, but is “close” to the nominal. Letting p(·) be the actual probability density for
each observation and po(·) the nominal, we say that [48]

p(x) = (1− ε)po(x)+ ε pd(x) ,

where pd is the unknown disturbance density and ε is the uncertainty variable (0 ≤ ε < 1). The uncertainty
variable specifies how accurate the nominal model is thought to be: the smaller ε , the smaller the contribution
of the disturbance. It is assumed that some value for ε can be rationally assigned. The disturbance density is
entirely unknown and is assumed to be any valid probability density function. The expression given above is
normalized so that p(·) has unit area. Thus, in this description of modeling uncertainties, the nominal density
sits at the “center”, with the actual density ranging about it. An example of densities described this way are
shown in Fig. 5.17.
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The robust model evaluation problem is formally stated as

M0 : pX|M0(x|M0) =
L−1

∏
`=0

[
(1− ε)po

X`|M0
(X`|M0)+ ε pd

X`|M0
(X`|M0)

]
M1 : px|M1(x|M1) =

L−1

∏
`=0

[
(1− ε)po

X`|M1
(X`|M1)+ ε pd

X`|M1
(X`|M1)

]
The nominal densities under each model correspond to the conditional densities that we have been using
until now. The disturbance densities are intended to model imprecision of both descriptions; hence, they are
assumed to be different in the context of each model. Note that the measure of imprecision ε is assumed to
be the same under either model.

To solve this problem, we take what is known as a minimax approach: find the worst-case combinations of
a priori densities (max), then minimize the consequences of this situation (mini) according to some criterion.
In this way, bad situations are handled as well as can be expected while the more tolerable ones are (hopefully)
processed well also. The “mini” phase of the minimax solution corresponds to the likelihood ratio for many
criteria. Thus, the “max” phase amounts to finding the worst-case probability distributions for the likelihood
ratio test as described in the previous section: find the disturbance densities that can result in a constant value
for the ratio over large domains of the likelihood ratio. This evaluation is most easily understood graphically
by considering the probability distribution functions. When the two nominal distributions scaled by 1−ε can
be brought together so that they are equal for some disturbance, then the likelihood ratio will be constant in
that domain. Of most interest here is the case where the models differ only in the value of the mean, as shown
in Fig. 5.18. “Bringing the distributions together” means, in this case, scaling the distribution for M0 by 1−ε

while adding the constant ε to the scaled distribution for M1. One can shown in general that if the ratio of
the nominal densities is monotonic, this procedure finds the worst-case distribution [47]. The distributions
overlap for small and for large values of the data with no overlap in a central region. As we shall see, the size
of this central region depends greatly on the choice of ε . The tails of the worst-case distributions under each
model are equal; conceptually, we consider that the worst-case densities have exponential tails in the model
evaluation problem.

Letting pw denote the worst-case density, our minimax procedure results in the following densities for
each model in the likelihood ratio test.

pw
X`|Mi

(X`|Mi) =


po

X ′`|M0
(X ′`|M0)C′ie

−K′|X`−X ′`| X` < X ′`
po

X`|Mi
(X`|Mi) X ′` < X` < X ′′`

po
X ′′` |M0

(X ′′` |M0)C′′i e−K′′|X`−X ′′` | X` > X ′′`

Figure 5.17: The nominal density, a Gaussian, is shown as a dashed line along with example densities derived
from it having an uncertainty of 10% (ε = 0.1). The left plot illustrates a symmetric contamination and the
right an asymmetric one.
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Figure 5.18: Nominal probability distributions for each model are shown. The worst-case distributions cor-
responding to these are also shown for the uncertainty variable ε equaling 0.1.

The constants K′ and K′′ determine the rate of decay of the exponential tails of these worst-case distributions.
Their specific values have not yet been determined, but since they are not needed to compute the likelihood
ratio, we don’t need them. The constants C′i and C′′i are required so that a unit-area density results. The
likelihood ratio for each observation in the robust model evaluation problem becomes

Λ(X`) =



C′1
C′0

X` < X ′`
po

X`|M1
(X`|M1)

po
X`|M0

(X`|M0)
X ′` < X` < X ′′`

C′′1
C′′0

X ′′` < X` .

The evaluation of the likelihood ratio depends entirely on determining values for X ′` and X ′′` . The ratios
C′1/C′0 = c′ and C′′1 /C′′0 = c′′ are easily found; in the tails, the value of the likelihood ratio equals that at the
edges of the central region for continuous densities.

c′ =
po

X`|M1
(X ′`|M1)

po
X`|M0

(X ′`|M0)
c′′ =

po
X`|M1

(X ′′` |M1)

po
X`|M0

(X ′′` |M0)

At the left boundary, for example, the distribution functions must satisfy (1− ε)PX`|M0(X
′
`|M0) =

(1− ε)PX`|M1(X
′
`|M1)+ ε . In terms of the nominal densities, we have∫ X ′`

−∞

[
pX`|M0(x|M0)− pX`|M1(x|M1)

]
dx =

ε

1− ε
.

This equation also applies to the value right edge X ′′` . Thus, for a given value of ε , the integral of the difference
between the nominal densities should equal the ratio ε/(1− ε) for two values. Fig. 5.19 illustrates this effect
for a Gaussian example. The bi-valued nature of this integral may not be valid for some values of ε; the value
chosen for ε can be too large, making it impossible distinguish the models! This unfortunate circumstance
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means that the uncertainties, as described by the value of ε , swamp the characteristics that distinguish the
models. Thus, the models must be made more precise (more must be known about the data) so that smaller
deviations from the nominal models can describe the observations.

Returning to the likelihood ratio, the “robust” decision rule consists of computing a clipped function of
each observed value, multiplying them together, and comparing the product computed over the observations
with a threshold value. We assume that the nominal distributions of each of the L observations are equal; the
values of the boundaries X ′` and X ′′` then do not depend on the observation index ` in this case. More simply,
evaluating the logarithm of the quantities involved results in the decision rule

L−1

∑
`=0

f (X`)
M1
>
<

M0
γ .

where the function f (·) is the clipping function given by

f (X`) =


lnc′ X` < X ′

ln
po

X`|M1
(X`|M1)

po
X`|M0

(X`|M0)
X ′ < X` < X ′′

lnc′′ X ′′ < X` .

If the observations were not identically distributed, then the clipping function would depend on the observation
index.∗

Determining the threshold γ that meets a specific performance criterion is difficult in the context of robust
model evaluation. By the very nature of the problem formulation, some degree of uncertainty in the a priori
densities exists. A specific false-alarm probability can be guaranteed by using the worst-case distribution
under M0. This density has the disturbance term being an impulse at infinity. Thus, the expected value mc
of a clipped observation f (X`) with respect to the worst-case density is (1− ε)E[ f (X`)]+ ε lnc′′ where the
expected value in this expression is evaluated with respect to the nominal density under M0. Similarly, an ex-
pression for the variance σ2

c of the clipped observation can be derived. As the decision rule computes the sum
of the clipped, statistically independent observations, the Central Limit Theorem can be applied to the sum,
with the result that the worst-case false-alarm probability will approximately equal Q

(
(γ −Lmc)/(

√
Lσc)

)
.

The threshold γ can then be found which will guarantee a specified performance level. Usually, the worst-case
situation does not occur and the threshold set by this method is conservative. We can assess the degree of
conservatism by evaluating these quantities under the nominal density rather than the worst-case density.

Example
Let’s consider the Gaussian model evaluation problem we have been using so extensively. The indi-
vidual observations are statistically independent and identically distributed with variance five: σ2 = 5.
For model M0, the mean is zero; for M1, the mean is one. These nominal densities describe our best
models for the observations, but we seek to allow slight deviations (10%) from them. The equation to
be solved for the boundaries is the implicit equation

Q
(

z−m
σ

)
−Q

( z
σ

)
=

ε

1− ε
.

The quantity on the left side of the equation is shown in Fig. 5.19. If the uncertainty in the Gaussian
model, as expressed by the parameter ε , is larger than 0.15 (for the example values of m and σ ), no
solution exists. Assuming that ε equals 0.1, the quantity ε/(1− ε) = 0.11 and the clipping thresholds

∗Note that we only need to require that the nominal density remain constant throughout the observations. The disturbance density,
and through it the density of each observation, could vary without disturbing the validity of this result! Such generality is typical when
one loosens modeling restrictions, but, as we have said, this generality is bought with diminished performance.
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Figure 5.19: The quantity used to determine the thresholds in the robust decision rule is shown when m = 1
and σ2 = 5. Given a value of ε , a value on the vertical axis is selected and the corresponding values on the
horizontal axis yield the thresholds.
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Figure 5.20: The robust decision rule for the case of a Gaussian nominal density is shown. The observations
are first scaled and shifted by quantities that depend on the mean m and the variance σ2. The resulting quantity
is then passed through a symmetric unit-slope clipping function whose clipping thresholds also depend on the
parameters of the distributions.

are X ′=−1.675 and X ′′= 2.675. Between these values, the clipping function is given by the logarithm
of the likelihood ratio, which is given by (2mX`−m2)/(2σ2).

We can decompose the clipping operation into a cascade of two operations: a linear scaling
and shifting (as described by the previous expression) followed by a clipper having unit slope (see
Fig. 5.20). Let X̃` denote the result of the scaling and shifting operation. This quantity has mean
m2/2σ2 and variance m2/σ2 under M1 and the opposite signed mean and the same variance under
M0. The threshold values of the unit-clipping function are thus given by the solution of the equation

Q

 z̃+ m2

2σ2

m/σ

−Q

 z̃− m2

2σ2

m/σ

=
ε

1− ε
.

By substituting−z̃ for z̃ in this equation, we find that the two solutions are negatives of each other. We
have now placed the unit-clipper’s threshold values symmetrically about the origin; however, they do
depend on the value of the mean m. In this example, the threshold is numerically given by z̃ = 0.435.
The expected value of the result of the clipping function with respect to the worst-case density is given
by the complicated expression

E[ f (X`)] = (1− ε)

[
X ′Q

(
−X ′

σ

)
+X ′′Q

(
X ′′

σ

)
+

√
σ2

2π

(
e
− X ′2

2σ2 − e
−X ′′2

2σ2

)]
+ εX ′′

The variance is found in a similar fashion and can be used to find the threshold γ on the sum of clipped
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observation values.

5.6.3 Non-Parametric Model Evaluation

If very uncertain about model accuracy, assuming a form for the nominal density may be questionable or
quantifying the degree of uncertainty may be unreasonable. In these cases, any formula for the underlying
probability densities may be unjustified, but the model evaluation problem remains. For example, we may
want to determine a signal’s presence or absence in a radar’s output (non-zero mean vs. zero mean) without
much knowledge of the contaminating noise. If minimal assumptions can be made about the probability
densities, non-parametric model evaluation can be used [36]. In this theoretical framework, no formula for
the conditional densities is required; instead, we use worst-case densities which conform to the weak problem
specification. Because few assumptions about the probability models are used, non-parametric decision rules
are robust: they are insensitive to modeling assumptions because so few are used. The “robust” test of the
previous section are so-named because they explicitly encapsulate model imprecision. In either case, one
should expect greater performance (smaller error probabilities) in non-parametric decision rules than possible
from a “robust” one.

Two hypothesized models are to be tested; M0 is intended to describe the situation “the observed data
have zero mean” and the other “a non-zero mean is present”. We make the usual assumption that the L
observed data values are statistically independent. The only assumption we will make about the probabilistic
descriptions underlying these models is that the median of the observations is zero in the first instance and
non-zero in the second. The median of a random variable is the “half-way” value: the probability that the
random variable is less than the median is one-half as is the probability that it is greater. The median and
mean of a random variable are not necessarily equal; for the special case of a symmetric probability density
they are. In any case, the non-parametric models will be stated in terms of the probability that an observation
is greater than zero.

M0 : Pr[X` ≥ 0] = 1
2

M1 : Pr[X` ≥ 0] > 1
2

The first model is equivalent to a zero-median model for the data; the second implies that the median is greater
than zero. Note that the form of the two underlying probability densities need not be the same to correspond
to the two models; they can differ in more general ways than in their means.

To solve this model evaluation problem, we seek (as do all robust techniques) the worst-case density, the
density satisfying the conditions for one model that is maximally difficult to distinguish from a given density
under the other. Several interesting problems arise in this approach. First of all, we seek a non-parametric
answer: the solution must not depend on unstated parameters (we should not have to specify how large the
non-zero mean might be). Secondly, the model evaluation rule must not depend on the form for the given
density. These seemingly impossible properties are easily satisfied. To find the worst-case density, first define
p+

X`|M1
(X`|M1) to be the probability density of the `th observation assuming that M1 is true and that the

observation was non-negative. A similar definition for negative values is needed.

p+
X`|M1

(X`|M1) = pX`|M1,X`≥0(X`|M1,X` ≥ 0)

p−X`|M1
(X`|M1) = pX`|M1,X`<0(X`|M1,X` < 0)

In terms of these quantities, the conditional density of an observation under M1 is given by

pX`|M1(X`|M1) = Pr[X` ≥ 0|M1]p+
X`|M1

(X`|M1)+(1−Pr[X` ≥ 0|M1])p−X`|M1
(X`|M1)

The worst-case density under M0 would have exactly the same functional form as this one for positive and
negative values while having a zero median.∗ As depicted in Fig. 5.21, a density meeting these requirements
is
∗Don’t forget that the worst-case density in model evaluation agrees with the given one over as large a range as possible.
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Figure 5.21: For each density having a positive-valued
median, the worst-case density having zero median would
have exactly the same functional form as the given one on
the positive and negative real lines, but with the areas ad-
justed to be equal. Here, a unit-mean, unit-variance Gaus-
sian density and its corresponding worst-case density are
shown. The resulting worst-case density is usually discon-
tinuous at the origin; be that as it may, this rather bizarre
worst-case density leads to a simple non-parametric deci-
sion rule.
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pX`|M0(X`|M0) =
p+

X`|M1
(X`|M1)+ p−X`|M1

(X`|M1)

2
.

The likelihood ratio for a single observation would be 2Pr[X` ≥ 0|M1] for non-negative values and
2(1−Pr[X` ≥ 0|M1]) for negative values. While the likelihood ratio depends on Pr[X` ≥ 0|M1], which is
not specified in our non-parametric model, the sufficient statistic will not depend on it! To see this, note that
likelihood ratio varies only with the sign of the observation. Hence, the optimal decision rule amounts to
counting how many of the observations are positive; this count can be succinctly expressed with the unit-step
function u(·) as ∑

L−1
`=0 u(X`).∗ Thus, the likelihood ratio for the L statistically independent observations is

written

2L ·Pr[X` ≥ 0|M1]∑` u(X`) · (1−Pr[X` ≥ 0|M1])L−∑` u(X`)
M1
>
<

M0
η .

Making the usual simplifications, the unknown probability Pr[X` ≥ 0|M1] can be maneuvered to the right
side and merged with the threshold. The optimal non-parametric decision rule thus compares the sufficient
statistic—the count of positive-valued observations—with a threshold determined by the Neyman-Pearson
criterion.

L−1

∑
`=0

u(X`)
M1
>
<

M0
γ

This decision rule is called the sign test as it depends only on the signs of the observed data. The sign test is
uniformly most powerful and robust.

To find the threshold γ , we can use the Central Limit Theorem to approximate the probability distribution
of the sum by a Gaussian. Under M0, the expected value of u(X`) is 1

2 and the variance is 1
4 . To the degree

that the Central Limit Theorem reflects the false-alarm probability (see Problem 5.62), PF is approximately
given by

PF = Q

(
γ−L/2√

L/4

)
and the threshold is found to be

γ =
√

L
2

Q−1(PF)+
L
2

.

∗We define the unit-step function as u(x) =

{
1 x > 0
0 x < 0

, with the value at the origin undefined. We presume that the densities have

no mass at the origin under either model. Although appearing unusual, ∑u(X`) does indeed yield the number of positively valued
observations.
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As it makes no sense for the threshold to be greater than L (how many positively values observations can there
be?), the specified false-alarm probability must satisfy PF ≥ Q

(√
L
)
. This restriction means that increasing

stringent requirements on the false-alarm probability can only be met if we have sufficient data.

5.6.4 Partially Known Signals and Noise

Rather than assuming that aspects of the signal, such as its amplitude, are beyond any set of justifiable as-
sumptions and are thus “unknown”, we may have a situation where these signal aspects are “uncertain”. For
example, the amplitude may be known to be within ten percent of a nominal value. If the case, we would
expect better performance characteristics from a detection strategy exploiting this partial knowledge from one
that doesn’t. To derive detectors that use partial information about signal and noise models, we apply the
approach used in robust model evaluation: find the worst-case combination of signal and noise consistent
with the partial information, then derive the detection strategy that best copes with it. We have seen that the
optimal detection strategy is found from the likelihood ratio: no matter what the signal and noise models are,
the likelihood ratio yields the best decision rule. When applied to additive Gaussian noise problems, the per-
formance of the likelihood ratio test increases with the signal-to-noise ratio of the difference between the two
hypothesized signals. Since we focus on deciding whether a particular signal is present or not, performance is
determined by that signal’s SNR and the worst-case situation occurs when this signal-to-noise ratio is small-
est. The results from robust model evaluation taught us to design the detector to the worst-case situation,
which in our case roughly means employing matched filters based on the worst-case signal. Employing this
approach results in what are known as robust detectors.

5.6.5 Partially Known Signal Waveform

The nominal signal waveform is known, but the actual signal present in the observed data can be corrupted
slightly. Using the minimax approach {188}, we seek the worst possible signal that could be present consistent
with constraints on the corruption. Once we know what signal that is, our detector should consist of a filter
matched to that worst-case signal. Let the observed signal be of the form s(`) = so(`) + c(`): so(`) is the
nominal signal and c(`) the corruption in the observed signal. The nominal-signal energy is Eo and the signal
corruption is assumed to have an energy that is less than Ec. Spectral techniques are assumed to be applicable
so that the covariance matrix of the Fourier transformed noise is diagonal. The signal-to-noise ratio is given
by ∑k |S(k)|2/σ2

k . What corruption yields the smallest signal-to-noise ratio? The worst-case signal will have
the largest amount of corruption possible. This constrained minimization problem—minimize the signal-to-
noise ratio while forcing the energy of the corruption to be less than Ec—can then be solved using Lagrange
multipliers.

min
{Sk}

[
∑k|S(k)|2/σ

2
k +λ

(
∑k|C(k)|2−Ec)]

By evaluating the appropriate derivatives, we find the spectrum of the worst-case signal to be a frequency-
weighted version of the nominal signal’s spectrum.

Sw(k) =
λσ2

k

1+λσ2
k

So(k) where ∑
k

(
1

1+λσ2
k

)2

|So(k)|2 = Ec

The only unspecified parameter is the Lagrange multiplier λ , with the latter equation providing an implicit
solution in most cases.

If the noise is white, the σ2
k equal a constant, implying that the worst-case signal is a scaled version of the

nominal, equaling Sw(k) =
(
1−
√

Ec/Eo
)
So(k). The robust decision rule derived from the likelihood ratio is

given by

Re

[
L−1

∑
k=0

X∗(k)So(k)

]M1
>
<

M0
γ.

By incorporating the scaling constant
(
1−
√

Ec/Eo
)

into the threshold γ , we find that the matched filter used
in the white noise, known-signal case is robust with respect to signal uncertainties. The threshold value is
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identical to that derived using the nominal signal as model M0 does not depend on the uncertainties in the
signal model. Thus, the detector used in the known-signal, white noise case can also be used when the signal
is partially corrupted. Note that in solving the general signal corruption case, the imprecise signal amplitude
situation was also solved.

If the noise is not white, the proportion between the nominal and worst-case signal spectral components
is not a constant. The decision rule expressed in terms of the frequency-domain sufficient statistic becomes

Re

[
L−1

∑
k=0

(
λσ2

k

1+λσ2
k

)
X∗(k)So(k)

]M1
>
<

M0
γ.

Thus, the detector derived for colored noise problems is not robust. The threshold depends on the noise
spectrum and the energy of the corruption. Furthermore, calculating the value of the Lagrange multiplier in
the colored noise problem is quite difficult, with multiple solutions to its constraint equation quite possible.
Only one of these solutions will correspond to the worst-case signal.

5.6.6 Partially Known Noise Amplitude Distribution

The previous sections assumed that the probability distribution of the noise was known precisely, and fur-
thermore, that this distribution was Gaussian. Deviations from this assumption occur frequently in applica-
tions [66, 71, 72]. We expect Gaussian noise in situations where noise sources are many and of roughly equal
strength: the Central Limit Theorem suggests that if these noise sources are independent (or even mildly
dependent), their superposition will be Gaussian. As shown in §2.1.10 {11}, the Central Limit Theorem con-
verges very slowly and deviations from this model, particularly in the tails of the distribution, are a fact of
life. Furthermore, unexpected, deviant noise sources also occur and these distort the noise amplitude distribu-
tion. Examples of this phenomenon are lightning (causing momentary, large, skewed changes in the nominal
amplitude distribution in electromagnetic sensitive sensors) and ice fractures in polar seas (evoking similar
distributional changes in acoustic noise). These changes are momentary and their effects on the amplitude
distribution are, by and large, unpredictable. For these situations, we invoke ideas from robust model eval-
uation to design robust detectors, ones insensitive to deviations from the Gaussian model [32],[56],[78: pp.
175–187].

We assume that the noise component in the observations consists of statistically independent elements,
each having a probability amplitude density of the form

pN(N) = (1− ε)po
N(N)+ ε pd

N(N)

where po
N(·) is the nominal noise density, taken to be Gaussian, and pd

N(·) is the deviation of the actual density
from the nominal, also a density. This ε-contamination model [48] is parameterized by ε , the uncertainty
variable, a positive number less than one that defines how large the deviations from the nominal can be. As
shown in §5.6.2 {187}, the decision rule for the robust detector is

L−1

∑
`=0

f`

[
X(`)s(`)− s2(`)/2

σ2

]M1
>
<

M0
γ ,

where f`(·) is a memoryless nonlinearity having the form of a clipper {190}. The block diagram of this
receiver is shown diagrammatically in Fig. 5.22. The clipping function threshold z′` is related to the assumed
variance σ2 of the nominal Gaussian density, the deviation parameter ε , and the signal value at the `th sample
by the positive-valued solution of

Q

 z′` + s2(`)
2σ2

s(`)/σ

−Q

 z′`−
s2(`)
2σ2

s(`)/σ

=
ε

1− ε
.
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Figure 5.22: The robust detector consists of a linear scaling and shifting operation followed by a unit-slope
clipper, whose clipping thresholds depend on the value of the signal. The key element is the clipper, which
serves to censor large excursions of the observed from the value of the signal.

An example of solving for ε is shown in Fig. 5.19 {191}.
The characteristics of the clipper vary with each signal value: the clipper is exquisitely tuned to the proper

signal value, ignoring values that deviate from the signal. Furthermore, note that this detector relies on large
signal values relative to the noise. If the signal values are small, the above equation for z′` has no solution.
Essentially, the robust detector ignores those values since the signal is too weak to prevent the noise density
deviations from entirely confusing the models.∗ The threshold can be established for the signal values used
by the detector through the Central Limit Theorem as described in §5.6.2 {187}.

5.6.7 Non-Gaussian Observations

The term “non-Gaussian” has a connotation similar to that of “non-linear”; rather than meaning those prob-
lems which are not simple (the simple ones being the Gaussian or linear ones), these terms refer instead the
general problem—all possible stationary random sequences or all systems. In general, “non-Gaussian de-
tection theory” makes no assumption as to the specific form of the noise amplitude distribution [55]. This
generality mimics situations where the additive noise is variable, having an unpredictable structure which
makes a priori models of the noise difficult to justify. This section describes detection algorithms that make
few assumptions about the joint probability density function of the noise amplitudes at several samples. For
simplicity, the noise sequence is assumed in sequel to be white.

Small-Signal Detection

Before we introduce truly non-Gaussian detection strategies, we need to discuss the structure of the detector
when the noise amplitude distribution is known. From the results presented while solving the general model
evaluation problem, we find that the likelihood ratio test for statistically independent noise values is

L−1

∑
`=0
{ln pN [X(`)− s1(`)]− ln pN [X(`)− s0(`)]}

M1
>
<

M0
γ .

The term in braces is ϒ`, the sufficient statistic at the `th sample. As L is usually large and each term in the
summation is statistically independent of the others, the threshold γ is found by approximating the distribution
of the sufficient statistic by a Gaussian (the Central Limit Theorem again). Computing the mean and variance
of each term, the false-alarm probability is found to be

PF = Q

(
lnη−∑E[ϒ`|M0]√

∑var[ϒ`|M0]

)
.

This general result applies to any assumed noise density, including the Gaussian. The matched filter answer
derived earlier is contained in the decision rule given above.

∗In the next section, we present a structure applicable in small signal-to-noise ratio cases.
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Figure 5.23: The decision rule for the non-Gaussian case when the signal is small can be expressed as a
matched filter where the observations are first passed through a memoryless nonlinearity.

A matched-filter-like answer also results when small signal-to-noise ratio problems are considered for any
amplitude distribution [55: pp. 5–8],[84],[85]. Assume that ln pN

(
X(`)− s(`)

)
, considered as a function of

the signal value s(`), can be expressed in a Taylor series centered at X(`).

ln pN
(
X(`)− s(`)

)
=

ln pN [X(`)]− d ln pN(N)
dN

∣∣∣∣
N=X(`)

s(`)+
1
2

d2 ln pN(N)
dN2

∣∣∣∣
N=X(`)

s2(`)+ · · ·

In the small signal-to-noise ratio case, second and higher order terms are neglected, leaving the decision rule

L−1

∑
`=0

{
− d ln pN(N)

dN

∣∣∣∣
N=X(`)

s1(`)+
d ln pN(N)

dN

∣∣∣∣
N=X(`)

s0(`)

}M1
>
<

M0
γ .

This rule says that in the small signal case, the sufficient statistic for each signal is the result of match-filtering
the result of passing the observations through a front-end memoryless non-linearity −d ln pN(x)/dx, which
depends only on noise amplitude characteristics (Fig. 5.23).

Because of the presence of the matched filter and the relationship of the matched filter to Gaussian noise
problems, one might presume that the nonlinearity serves to transform each observation into a Gaussian ran-
dom variable. In the case of zero-mean Gaussian noise, −d ln pN(x)/dx = x/σ2. Interestingly, this Gaussian
case is the only instance where the “non-linearity” is indeed linear and yields a Gaussian output. Now con-
sider the case where the noise is Laplacian

(
pN(N) = 1√

2σ2 exp{−|N|/
√

σ2/2}
)
. The detector’s front-end

transformation is −d ln pN(x)/dx = sign[x]/
√

σ2/2. This non-linearity is known as an infinite clipper and
the output consists only of the values ±1/

√
σ2/2, not a very Gaussian quantity.

Robust Small-Signal Detection

These results can be modified to derive a robust detector that accommodates small signals. To make this
detector insensitive to deviations from the nominal noise probability density, the density should be replaced
by the worst-case density consistent with the maximum allowed deviations. For unimodal, symmetric densi-
ties, the worst-case density equals that of the nominal within a region centered about the origin while being
proportional to an exponential for values outside that region.

pw
N(N) =

{
(1− ε)po

N(N) |N|< N′

(1− ε)po
N(N′)exp{−a(|N|−N′)} |N|> N′

The parameter a controls the rate of decrease of the exponential tail; it is specified by requiring that the
derivative of the density’s logarithm be continuous at N = N′. Thus, a = −d ln po

N(N)/dN for N = N′. For
the worst-case density to be a probability density, the boundary value N′ and the deviation parameter ε must
be such that its integral is unity. As ε is fixed, this requirement reduces to a specification of N′.∫ N′

−N′
po

N(N)dN +
2
a

po
N(N′) =

1
1− ε
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For the case where the nominal density is Gaussian, a = N′/σ2 and this equation becomes

1−2Q
(

N′

σ

)
+

σ

N′

√
2
π

e
− N′2

2σ2 =
1

1− ε
.

The non-linearity required by the small-signal detection strategy thus equals the negative derivative of the
logarithm of the worst-case density within the boundaries while equaling a constant outside that region.

f [X(`)] =

−
d ln po

N(N)
dN

∣∣∣∣
N=X(`)

|X(`)|< N′

a · sign[X(`)] |X(`)|> N′

The robust detector for small signals thus consists of a clipper followed by a matched filter for each signal,
the results of which are compared with a threshold.

5.6.8 Non-Parametric Detection

In situations when no nominal density can be reasonably assigned or when the possible extent of deviations
from the nominal cannot be assessed, non-parametric detection theory can rise to the occasion [36, 57]. In this
framework first explored in §5.6.3 {192}, little is assumed about the form of the noise density. Assume that
model M0 corresponds to the noise-only situation and M1 to the presence of a signal. Moreover, assume that
the noise density has zero median: any noise value is equally likely to be positive or negative. This assumption
does not necessarily demand that the density be symmetric about the origin, but such densities do have zero
median. Given these assumptions, the formalism of non-parametric model evaluation yields the sign test as
the best decision rule. As described in the simpler model evaluation context, M1 had constant, positive mean
for each observation. Signal values are usually unequal and change sign; we must extend the sign test to this
more realistic situation. Noting that the statistic of the sign test did not depend on the value of the mean but
on its sign, the sign of each observation should be “matched” with the sign of each signal value. A kind of
matched filter results, where sign[X(`)] is match-filtered with sign[s(`)].

L−1

∑
`=0

u(sign[X(`)]sign[s(`)])
M1
>
<

M0
γ (5.18)

The quantity u(·) is the unit-step function; the sum counts the times when the signal and the observation signs
matched.

To find the threshold, the ubiquitous Central Limit Theorem can be invoked. Under M0, the expected
value of summation is L/2 and its variance L/4. The false alarm probability for a given value of γ is therefore
approximately given by

PF = Q

(
γ−L/2√

L/4

)
and the threshold easily found. We find the probability of detection with similar techniques, assuming a Gaus-
sian density describes the distribution of the sum when a signal is present. Letting P̀ denote the probability
the observation and the signal value agree in sign at the `th sample, the sum’s expected value is ∑` P̀ and its
variance ∑` P̀ (1− P̀ ). Using the Central Limit Theorem approximation, the probability of detection is given
by

PD = Q

(
γ−∑` P̀√

∑` P̀ (1− P̀ )

)
.

For a symmetric as well as zero-median density for the noise amplitude, this probability is given by
P̀ =

∫
∞

−|s(`)|pN(N)dN. If Gaussian noise were present, this probability would be 1−Q
(
|s(`)|/σ

)
and for

Laplacian noise 1− 1
2 exp

{
−|s(`)|/

√
σ2/2

}
.
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The non-parametric detector expressed by Eq. (5.18) has many attractive properties for signal processing
applications. First, the detector does not require knowledge of the amplitude of the signal. In addition, note
that the false-alarm probability does not depend on the variance of the noise; the sign detector is therefore
CFAR. Another property of the sign detector is its robustness: we have implicitly assumed that the noise values
have the worst-case probability density—the Laplacian. A more practical property is the one bit of precision
required by the quantities used in the computation of the sufficient statistic: each observation is passed through
an infinite clipper (a one-bit quantizer) and matched (ANDed) with a one bit representation of the signal. A
less desirable property is the dependence of the sign detector’s performance on the signal waveform. A signal
having a few dominant peak values may be less frequently detected than an equal energy one having a more
constant envelope. As the following example demonstrates, the loss in performance compared to a detector
specially tailored to the signal and noise properties can be small.

Example
Let the signal to be detected be a sinusoid having, for simplicity, an integer number of cycles within
the L observations [s(`) =

√
2E/Lsin(2π fo`)]. Setting a false alarm probability of 0.01 results in a

threshold value of γ = 1.16
√

L+L/2. Fig. 5.13 {179} depicts the probability of detection for various
signal-to-noise ratios when the case fo = 0.1 and L = 100. The loss in performance compared to the
matched filter is small—approximately 3 dB!

5.6.9 Type-based detection

Perhaps the ultimate non-parametric detector makes no assumptions about the observations’ probability dis-
tribution under either model. Here, we assume that data representative of each model are available to train
the detection algorithm. One approach uses artificial neural networks, which are difficult to analyze in terms
of both optimality and performance. When the observations are discrete-valued, a provably optimal detection
algorithm [39] can be derived using the theory of types {121}.

For a two-model evaluation problem, let X̃ (length L̃) denote training data representative of some unknown
probability distribution P. We assume that the data have statistically independent components. To derive a
non-parametric detector, form a generalized likelihood ratio to distinguish whether a set of observations X
(length L) has the same distribution as the training data or a different one Q.

logΛ(X) = log
maxP,Q P(X)Q(X̃)

maxP P(X)P(X̃)

Because a type is the maximum likelihood estimate of the probability distribution {122}, we simply substitute
types for the training data and observations probability distributions into the likelihood ratio. The probability
of a set of observations having a probability distribution identical to its type equals e−LH (P̂). Thus, the log
likelihood ratio becomes

logΛ(X) = log
e−LH (P̂X )e−L̃H (P̂X̃ )

e−(L+L̃)H (P̂X ,X̃ )
.

The denominator term means that the training and observed data are lumped together to form a type. This
type equals the linear combination of the types for the training and observed data weighted by their relative
lengths.

P̂X ,X̃ =
LP̂X + L̃P̂X̃

L+ L̃
Returning to the log likelihood ratio, we have that

logΛ(X) =−LH (P̂X )− L̃H (P̂X̃ )+(L+ L̃)H

(
LP̂X + L̃P̂X̃

L+ L̃

)
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Note that the last term equals

(L+ L̃)H

(
LP̂X + L̃P̂X̃

L+ L̃

)
=−∑

a

[
LP̂X (a)+ L̃P̂X̃ (a)

]
log

LP̂X (a)+ L̃P̂X̃ (a)
L+ L̃

,

which means it can be combined with the other terms to yield the simple expression for the log likelihood
ratio.

logΛ(X) = LD(P̂X‖P̂X ,X̃ )+ L̃D(P̂X̃‖P̂X ,X̃ )

When the training data and the observed data are drawn from the same distribution, the Kullback-Leibler
distances will be small. When the distributions differ, the distances will be larger. Defining M0 to be the
model that the training data and observations have the same distribution and M1 that they don’t, Gutman [39]
showed that when we use the decision rule

1
L

logΛ(X)
M1
>
<

M0
γ ,

its false-alarm probability has an exponential rate at least as large as the threshold and the miss probability is
the smallest among all decision rules based on training data.

lim
L→∞

1
L

logPF ≤−γ and PM minimum

We can extend these results to the K-model case if we have training data X̃i (each of length L̃) that represent
model Mi, i = 0, . . . ,K−1. Given observed data X (length L), we calculate the log likelihood function given
above for each model to determine whether the observations closely resemble the tested training data or not.
More precisely, define the sufficient statistics ϒi according to

ϒi = D(P̂X‖P̂X ,X̃i
)+

L̃
L

D(P̂X̃‖P̂X ,X̃i
)− γ .

Ideally, this statistic would be negative for one of the training sets (matching it) and positive for all of the
others (not matching them). However, we could also have the observation matching more than one training
set. In all such cases, we define a rejection region ℜ? similar to what we defined in sequential model eval-
uation 5.2 {158}. Thus, we define the ith decision region ℜi according to ϒi < 0 and ϒ j > 0, j 6= i and the
rejection region as the complement of

⋃K−1
i=0 ℜi. Note that all decision regions depend on the value of γ , a

number we must choose. Regardless of the value chosen, the probability of confusing models choosing
some model other than the true one has an exponential rate that is at least γ for all models. Because of
the presence of a rejection region, another kind of “error” is to not choose any model. This decision rule
is optimal in the sense that no other training-data-based decision rule has a smaller rejection region that the
type-based one.

Because it controls the exponential rate of confusing models, we would like γ to be as large as possible.
However, the rejection region grows as γ increases; choosing too large a value could make virtually all deci-
sions rejections. What we want to ensure is that limL→∞ Pr[ℜ?|Mi] = 0. Obtaining this behavior requires that
limL→∞

L̃
L > 0: As the length of the observations increases, so must the size of the training set. In summary,

If lim
L→∞

L̃
L

=0 or γ > γ0 =⇒ lim
L→∞

Pr[ℜ?|Mi] = 1, for some i

If lim
L→∞

L̃
L

>0 and γ < γ0 =⇒ lim
L→∞

1
L

Pr[ℜ?|Mi]≤−β < 0,∀i

The critical value γ0 depends on the true distributions underlying the models. The exponential rate of the
rejection probability β also depends on the true distributions. These results mean that if sufficient training
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data are available and the decision threshold is not too large, then we can perform optimal detection based
entirely on data! As the number of observations increases (and the amount of training data ae well), the
critical threshold γ0 becomes the Kullback-Leibler distance between the unknown models. In other works,
the type-based detector becomes optimal!

Problems
5.1 Consider the following two-model evaluation problem [87: Prob. 2.2.1].

M0 : X = N

M1 : X = s+N,

where s and N are statistically independent, positively valued, random variables having the densities

ps(s) = ae−as and pN(N) = be−bN .

(a) Prove that the likelihood ratio test reduces to

X
M1
>
<

M0
γ

(b) Find γ for the minimum probability of error test as a function of the a priori probabilities.
(c) Now assume that we need a Neyman-Pearson test. Find γ as a function PF , the false-alarm prob-

ability.

5.2 Two models describe different equi-variance statistical models for the observations [87: Prob. 2.2.11].

M0 : pX (X) =
1√
2

e−
√

2|X |

M1 : pX (X) =
1√
2π

e−
1
2 X2

(a) Find the likelihood ratio.
(b) Compute the decision regions for various values of the threshold in the likelihood ratio test.
(c) Assuming these two densities are equally likely, find the probability of making an error in distin-

guishing between them.

5.3 Cautious Decision Making
Wanting to be very cautious before making a decision, an ELEC 531 student wants to explicitly allow
no decision to be made if the data don’t warrant a “firm” decision. The Bayes cost criterion is used
to derive the cautious detector. Let the cost of a wrong decision be Cwd > 0, the cost of making no
decision be C? > 0 and the cost of making a correct decision be zero. Two signal models are possible
and they have a priori probabilities π0 and π1.

(a) Derive the detector that minimizes the average Bayes cost, showing that it is a likelihood ratio
detector.

(b) For what choices of Cwd and C? is the decision rule well-defined?
(c) Let the observations consist of L samples, with model 0 corresponding to white Gaussian noise

and model 1 corresponding to a known signal in additive white Gaussian noise. Find the decision
rule in terms the sufficient statistic.

5.4 A hypothesis testing criterion radically different from those discussed in §5.1.1 and §5.1.2 is minimum
equivocation. In this information theoretic approach, the two-model testing problem is modeled as a
digital channel (Fig. 5.24). The channel’s inputs, generically represented by the x, are the models and
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Figure 5.24: The two-model testing problem can be abstractly
described as a communication channel where the inputs are the
models and the outputs are the decisions. The transition prob-
abilities are related to the false-alarm (PF ) and detection (PD)
probabilities.
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the channel’s outputs, denoted by y, are the decisions.
The quality of such information theoretic channels is quantified by the mutual information I(x;y) de-
fined to be difference between the entropy of the inputs and the equivocation [23: §2.3, 2.4].

I(x;y) = H(x)−H(x|y)

H(x) =−∑
i

P(xi) logP(xi)

H(x|y) =−∑
i, j

P(xi,y j) log
P(xi,y j)

P(y j)

Here, P(xi) denotes the a priori probabilities, P(y j) the output probabilities, and P(xi,y j) the
joint probability of input xi resulting in output y j. For example, P(x0,y0) = P(x0)(1−PF) and
P(y0) = P(x0)(1−PF)+P(x1)(1−PD). For a fixed set of a priori probabilities, show that the deci-
sion rule that maximizes the mutual information is the likelihood ratio test. What is the threshold when
this criterion is employed?

Note: This problem is relatively difficult. The key to its solution is to exploit the concavity of the
entropy function.

5.5 Detection and Estimation Working Together
Detectors are frequently used to determine if a signal is even present before applying estimators to tease
out the signal. The same, but unknown signal having duration L may or may not be present in additive
white Gaussian noise during the ith observation interval, i = 1, . . . .

M0 : Ri = Ni

M1 : Ri = s+Ni

π0, π1 denote the a priori probabilities. Once M intervals have been determined by the front-end
detector to contain a signal, we apply the maximum likelihood estimator to measure the signal.

(a) What is the maximum likelihood signal estimate?
(b) What is the front-end detector’s algorithm?
(c) Even if we use an optimal front-end detector, it can make errors, saying a signal is present when it

isn’t. What is the mean-squared error of the combined detector-estimator in terms of the detector’s
detection and false-alarm probabilities?

5.6 Non-Gaussian statistical models sometimes yield surprising results in comparison to Gaussian ones.
Consider the following hypothesis testing problem where the observations have a Laplacian probability
distribution.

M0 : pX (X) =
1
2

e−|X +m|

M1 : pX (X) =
1
2

e−|X−m|
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(a) Find the sufficient statistic for the optimal decision rule.

(b) What decision rule guarantees that the miss probability will be less than 0.1?

5.7 Developing a Neyman-Pearson decision rule for more than two models has not been detailed because
a mathematical quandry arises. The issue is that we have several performance probabilities we want
to optimize. In essence, we are optimizing a vector of performance probabilities, which requires us to
specify a norm. Many norms can be chosen; we select one in this problem.
Assume K distinct models are required to account for the observations. We seek to maximize the sum
of the probabilities of correctly announcing Mi, i = 1, . . . ,K. This choice amounts to maximizing the
L1 norm of the detection probabilities. We constrain the probability of announcing Mi when model M0
was indeed true to not exceed a specified value.

(a) Formulate the optimization problem that simultaneously maximizes ∑i′ Pr[say Mi|Mi] under the
constraint Pr[say Mi|M0]≤ αi. Find the solution using Lagrange multipliers.

(b) Can you find the Lagrange multipliers?

(c) Can your solution can be expressed as choosing the largest of the sufficient statistics ϒi(X)+Ci?

5.8 Pattern recognition relies heavily on ideas derived from the principles of statistical model testing.
Measurements are made of a test object and these are compared with those of “standard” objects to
determine which the test object most closely resembles. Assume that the measurement vector X is
jointly Gaussian with mean mi (i = 1, . . . ,K) and covariance matrix σ2I (i.e., statistically independent
components). Thus, there are K possible objects, each having an “ideal” measurement vector mi and
probability πi of being present.

(a) How is the minimum probability of error choice of object determined from the observation of X?

(b) Assuming that only two equally likely objects are possible (K = 2), what is the probability of error
of your decision rule?

(c) The expense of making measurements is always a practical consideration. Assuming each mea-
surement costs the same to perform, how would you determine the effectiveness of a measurement
vector’s component?

5.9 Define y to be

y =
L

∑
k=0

xk

where the xk are statistically independent random variables, each having a Gaussian density N (0,σ2).
The number L of variables in the sum is a random variable with a Poisson distribution.

Pr[L = l] =
λ l

l!
e−λ , l = 0,1, . . .

Based upon the observation of y, we want to decide whether L ≤ 1 or L > 1. Write an expression for
the minimum Pe likelihood ratio test.

5.10 One observation of the random variable X is obtained. This random variable is either uniformly dis-
tributed between−1 and +1 or expressed as the sum of statistically independent random variables, each
of which is also uniformly distributed between −1 and +1.

(a) Suppose there are two terms in the aforementioned sum. Assuming that the two models are equally
likely, find the minimum probability of error decision rule.

(b) Compute the resulting probability of error of your decision rule.

(c) Show that the decision rule found in part (a) applies no matter how many terms are assumed
present in the sum.
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5.11 The observed random variable X has a Gaussian density on each of five models.

pX |Mi(X |Mi) =
1√

2πσ
exp
{
− (X−mi)2

2σ2

}
, i = 1,2, . . . ,5

where m1 =−2m, m2 =−m, m3 = 0, m4 = +m, and m5 = +2m. The models are equally likely and the
criterion of the test is to minimize Pe.

(a) Draw the decision regions on the X-axis.

(b) Compute the probability of error.

(c) Let σ = 1. Sketch accurately Pe as a function of m.

5.12 The goal is to choose which of the following four models is true upon the reception of the three-
dimensional vector X [87: Prob. 2.6.6].

M0 : X = m0 +N
M1 : X = m1 +N
M2 : X = m2 +N
M3 : X = m3 +N

where

m0 =

 a
0
b

 , m1 =

 0
a
b

 , m2 =

 −a
0
b

 , m3 =

 0
−a
b

 .

The noise vector N is a Gaussian random vector having statistically independent, identically distributed
components, each of which has zero mean and variance σ2. We have L independent observations of the
received vector X.

(a) Assuming equally likely models, find the minimum Pe decision rule.

(b) Calculate the resulting error probability.

(c) Show that neither the decision rule nor the probability of error do not depend on b. Intuitively,
why is this fact true?

5.13 Discrete Estimation
Estimation theory focuses on deriving effective (minimum error) techniques for determining the value
of continuous-valued quantities. When the quantity is discrete-valued (integer-valued, for example),
the usual approaches don’t work well since they usually produce estimates not in the set of known
values. This problem explores applying decision-theoretic approaches to yield a framework for discrete
estimation.
Let’s explore a specific example. Let a sequence of statistically independent, identically distributed
observations be Gaussian having mean m and variance σ2. The mean m can only assume the values
−1, 0, and 1, and these are equally likely. The mean, whatever its value, is constant throughout the L
observations.

(a) What is the minimum probability of error decision rule? What is the resulting probability of error?

(b) What is the MAP estimate of the mean?

(c) The problem with using the detection approach of part (a) is that the probability of error is not a
standard error metric in estimation theory. Suppose we want to find the minimum mean-squared
error, discrete-valued estimate. Show that by defining an appropriate Bayes cost function, you
can create a detection problem that minimizes the mean-squared error. What is the Bayes cost
function that works?

(d) Find the minimum mean-squared error estimate using the minimum Bayes cost detector.
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(e) What is the resulting mean-squared error?

5.14 Diversity Communication
In diversity signaling, one of two equally likely signal groups is transmitted, with each member sm of
the group {s1,s2, . . . ,sM} sent through one of M parallel channels simultaneously. The receiver has
access to all channels and can use them to make a decision as to which signal group was transmitted.
The received vector (dimension L) emerging from the mth channel has the form

Xm = s(i)
m +Nm, i = 0,1

The noise is colored, Gaussian, and independent from channel to channel. The statistical properties of
the noise are known and they are the same in each channel.

+

N1
+

N2

+

NM
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s2
(i)

sM
(i)

Transmitter

s1
(i)

R1

R2
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(a) What is the optimal diversity receiver?

In an endeavor to make communications secure, bright engineers decide to modify the usual diversity
signaling scenario. Rather than send signals down each channel, only one channel will be used for
each transmission, with the chosen channel selected randomly from transmission to transmission. The
identity of the used channel is kept secret, even from the receiver. In essence, each group now mostly
consists of zero-valued signals save for the one sm the transmitter chose. The receiver has access to all
channels and must determine which of the signal groups was sent. In this scenario, the channel actually
used contains no information about the signal group.

(b) How would the receiver determine which channel was used?

(c) What is the optimal decision rule?

5.15 Color Image Detection
We acquire color images, which are formatted as a vector having three components that express the
component images in red, green and blue.

X =

 r
g
b


Each color component in this expression is derived from the image (an image amounts to a matrix) by
vectorizing it, thereby representing each color component as a column vector. Each color component—
r, g, b—is described as a Gaussian random vector having a positive-valued mean and a covariance. The
covariance matrices for the components equal each other; furthermore, the components are correlated
with each other, each pair having the same cross-covariance matrix.
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(a) Suppose we want to determine if one of two nominal images is the observed image. The two
images have the same covariance matrices but different means. Assuming the images are equally
likely, what is the minimum probability of error decision rule?

(b) How well will the decision rule work?

(c) I.M. Cheap wants to simplify the decision system by using grayscale images. The grayscale
version of X equals r+g+b. What is the optimal decision rule that uses grayscale images?

(d) Do you expect the grayscale system to perform better or worse than the color-based one? Why?

5.16 To gain some appreciation of some of the issues in implementing a detector, this problem asks you
to program (preferably in MATLAB) a simple detector and numerically compare its performance with
theoretical predictions. Let the observations consist of a signal contained in additive Gaussian white
noise.

M0 : X(`) = N(`), ` = 0, . . . ,L−1

M1 : X = Asin(2π`/L)+N(`), ` = 0, . . . ,L−1

The variance of each noise value equals σ2.

(a) What is the theoretical false-alarm probability of the minimum Pe detector when the hypotheses
are equally likely?

(b) Write a MATLAB program that estimates the false-alarm probability. How many simulation trials
are needed to accurately estimate the false-alarm probability? Choose values for A and σ2 that
will result in values for PF of 0.1 and 0.01. Estimate the false-alarm probability and compare with
the theoretical value in each case.

5.17 The Kullback-Leibler and Chernoff distances can be related to the Fisher information matrix defined
in (4.1) {60}. Let pX;θθθ (X;θθθ) be a probability density that depends on the parameter vector θθθ . We want
to consider the distance between probability densities that differ by a perturbation δδδθθθ in their parameter
vectors.

(a) Show that Ali-Silvey distances, defined in appendix C {237}, have the property

∂ 2d(pX;θθθ , pX;θθθ 0)
∂θi∂θ j

∣∣∣∣∣
θθθ=θθθ 0

∝ [F(θθθ 0)]i, j

Here, d(pX;θθθ , pX;θθθ 0) = f
(∫

pX;θθθ c
( pX;θθθ0

pX;θθθ

)
dX
)

, where f (·) is non-decreasing and c(·) is convex.
What is the constant of proportionality?

(b) Using this result, show that

D(pX;θθθ 0+δδδθθθ (X;θθθ 0 +δδδθθθ)‖pX;θθθ 0(X;θθθ 0)) ∝ (δδδθθθ)′F(θθθ 0)δδδθθθ for small δδδθθθ .

What is the constant of proportionality?

(c) Despite the Chernoff distance not belonging to the Ali-Silvey class, it has the property studied in
part (a). Show that this statement is true and find the constant of proportionality.

5.18 Calculate the Kullback-Leibler distance between the following pairs of densities.

(a) Jointly Gaussian random vectors having the same covariance matrix but dissimilar mean vectors.

(b) Two Poisson random variables having average rates λ0 and λ1. In this example, the observation
time T plays the role of the number of observations.

(c) Two sequences of statistically independent Laplacian random variables having the same variance
but different means.
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(d) Plot the Kullback-Leibler distances for the Laplacian case and for the Gaussian case of statistically
independent random variables. Let the difference between the means be m and set the variance
equal to σ2 in each case. Plot the distances as a function of m/σ .

(e) Use these results to find the Fisher information for the mean parameter m for the Gaussian and
Laplacian cases.

5.19 Insights into certain detection problems can be gained by examining the Kullback-Leibler distance and
the properties of Fisher information. We begin by first showing that the Gaussian distribution has the
smallest Fisher information for the mean parameter for all differentiable distributions having the same
variance.

(a) Show that if f (t) and g(t) are linear functions of t and g(t) is positive for 0 < t < 1, then the ratio
[ f (t)]2/g(t) is convex over this interval.

(b) Use this property to show that the Fisher information is a convex function of the probability
density.

(c) Define pt(x;θ) = (1− t)p0(x;θ)+ t p1(x;θ), 0 ≤ t ≤ 1, where p0(x;θ), p1(x;θ) ∈P , a class of
densities having variance one. Show that this set is convex.

(d) Because of the Fisher information’s convexity, a given distribution p0(x|θ) ∈P minimizes the
Fisher information if and only if d

dt Ft ≥ 0 at t = 0 for all p1(x|θ) ∈P . Let the parameter be
the expected value of all densities in P . By using Lagrange multipliers to impose the constant
variance constraint on all densities in the class, show that the Gaussian uniquely minimizes Fisher
information.

(e) What does this result suggest about the performance probabilities for problems wherein the mod-
els differ in mean?

5.20 Find the Chernoff distance between the following distributions.

(a) Two Gaussian distributions having the same variance but different means.

(b) Two Poisson distributions having differing parameter values.

5.21 Let’s explore how well Stein’s Lemma predicts optimal detector performance probabilities. Consider
the two-model detection problem wherein L statistically independent, identically distributed Gaussian
random variables are observed. Under M0, the mean is zero and the variance one; under M1, the mean
is one and the variance one.

(a) Find an expression for the false-alarm probability PF when the miss probability is constrained to
be less than α .

(b) Find the Kullback-Leibler distance corresponding to the false-alarm probability’s exponent.

(c) Plot the exact error for values of α = 0.1 and 0.01 as a function of the number of observations.
Plot on the same axes the result predicted by Stein’s Lemma.

5.22 We observe a Gaussian random variable X . This random variable has zero mean under model M0 and
mean m under M1. The variance of X in either instance is σ2. The models are equally likely.

(a) What is an expression for the probability of error for the minimum Pe test when one observation
of X is made?

(b) Assume one can perform statistically independent observations of X . Construct a sequential deci-
sion rule which results in a Pe equal to one-half of that found in part (a).

(c) What is the sufficient statistic in part (b) and sketch how the thresholds for this statistic vary with
the number of trials. Assume that m = 10 and that σ = 1. What is the expected number of trials
for the sequential test to terminate?
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Figure 5.25: A binary symmetric digital communications chan-
nel.

“0” sent
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“0” received

“1” received
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5.23 Sequential Null-Hypothesis Testing
You are provided with a sequence of statistically independent, identically distributed observations. Your
boss wants you to determine if the data conform to a specific probabilistic model or not. Because
making a decision quickly is important, you decide to use a sequential approach.
Because the standard sequential approach places criteria on PF , the probability of saying the model
applies when it doesn’t, and PD, the probability you say the model applies when it does, an issue arises
immediately: PF cannot be defined because no explicit alternative model exists. Instead, you decide to
place constraints on PD and PM , the probability you say the model doesn’t apply when it does.

(a) Are there restrictions on the values of PD = α and PM = β that can be used as specifications?
(b) For specified values of α and β , what is the resulting sequential decision rule?
(c) Explicitly derive the sequential test when the nominal model for each observation is a zero-mean

Gaussian random variable having unit variance.

5.24 Drug Testing
In testing drugs, the variability among patients makes judging effectiveness difficult, but not impossible.
The number of people N a drug cures has a geometric probability distribution.

Pr[N = n] = (1−a)an, n = 0,1, . . .

You perform a drug trial over a very large population (large enough so that the approximation of the
geometric probability distribution remains valid). Either the drug is ineffective, in which case the
distribution’s parameter equals a0, or is effective and the parameter equals a∗, a∗ > a0. The a priori
probability that the drug will be effective is π∗.

(a) Construct the minimum probability of error test that decides drug effectiveness.
(b) What is the probability of error the test will achieve?
(c) Now suppose the drug trial is repeated in several countries, each of which has a large population.

Because conducting such tests is expensive, you want a test that will reach a conclusion as quickly
as possible. Find a test that will achieve false-positive and false-negative rates of α and 1−β ,
respectively, as quickly as possible.

5.25 The optimum reception of binary information can be viewed as a model testing problem. Here, equally-
likely binary data (a “zero” or a “one”) is transmitted through a binary symmetric channel. The indi-
cated parameters denote the probabilities of receiving a binary digit given that a particular digit was
sent. Assume that ε = 0.1.

(a) Assuming a single transmission for each digit, what is the minimum probability of error receiver
and what is the resulting probability of error?

(b) One method of improving the probability of error is to repeat the digit to be transmitted L times.
This transmission scheme is equivalent to the so-called repetition code. The receiver uses all
of the received L digits to decide what digit was actually sent. Assume that the results of each
transmission are statistically independent of all others. Construct the minimum probability of
error receiver and find an expression for Pe in terms of L.



Chap. 5 Problems 209

(c) Assume that we desire the probability of error to be 10−6. How long a repetition code is required
to achieve this goal for the channel given above? Assume that the leading term in the probability
of error expression found in part (b) dominates.

(d) Construct a sequential algorithm which achieves the required probability of error. Assume that
the transmitter will repeat each digit until informed by the receiver that it has determined what
digit was sent. What is the expected length of the repetition code in this instance?

5.26 Drug Testing
In testing drugs, the variability among patients makes judging effectiveness difficult, but not impossible.
The number of people N a drug cures has a geometric probability distribution.

Pr[N = n] = (1−a)an, n = 0,1, . . .

You perform a drug trial over a very large population (large enough so that the approximation of the
geometric probability distribution remains valid). Either the drug is ineffective, in which case the
distribution’s parameter equals a0, or is effective and the parameter equals a∗, a∗ > a0. The a priori
probability that the drug will be effective is π∗.

(a) Construct the minimum probability of error test that decides drug effectiveness.
(b) What is the probability of error the test will achieve?
(c) Now suppose the drug trial is repeated in several countries, each of which has a large population.

Because conducting such tests is expensive, you want a test that will reach a conclusion as quickly
as possible. Find a test that will achieve false-positive and false-negative rates of α and 1−β ,
respectively, as quickly as possible.

5.27 Maybe It’s There, Maybe Not. . .
You are provided with M examples of a length-L unknown but unit-energy signal measured in the
presence of additive white Gaussian noise. The problem is that the signal may or not be present in
each example: the probability the signal is present in each example is p. The noise components in each
example are statistically independent of each other.

(a) Suppose for a moment that the signal is known. What procedure would you use to test whether a
single example contained a signal or not?

(b) Assume you don’t know p and you know the signal. What equation would need to be solved to
find the maximum likelihood estimate of p?

(c) Assuming the signal is not known, find the best linear estimate of the signal assuming you know
p.

5.28 Unknown DC Offset
We want to detect the presence or absence of a signal in noise which could be contaminated by a
constant offset.

M0 : X(`) = c+N`

M1 : X(`) = c+ s(`)+N`

The noise N` is white Gaussian noise. The signal s(`) is known and has an average value over the
observation interval [0,L−1] of zero.

L−1

∑
`=0

s(`) = 0

The signal is as likely to be present as not.

(a) If the offset c is known, what is the minimum probability of error detector?
(b) Suppose the offset is not known. Find the minimum probability of error detector, noting how the

unknown offset affects the detector.
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(c) Assuming equally likely models and an unknown offset, find the smallest possible value for the
probability of error.

5.29 Life-Saving Decision Rule
You have accepted the (dangerous) job of determining whether the radioactivity levels at the Chernobyl
reactor are elevated or not. Because you want to stay as short a time as possible to render your profes-
sional opinion, you decide to use a sequential-like decision rule. Radioactivity is governed by Poisson
probability laws, which means that the probability that n counts are observed in T seconds equals

Pr[n] =
(λT )ne−λT

n!
,

where λ is the radiation intensity. Safe radioactivity levels occur when λ = λ0 and unsafe ones at
λ = λ1, λ1 > λ0.

(a) Construct a sequential decision rule to determine whether it is safe or not. Assume you have
defined false-alarm and miss probabilities according to accepted “professional standards.” Ac-
cording to these standards, these probabilities equal each other.

(b) What is the expected time it will take to render a decision?

5.30 Sequential tests can be used to advantage in situations where analytic difficulties obscure the problem.
Consider the case where the observations either contain no signal (M0) or a signal whose components
are randomly set to zero.

M0 : Xl = Nl

M1 : Xl = Nl +alsl , al =

{
1, Prob = p
0, Prob = 1− p

The probability that a signal value remains intact is a known quantity p and “drop-outs” are statistically
independent of each other and of the noise. This kind of model is often used to describe intermittent
behavior in electronic equipment.

(a) Find the likelihood ratio for the observations.

(b) Develop a sequential test that would determine whether a signal is present or not.

(c) Find a formula for the test’s thresholds in terms of PF and PD.

(d) How does the average number of observations vary with p?

5.31 In some cases it might be wise to not make a decision when the data do not justify it. Thus, in addition to
declaring that one of two models occurred, we might declare “no decision” when the data are indecisive.
Assume you observe L statistically independent observations Xl , each of which is Gaussian and has a
variance of two. Under one model the mean is zero, and under the other the mean is one. The models
are equally likely to occur.

(a) Construct a hypothesis testing rule that yields a probability of no-decision no larger than some
specified value α , maximizes the probabilities of making correct decisions when they are made,
and makes these correct-decision probabilities equal.

(b) What is the probability of a correct decision for your rule?

5.32 You decide to flip coins with Sleazy Sam. If heads is the result of a coin flip, you win one dollar; if
tails, Sam wins a dollar. However, Sam’s reputation has preceded him. You suspect that the probability
of tails, p, may not be 1/2. You want to determine whether a biased coin is being used or not after
observing the results of three coin tosses.

(a) You suspect that p = 3/4. Assuming that the probability of a biased coin equals that of an unbiased
coin, how would you decide whether a biased coin is being used or not in a “good” fashion?
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(b) Using your decision rule, what is the probability that your determination is incorrect?
(c) One potential flaw with your decision rule is that a specific value of p was assumed. Can a

reasonable decision rule be developed without knowing p? If so, demonstrate the rule; if not,
show why not.

5.33 When a patient is screened for the presence of a disease in an organ, a section of tissue is viewed under
a microscope and a count of abnormal cells made. Even under healthy conditions, a small number
of abnormal cells will be present. Presumably a much larger number will be present if the organ is
diseased. Assume that the number L of abnormal cells in a section is geometrically distributed.

Pr[L = l] = (1−α)α l , l = 0,1, . . .

The parameter α of a diseased organ will be larger than that of a healthy one. The probability of a
randomly selected organ being diseased is p.

(a) Assuming that the value of the parameter α is known in each situation, find the best method of
deciding whether an organ is diseased.

(b) Using your method, a patient was said to have a diseased organ. In this case, what is the probability
that the organ is diseased?

(c) Assume that α is known only for healthy organs. Find the disease screening method that mini-
mizes the maximum possible value of the probability that the screening method will be in error.

5.34 How can the standard sequential test be extended to unknown parameter situations? Formulate the
theory, determine the formulas for the thresholds. How would you approach finding the average number
of observations?

5.35 A common situation in statistical signal processing problems is that the variance of the observations is
unknown (there is no reason that noise should be nice to us!). Consider the two Gaussian model testing
problem where the model differ in their means and have a common, but unknown variance.

M0 : X∼N (0, σ2I)
M1 : X∼N (m, σ2I) σ

2 =?

(a) Show that the unknown variance enters into the optimum decision only in the threshold term.
(b) In the (happy) situation where the threshold η equals one, show that the optimum test does not

depend on σ2 and that we did not need to know its value in the first place. When will η equal
one?

5.36 Unknown Phase Detection
Suppose the received signal consists of a sinusoid in colored Gaussian noise.

M0 : X` = Asin(2π f0l +φ)+N`

M1 : X` = Asin(2π f1l +φ)+N`

where ` = 0, . . . ,L− 1. The frequencies, which are distinct and equal integer multiples of 1/L, are
known by the receiver but the amplitude and the phase are not. The sinusoids are equally likely to
occur.

(a) Derive a receiver for this situation.
(b) What is the optimal choice for the frequencies?

5.37 Phase Déja Vu
There are occasions when the phase is not uniform and we need to test for this occurrence. Assume that
the probability density function of the phase has the form

pΘ(θ) =
1

2πI0(a)
eacos(θ−θ0) , 0≤ θ < 2π, a≥ 0

Here, I0(a) is the modified Bessel function of the first kind, order zero, which serves to normalize the
expression so that we have a density. θ0 is a known phase offset.
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(a) Develop a procedure for testing whether a single phase measurement has a uniform distribution
or not that does not depend on knowing the value of a.

(b) Find an expression for your test’s threshold.

5.38 Interference
Wireless communication seldomly occurs without the presence of interference that originates from
other communications signals. Suppose a binary communication system uses the antipodal signal set
si(l) = (−1)i+1A, l = 0, . . . ,L− 1, with i = 0,1. An interfering communication system also uses an
antipodal signal set having the depicted basic signal. Its amplitude AI is unknown. The received signal
consists of the sum of our signal, the interfering signal, and white Gaussian noise.

AI

ÐAI

L/2 L
l

(a) What receiver would be used if the bit intervals of the two communication systems were aligned?
(b) How would this receiver change if the bit intervals did not align, with the time shift not known?

Assume that the receiver knows the time origin of our communications.

5.39 Consider the following composite hypothesis testing problem [87: Prob. 2.5.2].

M0 : pX (X) =
1√

2πσ0
exp
{
− X2

2σ2
0

}
M1 : pX (X) =

1√
2πσ1

exp
{
− X2

2σ2
1

}
where σ0 is known but σ1 is known only to be greater then σ0. Assume that we require that PF = 10−2.

(a) Does an UMP test exist for this problem? If it does, find it.
(b) Construct a generalized likelihood ratio test for this problem. Under what conditions can the

requirement on the false-alarm probability be met?

5.40 Assume we have N sensors each determining whether a signal is present in white Gaussian noise or
not. The identical signal and noise models apply at each sensor, with the signal having energy E.

(a) What is each sensor’s receiver?
(b) Assuming the signal is as likely as not, what is the optimal fusion rule?
(c) Does this distributed detection system yield the same error probabilities as the optimal detector

that assimilates all the observations directly?

5.41 Data are often processed “in the field,” with the results from several systems sent a central place for
final analysis. Consider a detection system wherein each of N field radar systems detects the presence
or absence of an airplane. The detection results are collected together so that a final judgment about the
airplane’s presence can be made. Assume each field system has false-alarm and detection probabilities
PF and PD respectively.

(a) Find the optimal detection strategy for making a final determination that maximizes the probability
of making a correct decision. Assume that the a priori probabilities π0, π1 of the airplane’s
absence or presence, respectively, are known.

(b) How does the airplane detection system change when the a priori probabilities are not known?
Require that the central judgment have a false-alarm probability no bigger than (PF)N .
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5.42 Mathematically, a preconception is a model for the “world” that you believe applies over a broad class
of circumstances. Clearly, you should be vigilant and continually judge your assumption’s correctness.
Let {X`} denote a sequence of random variables that you believe to be independent and identically
distributed with a Gaussian distribution having zero mean and variance σ2. Elements of this sequence
arrive one after the other, and you decide to use the sample average M` as a test statistic.

M` =
1
`

`

∑
i=1

Xi

(a) Based on the sample average, develop a procedure that tests for each ` whether the preconceived
model is correct. This test should be designed so that it continually monitors the validity of the
assumptions, and indicates at each ` whether the preconception is valid or not. Establish this test
so that it yield a constant probability of judging the model incorrect when, in fact, it is actually
valid.

(b) To judge the efficacy of this test, assume the elements of the actual sequence have the assumed
distribution, but that they are correlated with correlation coefficient ρ . Determine the probability
(as a function of `) that your test correctly invalidates the preconception.

(c) Is the test based on the sample average optimal? If so, prove it so; if not, find the optimal one.

5.43 Cars on a Freeway
You have been assigned to develop a simple traffic alert system that warns when the flow of cars differs
from a nominal flow. The system measures the separation between cars, which is assumed to have an
exponential probability distribution.

pX (x) = λe−λx, x > 0

Assuming cars are all the same length, the parameter λ is inversely related to the car’s speed v. All
cars are assumed to travel at the same speed during any measurement session. Nominal conditions have
λ = λ0. We measure L intervals; if the common speed differs greatly from the nominal, the system is
to issue an alert.

(a) Of particular concern to commuters is when a traffic jam is occurring (i.e., λ > λ0). Develop an
alert system for this situation. In other words, find a sufficient statistic and determine how the
alert system would use it.

(b) For simplicity, assume L = 2. Find an expression for the threshold for an alert system that guar-
antees that the probability of a mistaken alert is less than 0.25.

(c) Construct a system that issues accurate alerts as soon as possible.

Note: If pX (X) = λe−λxu(x), the density of the sum of L statistically independent values is a gamma
density. Letting Y = ∑

L−1
`=0 X`,

pY (y) =
λ LyL−1e−λy

(L−1)!
u(y)

5.44 Assume that observations of a sinusoidal signal s(`) = Asin(2π f `), ` = 0, . . . ,L−1, are contaminated
by first-order colored noise as described in the example {176}.

(a) Find the unit-sample response of the whitening filter.

(b) Assuming that the alternative model is the sole presence of the colored Gaussian noise, what is
the probability of detection?

(c) How does this probability vary with signal frequency f when the first-order coefficient is positive?
Does your result make sense? Why?
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5.45 In space-time coding systems, a common bit stream is transmitted over several channels simultane-
ously but using different signals. X(k) denotes the signal received from the kth channel, k = 1, . . . ,K,
and the received signal equals s(k,i) + N(k). Here, i equals 0 or 1, corresponding to the bit being trans-
mitted. Each signal has length L. N(k) denotes a Gaussian random vector with statistically independent
components having mean zero and variance σ2

k (the variance depends on the channel).

(a) Assuming equally likely bit transmissions, find the minimum probability of error decision rule.
(b) What is the probability that your decision rule makes an error?
(c) Suppose each channel has its own decision rule, which is designed to yield the same miss proba-

bility as the others. Now what is the minimum probability of error decision rule of the system that
combines the individual decisions into one?

5.46 The performance for the optimal detector in white Gaussian noise problems depends only on the dis-
tance between the signals. Let’s confirm this result experimentally. Define the signal under one hy-
pothesis to be a unit-amplitude sinusoid having one cycle within the 50-sample observation interval.
Observations of this signal are contaminated by additive white Gaussian noise having variance equal to
1.5. The hypotheses are equally likely.

(a) Let the second hypothesis be a cosine of the same frequency. Calculate and estimate the detector’s
false-alarm probability.

(b) Now let the signals correspond to square-waves constructed from the sinusoids used in the pre-
vious part. Normalize them so that they have the same energy as the sinusoids. Calculate and
estimate the detector’s false-alarm probability.

(c) Now let the noise be Laplacian with variance 1.5. Although no analytic expression for the detector
performance can be found, do the simulated performances for the sinusoid and the square-wave
signals change significantly?

(d) Finally, let the second signal be the negative of the sinusoid. Repeat the calculations and the
simulation for Gaussian noise.

5.47 Physical constraints imposed on signals can change what signal set choices result in the best detection
performance. Let one of two equally likely discrete-time signals be observed in the presence of white
Gaussian noise (variance/sample equals σ2).

M0 : X(`) = s(0)(`)+N(`)

M1 : X(`) = s(1)(`)+N(`)
` = 0, . . . ,L−1

We are free to choose any signals we like, but there are constraints. Average signal power equals
∑` s2(`)/L, and peak power equals max` s2(`).

(a) Assuming the average signal power must be less than Pave, what are the optimal signal choices?
Is your answer unique?

(b) When the peak power Ppeak is constrained, what are the optimal signal choices?
(c) If Pave = Ppeak, which constraint yields the best detection performance?

5.48 In many signal detection problems, the signal itself is not known accurately; for example, the signal
could have been the result of a measurement, in which case the “signal” used to specify the observations
is actually the actual signal plus noise. We want to determine how the measurement noise affects the
detector.
The formal statement of the detection problem is

M0 : X(`) = s̃0(`)+N(`)
M1 : X(`) = s̃1(`)+N(`)

, ` = 0, . . . ,L−1,

where s̃i(`) equals si(`)+w(`), with w(`) and N(`) comprising white Gaussian noise having variances
σ2

w and σ2
N , respectively. We know precisely what the signals s̃i(`) are, but not the underlying “actual”

signal.
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(a) Find a detector for this problem.
(b) Analyze, as much as possible, how this detector is affected by the measurement noise, contrasting

its performance with that obtained when the signals are known precisely.

5.49 One of the more interesting problems in detection theory is determining when the probability distri-
bution of the observations differs from that in other portions of the observation interval. The most
common form of the problem is that over the interval [0,C), the observations have one form, and that in
the remainder of the observation interval [C,L−1] have a different probability distribution. The change
detection problem is to determine whether in fact a change has occurred and, if so, estimate when that
change occurs.
To explore the change detection problem, let’s explore the simple situation where the mean of white
Gaussian noise changes at the Cth sample.

M0 : X(`)∼N (0,σ2), ` = 0, . . . ,L−1

M1 : X(`)∼

{
N (0,σ2), ` = 0, . . . ,C−1
N (m,σ2), ` = C, . . . ,L−1

The observations in each case are statistically independent of the others.

(a) Find a detector for this change problem when m is a known positive number.
(b) Find an expression for the threshold in the detector using the Neyman-Pearson criterion.
(c) How does the detector change when the value of m is not known?

5.50 Noise generated by a system having zeros complicates the calculations for the colored noise detection
problem. To illustrate these difficulties, assume the observation noise is produced as the output of a
filter governed by the difference equation

N(`) = aN(`−1)+w(`)+bw(`−1), a 6=−b,

where w(`) is white, Gaussian noise. Assume an observation duration sufficiently long to capture the
colored effects.

(a) Find the covariance matrix of this noise process.
(b) Calculate the Cholesky factorization of the covariance matrix.
(c) Find the unit-sample response of the optimal detector’s whitening filter. If it weren’t for the finite

observation interval, would it indeed have an infinite-duration unit-sample response as claimed on
Page 177? Describe the edge-effects of your filter, contrasting them with the case when b = 0.

5.51 It is frequently claimed that the relation between noise bandwidth and reciprocal duration of the ob-
servation interval play a key role in determining whether DFT values are approximately uncorrelated.
While the statements sound plausible, their veracity should be checked. Let the covariance function of
the observation noise be KN(`) = a|`|.

(a) How is the bandwidth (defined by the half-power point) of this noise’s power spectrum related to
the parameter a? How is the duration (defined to be two time constants) of the covariance function
related to a?

(b) Find the variance of the length-L DFT of this noise process as a function of the frequency index
k. This result should be compared with the power spectrum calculated in part (a); they should
resemble each other when the “memory” of the noise—the duration of the covariance function—
is much less than L while demonstrating differences as the memory becomes comparable to or
exceeds L.

(c) Calculate the covariance between adjacent frequency indices. Under what conditions will they be
approximately uncorrelated? Relate your answer to the relations of a to L found in the previous
part.



216 Detection Theory Chap. 5

5.52 The results derived in Problem 5.51 assumed that a length-L Fourier Transform was computed from
a length-L segment of the noise process. What will happen if the transform has length 2L with the
observation interval remaining unchanged?

(a) Find the variance of DFT values at index k.

(b) Assuming the conditions in Problem 5.51 for uncorrelated adjacent samples, now what is the
correlation between adjacent DFT values?

sinusoids in noise. present. the frequencies of which are integer fractions of the number of observations:
sinusoids is present while ignoring the second? signal’s squared amplitude to the noise variance at the
frequency of the signal? the observations. the input.

5.53 In a discrete-time detection problem, one of two, equally likely, length-L sinusoids (each having a
frequency equal to a known multiple of 1/L) is observed in additive colored Gaussian noise. Signal
amplitudes are also unknown by the receiver. In addition, the power spectrum of the noise is uncertain:
what is known is that the noise power spectrum is broadband, and varies gently across frequency. Find a
detector that performs well for this problem. What notable properties (if any) does your receiver have?

5.54 A sampled signal is suspected of consisting of a periodic component and additive Gaussian noise. The
signal, if present, has a known period L. The number of samples equals N, a multiple of L. The noise
is white and has known variance σ2. A consultant (you!) has been asked to determine the signal’s
presence.

(a) Assuming the signal is a sinusoid with unknown phase and amplitude, what should be done to
determine the presence of the sinusoid so that a false-alarm probability criterion of 0.1 is met?

(b) Other than its periodic nature, now assume that the signal’s waveform is unknown. What compu-
tations must the optimum detector perform?

5.55 The QAM (Quadrature Amplitude Modulation) signal set consists of signals of the form

si(`) = Ac
i cos(2π fcl)+As

i sin(2π fcl) ,

where Ac
i and As

i are amplitudes that define each element of the signal set. These are chosen according
to design constraints. Assume the signals are observed in additive Gaussian noise.

(a) What is the optimal amplitude choice for the binary and quaternary (four-signal) signal sets when
the noise is white and the signal energy is constrained (∑l s2

i (`) < E)? Comment on the uniqueness
of your answers.

(b) Describe the optimal binary QAM signal set when the noise is colored.

(c) Now suppose the peak amplitude (maxl |si(`)|< Amax) is constrained. What are the optimal signal
sets (both binary and quaternary) for the white noise case? Again, comment on uniqueness.

5.56 I confess that unknown-delay problem given on Page 180 is not terribly relevant to active sonar and
radar ranging problems. In these cases, the signal’s delay, measured with respect to its emission by
a source, presents the round-trip propagation time from the source to the energy-reflecting object and
back. Hence, delay is proportional to twice the range. What makes the example overly simplistic is the
independence of signal amplitude on delay.

(a) Because of attenuation due to spherical propagation, show that the received signal energy is in-
versely related to the fourth power of the range. This result is known as the radar equation.

(b) Derive the detector that takes the dependence of delay and amplitude into account, thereby opti-
mally determining the presence of a signal in active radar/sonar applications, and produces a delay
estimate, thereby simultaneously providing the object’s range. Not only determine the detector’s
structure, but also how the threshold and false-alarm probability are related.

(c) Does the object’s reflectivity need to be known to implement your detector?
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5.57 Checking for Repetitions
Consider the following detection problem.

M0 :
X1 = s+N1

X2 = s+N2

M1 :
X1 = s1 +N1

X2 = s2 +N2

Here, the two observations either contain the same signal or they contain different ones. The noise
vectors N1 and N2 are statistically independent of each other and identically distributed, with each
being Gaussian with zero mean and covariance matrix K = σ2I.

(a) Find the decision rule that minimizes the false-alarm probability when the miss probability is
required to be less than 1−β .

(b) Now suppose none of the signals is known. All is that is known is that under M0, the signals
are the same and that under M1 they are different. What is the optimal decision rule under these
conditions?

5.58 CFAR detectors are extremely important in applications because they automatically adapt to the value of
noise variance during the observations, allowing them to be used in varying noise situations. However,
as described in Problem 5.56, unknown delays must be also considered in realistic problems.

(a) Derive a CFAR detector that also takes unknown signal delay into account.

(b) Show that your detector automatically incorporates amplitude uncertainties.

(c) Under the no-signal model, what is the distribution of the sufficient statistic?

5.59 A sampled signal is suspected of consisting of a periodic component and additive Gaussian noise. The
signal, if present, has a known period N. The number of samples equals L, a multiple of N. The noise
is white and has known variance σ2. A consultant (you!) has been asked to determine the signal’s
presence.

(a) Assuming the signal is a sinusoid with unknown phase and amplitude, what should be done to
determine the presence of the sinusoid so that a false-alarm probability criterion of 0.1 is met?

(b) Other than its periodic nature, now assume that the signal’s waveform is unknown. What compu-
tations must the optimum detector perform?

5.60 Delegating Responsibility
Modern management styles tend to want decisions to be made locally (by people at the scene) rather
than by “the boss.” While this approach might be considered more democratic, we should understand
how to make decisions under such organizational constraints and what the performance might be.
Let three “local” systems separately make observations. Each local system’s observations are identi-
cally distributed and statistically independent of the others, and based on the observations, each system
decides which of two models applies best. The judgments are relayed to the central manager who must
make the final decision. Assume the local observations consist either of white Gaussian noise or of a
signal having energy E to which the same white Gaussian noise has been added. The signal energy is
the same at each local system. Each local decision system must meet a performance standard on the
probability it declares the presence of a signal when none is present.

(a) What decision rule should each local system use?

(b) Assuming the observation models are equally likely, how should the central management make
its decision so as to minimize the probability of error?

(c) Is this decentralized decision system optimal (i.e., the probability of error for the final decision is
minimized)? If so, demonstrate optimality; if not, find the optimal system.
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5.61 The additive noise in a detection problem consists of a sequence of statistically independent Laplacian
random variables. The probability density of N(`) is therefore

pN(`)(N) =
1
2

e−|N|.

The two possible signals are constant throughout the observation interval, equaling either +1 or −1.

(a) Find the optimum decision rule which could be used on a single value of the observation signal.

(b) Find an expression for the threshold in your rule as a function of the false-alarm probability.

(c) What is the threshold value for the “symmetric” error situation (PF = 1−PD)?

(d) Now assume that two values of the observations are used in the detector (patience; to solve this
problem, we need to approach it gradually). What is the decision rule for symmetric errors? How
does this result generalize to L observations?

5.62 The threshold for non-parametric model evaluation is computed (somewhat glibly) on Page 193 using
the Central Limit Theorem. As warned in Chap. 2, such applications of the Central Limit Theorem
need to employed carefully.

(a) The critical parameters—E[u(x)] and var[u(x)]—of the Central Limit Theorem approximation are
claimed to equal 1

2 and 1
4 respectively under model M0. Verify this claim.

(b) How is the threshold in the non-parametric hypothesis test related to the number of observations
from the point of view of the Central Limit Theorem?

(c) Contrast this answer with that determined by the non-parametric test. Which constraint dominates
under what conditions?

(d) How many observations are needed in a non-parametric test to achieve a false-alarm rate of 10−2?
of 10−6?

5.63 What are the ranges of signal waveforms and probability density functions consistent with the appro-
priate model for uncertainty about a nominal?

(a) When considering waveform uncertainties (Page 194), the uncertainty was modeled as an ad-
ditive corrupting signal that has bounded energy. Assuming a sinusoidal nominal consisting of
eight samples per period, sketch the worst-case and best-case signals for the detection problem
described in the text.

(b) What other signals are consistent with this model? Do they fall within the envelopes of the best-
case and worst-case signals? If so prove it; if not, find a counter example and provide some
method of finding the others.

(c) The ε-contamination model for uncertain densities was somewhat different because we needed to
maintain unit area (Page 195). Characterize the range of densities consistent with this model.

5.64 In the partially known signal waveform problem discussed on Page 194, we assumed that there was no
uncertainty in the “no-signal” model M0. A residual signal corrupting the observations may well be
present no matter what signal model is actually true. For example, hum (power-line noise) could be
present no matter what signal is received.

(a) Re-derive the robust detector for the situation where a zero-energy signal and a non-zero energy
signal can both be corrupted by a signal having energy Ec.

(b) Under what conditions will a solution exist?

(c) Contrast your detector with that found in the text. What are the worst-case signals? What signal
is used in the matched-filter in the white noise case? Does the usual matched filter remain robust?

5.65 The detector robust under signal waveform uncertainties was only briefly described in the text (see
Page 194). This result has several interesting properties that warrant further exploration.
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(a) Explicitly derive the detector using the Lagrange multiplier technique outlined in the text. Find
the value of the Lagrange multiplier for the white-noise case.

(b) Don’t take the author’s word that the worst-case signal is indeed that derived. By computing
the probability of detection for a matched-filter detector that uses so(`), find the worst-case signal
sw(`)—the one that minimizes PD—that satisfies the constraint sw(`) = so(`)+c(`), ∑c2(`)≤ Ec.
Do not assume the noise is white.

(c) The solution shown on Page 195 differs from the colored-noise detector that ignores signal un-
certainties. By contrasting the signals to which the observations are matched, describe the differ-
ences. When are they similar? very different?

5.66 Noisy Signal Templates
In many signal detection problems, the signal itself is not known accurately; for example, the signal
could have been the result of a measurement, in which case the “signal” used to specify the observations
is actually the actual signal plus noise. We want to determine how the measurement noise affects the
detector.
The formal statement of the detection problem is

M0 : X` = s̃0
` +N`

M1 : X` = s̃1
` +N`

, ` = 0, . . . ,L−1,

where s̃i
` equals si

` +w`, with w` and N` comprising white Gaussian noise having variances σ2
w and σ2

N ,
respectively. We know precisely what the signals s̃i

` are, but not the underlying “actual” signal.

(a) Find a detector for this problem.

(b) Analyze, as much as possible, how this detector is affected by the measurement noise, contrasting
its performance with that obtained when the signals are known precisely.

5.67 In robust detection problems in which we have signal uncertainties, the so-called “minimax” approach
is to find the worst-case signals among received signal possibilities (the pair that would yield the worst
performance if they were indeed transmitted), then use the likelihood ratio based on these signals instead
of what is actually transmitted. Assume the signal transmissions are observed in the presence of additive
white Gaussian noise. The received signal s̃i deviates from the nominal one si by a finite mean-squared
error: ‖ s̃i− si ‖2≤ ε2.
Prove or disprove: The receiver obtained when there is no uncertainty is robust.

5.68 In robust detection problems in which we have signal uncertainties, the so-called “minimax” approach
is to find the worst-case signals among received signal possibilities (the pair that would yield the worst
performance if they were indeed transmitted), then use the likelihood ratio based on these signals instead
of what is actually transmitted. Assume the signal transmissions are observed in the presence of additive
white Gaussian noise. The received signal s̃i deviates from the nominal one si by a finite mean-squared
error: ‖ s̃i− si ‖2≤ ε2.
Prove or disprove: The receiver obtained when there is no uncertainty is robust.

5.69 Consider a two-model problem where signals are observed in the presence of additive Laplacian noise
having samples statistically independent of each other and the signal.

M0 : X(`) = s0(`)+N(`)
M1 : X(`) = s1(`)+N(`) , ` = 0, . . . ,L−1

To design an optimal signal set for this problem, we constrain each signal’s energy to be less than E.

(a) What signal choices provide optimal performance (the smallest error probabilities) when the
signal-to-noise ratio is small?

(b) When the signal-to-noise ratio is large, do the choices change? If so, determine what choices, if
any, would be optimal regardless of the signal-to-noise ratio.
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5.70 In Poisson channels, such as photon-limited optical communication systems, the received signal con-
sists of the number of photons and when they occurred. The joint distribution of these quantities has
the form (2.5) {16}

pN0,T ,W(n;w) =

(
n

∏
k=1

λ (wk)

)
exp
{
−
∫ T

0
λ (α)dα

}
,

where λ (t) denotes the Poisson process’s time-varying intensity, which must be non-negative. In optical
digital communication, the signal sets consist of designed intensities, and these are typically received
in the presence of a background light level. Phrased in terms of a model, Mi : λ (t) = λi(t)+ λd . In
designing signal sets for the optical channel, the intensity’s integral is typically bounded:

∫ T
0 λi(α)dα <

Λmax. What is the optimal binary signal set {λ0(t),λ1(t)} for the optical channel?
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Probability Distributions

Name Probability Mean Variance Relationships

Discrete Uniform
1

N−M+1 M ≤ n≤ N

0 otherwise
M+N

2
(N−M+2)(N−M)

12

Bernoulli or Bi-
nary

Pr(n = 0) = 1− p

Pr(n = 1) = p
p p(1− p)

Binomial
(N

n

)
pn(1− p)N−n , n = 0, . . . ,N N p N p(1− p) Sum of N IID

Bernoulli

Geometric (1− p)pn , n≥ 0 p/1− p p/(1− p)2

Negative Bino-
mial

(n−1
N−1

)
pN(1− p)n−N , n≥ N N/p N(1− p)/p2

Poisson λ ne−λ

n! , n≥ 0 λ λ

Hypergeometric

(a
n

)( b
N−n

)(a+b
N

) , n = 0, . . . ,N;

0≤ n≤ a+b; 0≤ N ≤ a+b

Na/(a+b) Nab(a+b−N)
(a+b)2(a+b−1)

Logarithmic −pn

n log(1−p)
−p

(1−p) log(1−p)
−p[p+log(1−p)]

(1−p) logq

Table A.1: Discrete probability distributions.
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Name Density Mean Variance Relationships

Gaussian
(Normal)

1√
2πσ2 e−

1
2

( x−m
σ

)2
m σ2

Bivariate
Gaussian

1
2π(1−ρ2)1/2σxσy

exp
{
− 1

2(1−ρ2)

[(
x−mx

σx

)2
−2ρ

(
x−mx

σx

)(y−my
σy

)
+
(y−my

σy

)2
]}

E[x] = mx,
E[y] = my

var[x] = σ2
x ,

var[y] = σ2
y ,

E[xy] =
mxmy +ρσxρσy

ρ: correlation
coefficient

Conditional
Gaussian

p(x|y) = 1√
2π(1−ρ)2σ2

x
exp

−
(

x−mx−
ρσx

σy
(y−my)

)2

2σ
2
x (1−ρ

2)


mx +
ρσx
σy

(y−my)
σ2

x (1−ρ2)

Multivariate
Gaussian

1
(det(2πK))1/2 exp

{
− 1

2 (x−m)tK−1(x−m)
}

m K

Generalized
Gaussian

1
2Γ(1+1/r)A(r)e

−
∣∣∣∣x−m

A(r)

∣∣∣∣r
m σ2

A(r) =[
σ2Γ(1/r)

Γ(3/r)

]1/2

Chi-Squared
(χ2

ν )

1
2ν/2Γ(ν/2)

x
ν
2−1e−x/2, 0≤ x ν 2ν

χ2
ν = ∑

ν
i=1 X2

i ,
Xi IIDN (0,1)

Noncentral
Chi-Squared

1
2 (x/λ )(ν−2)/4I(ν−2)/2(

√
λx)e−1/2(λ+x)

(χ ′2ν (λ )) ν +λ 2(ν +2λ )
χ ′2ν = ∑

ν
i=1 X2

i , Xi
IID N (mi,1)
λ = ∑

ν
i=1 m2

i

Chi χν

xν−1e−x2/2

2ν/2−1Γ
(

ν

2

) , 0≤ x
√

2
Γ( ν+1

2 )
Γ( 1

2 ν)
2[Γ( 1

2 ν)Γ( 1
2 ν+1)−Γ2( ν+1

2 )]
Γ2( 1

2 ν) χν =
√

χ2
ν

Student’s t Γ((ν+1)/2)√
νπΓ(ν/2)

(
1+ x2

ν

)−(ν+1)/2
0 ν

ν−2 , 2 < ν

Beta βm,n
Γ(m+n

2 )
Γ(m

2 )Γ( n
2 )

xm/2−1(1 − x)n/2−1,

0 < x < 1, 0 < a,b

m
m+n

2mn
(m+n)2(m+n+2) βm,n = χ2

m
χ2

m+χ2
n

F Distribu-
tion

Γ[(m+n)/2]
Γ(m/2)Γ(n/2)

(m
n

)m/2 x(m−2)/2

[1+(m/n)x](m+n)/2 , 0≤ x;1≤ m,n

n
n−2 , n > 2 2n2(m+n−2)

m(n−2)2(n−4) , n > 4 Fm,n = χ2
m/m

χ2
n /n

Non-central
F F ′m,n(λ )

∞

∑
k=0

( λ
2 )k

k! e−
λ
2 pβ m

2 +k, n
2

( mx
mx+n

) n
n−2 ,n > 2 2

( n
m

)2 (m+λ )2+(m+2λ )(n−2)
(n−2)2(n−4) ,

n > 4
F ′m,n(λ ) =
χ ′m

2(λ )/m
χ2

n /n

Wishart
WM(N,K)

(det[w])
N−M−1

2

2
NM
2 ΓM( N

2 )(det[K])
K
2

e−
tr[K−1w]

2 ,

ΓM(N
2 ) = πM(M−1)/4×

M−1
∏

m=0
Γ
(N

2 −
m
2

)
NK cov[Wi jWkl ] =

N · (KikK jl +KilK jk)
WM(N,K) =

N
∑

n=1
XnX′n,

Xn ∼ N (0,K)
dim[X] = M

Table A.2: Distributions related to the Gaussian.
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Name Density Mean Variance Relationships

Uniform 1
b−a , a≤ x≤ b a+b

2
(b−a)2

12

Triangular
2x/a 0≤ x≤ a

2(1− x)/(1−a) a≤ x≤ 1
1+a

3
1−a+a2

18

Exponential λe−λx, 0≤ x 1/λ 1/λ 2

Lognormal 1√
2πσ2x2 e

− 1
2

( logx−m
σ

)2

, 0 < x em+ σ2
2 e2m

(
e2σ2 − eσ2

)
Maxwell

√
2
π

a−3/2x2e−ax2/2, 0 < x
√

8
πa

(
3− 8

π

)
a−1

Laplacian 1√
2σ2 e
− |x−m|√

σ2/2 m σ2

Gamma ba

Γ(a)xa−1e−bx, 0 < x, 0 < a,b a
b

a
b2

Rayleigh 2axe−ax2
, 0≤ x

√
π

4a
1
a

(
1− π

4

)
Weibull abxb−1e−axb

, 0 < x, 0 < a,b (1/a)1/b ·
Γ(1+1/b)

a−2/b ·
[
Γ(1+2/b)−Γ2(1+1/b)

]
Arc-Sine 1

π
√

x(1−x)
, 0 < x < 1 1

2
1
8

Sine Ampli-
tude

1
π

√
1−x2

, |x|< 1 0 1
2

Circular
Normal

eacos(x−m)

2πI0(a)
, −π < x≤ π m

Cauchy a/π

(x−m)2+a2 m (from
symmetry
arguments)

∞

Logistic e−(x−m)/a

a[1+ e−(x−m)/a]2
, 0 < a m a2π2

3

Gumbel e−(x−m)/a

a exp
{
−e−(x−m)/a

}
,

0 < a
m+aγ

a2π2

6

Pareto aba

x1−a , 0 < a; 0 < b≤ x ab
a−1 , a > 1 ab2

(a−2)(a−1)2 , a > 2

Table A.3: Non-Gaussian distributions.
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Appendix B

Matrix Theory

B.1 Basic Definitions
An m×n matrix A is a rectangular (square if n = m) arrangement of scalar elements Ai j (ith row, jth column).

A =


A11 A12 · · · A1n
A21 A22 A2n
...

. . .
...

Am1 Am2 · · · Amn


When the matrix is square, the main diagonal extends from the upper left corner to the lower right and consists
of the elements Aii. The cross diagonal is the opposite diagonal and consists of the elements An−i+1,i. A vector
is common terminology for a column (m× 1) matrix. The dimension of the vector equals m. Rectangular
matrices are (usually) denoted by boldface uppercase letters (A,B, . . .) and vectors by boldface lowercase
letters (a,b, . . .). The dimension of a vector is expressed as dim(a).

To add matrices, the number of rows in each matrix as well as the number of columns must agree. The
sum of m×n matrices A and B is defined to be an m×n matrix C whose elements are

Ci j = Ai j +Bi j.

Matrix addition is commutative (A+B = B+A). The product AB of two matrices A and B is only defined if
the number of rows of A equals the number of columns of B. Thus, if A represents an l×m matrix and B an
m×n matrix, the result is an l×n matrix C, each term of which is defined to be

Ci j =
m

∑
k=1

AikBk j, i = 1, . . . , l; j = 1, . . . ,n.

Clearly, the matrix product is not necessarily commutative (AB 6= BA), but is distributive [A(B+C) = AB+
AC] and associative [A(BC) = (AB)C].

Several methods of rearranging the elements of a matrix are frequently used. The complex conjugate of
the matrix A is denoted by A∗ and consists of the complex conjugates of the elements of A.

[A∗]i j = A∗i j

The transpose of an m×n matrix A is an n×m matrix At whose rows are the columns of A.[
At]

i j = A ji

The transpose of a product of two matrices equals the product of their transposes, but in reversed order.

(AB)t = BtAt
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This property applies whether the matrices are square or not. The conjugate transpose (sometimes known as
the Hermitian transpose) of A is denoted by A′ and equals (A∗)t .[

A′
]

i j = A∗ji

B.2 Basic Matrix Forms
The relations between the values of the elements of a matrix define special matrix cases. Matrices having
special internal structure are important to recognize in manipulating matrix expressions.

• A diagonal matrix, denoted by diag[A11,A22, . . . ,Ann], has non-zero entries only along the main diago-
nal (i = j) of the matrix. 

A11 0 · · · 0

0 A22 0
...

...
. . . 0

0 · · · 0 Ann


• a block diagonal matrix has square matrices A1, . . . ,AN on the diagonal, with zero-valued entries else-

where. Note that these matrices do not necessary share a common size.
A1 0 · · · · · ·
0 A2 0 · · ·
...

. . .
...

· · · · · · 0 AN


• The identity matrix, denoted by I, is a special diagonal matrix having unity on the main diagonal.

I =


1 0 · · · 0

0 1 0
...

...
. . .

0 · · · 0 1


The identity matrix is so-named because it is the multiplicative identity for square matrices (IA = AI =
A).
• The ordering of the rows or columns of a square matrix can be reversed by pre- or post-multiplication

by the exchange matrix J.

J =


0 · · · 0 1
... . . . 1 0

0 . . . . . .
...

1 0 · · · 0


• A lower triangular matrix L has non-zero values on and “below” its main diagonal.

L =


L11 0 · · · 0

L21 L22 0
...

...
...

. . .
Ln1 Ln2 · · · Lnn


An upper triangular matrix can be similarly defined.
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• A Vandermonde matrix consists of columns containing geometric sequences.

A =


1 · · · 1
a0 · · · an−1
a2

0 · · · a2
n−1

...
...

am−1
0 · · · am−1

n−1


One special case of a square Vandermonde matrix is the DFT matrix W in which the elements are
ak = exp{− j2πk/m}. The discrete Fourier transform of a vector x can be expressed as

DFT[x] = Wx.

• A symmetric matrix equals its transpose (At = A). A conjugate symmetric (Hermitian) matrix equals
its own conjugate transpose (A′ = A). Correlation matrices, which have the form A = E[xx′], are
Hermitian.

• A Toeplitz matrix has constant values along each of its diagonals (Ai j = ai− j).
a0 a1 · · · an−1

a−1 a0 a1

...
. . . . . .

a−(n−1) a−(n−2) · · · a0


In time series, correlation matrices are not only Hermitian, they are also Toeplitz. Hermitian Toeplitz
matrices have no more than n unique elements in the matrix. Because of this extensive redundancy of
values, many efficient techniques for computing expressions involving them have been developed.

• Constant values along the cross-diagonals of a square matrix define a Hankel matrix.

Ai j = ai+ j−2 A =



a0 a1 a2 · · · an−1
a1 a2 · · · . . . an

a2 . . . . . . . . .
...

... . . . . . . a2n−3
an−1 an · · · a2n−3 a2n−2


All Hankel matrices are symmetric. If A is a Hankel matrix, then both JA and AJ are Toeplitz ma-
trices. Hankel matrices are frequently used to express in matrix form the convolution of a sequence
with a finite-duration unit sample response. For example, if y(n) = ∑

n
m=n−(M−1) h(n−m)x(m) for

n = M−1, . . . ,N−1, the matrix form would be
x(0) x(1) · · · x(M−1)
x(1) x(2) · · · x(M)
...

...
...

x(N−M) x(N−M+1) · · · x(N−1)




h(M−1)
h(M−2)
...
h(0)

=


y(M−1)
y(M)
...
y(N−1)

 .

• A square matrix is said to be circulant if each row is a circular rotation of the previous one.
a0 a1 · · · an−1
an−1 a0 a1 · · ·
an−2 an−1 a0 · · ·
...

...
a1 a2 · · · a0
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All circulant matrices are Toeplitz; circulant matrices are symmetric only when the sequence a1,a2, . . .
is even: ai = an−i, i = 1, . . . ,n/2 (a0 is arbitrary).

• The square matrix A is said to be orthogonal if it satisfies AtA = I. A is unitary if it satisfies A′A = I.

• The square matrix A is said to be a projection matrix if A2 = A. Because of this property, Am = An

for all choices of positive integers n,m. The reason for this name will be given once eigenvalues are
defined (§B.6 {235}).

• A matrix is said to have a null space if a set of non-zero vectors x exist that satisfy Ax = 0. These vectors
would thereby be orthogonal to the rows of A. The matrix could be square or, more interestingly, it
could be rectangular, having more columns than rows. The rows would then define a collection of
vectors that represent all vectors for which Ax 6= 0.

• The vector y is said to be in the range of the matrix A if it can be expressed as Ax = y for some x.

B.3 Operations on Matrices
Several operations on matrices and between them are so commonly used that specific terminology has evolved.

• The inner product x′y between two vectors x and y is defined to be the scalar expressed by∗

x′y =
n

∑
i=1

x∗i yi.

Since an inner product is a scalar, expressions involving inner products are frequently rearranged by
noting that the transpose of a scalar is the same scalar. Therefore, (x′y)t = ytx∗ = x′y. Two vectors are
said to be orthogonal if their inner product is zero.

• The outer product xy′ between two vectors x (dimension m) and y (dimension n) is an m× n matrix
whose elements are [

xy′
]

i j = xiy
∗
j .

• The Kronecker product A⊗B between two matrices A (mA×nA) and B (mB×nB) is the mAmB×nAnB
matrix given by

A⊗B =


A11B A12B · · · A1nAB
A21B A22B A2nAB
...

. . .
...

AmA1B AmA2B · · · AmAnAB

 .

The matrix B multiplied by the scalars Ai j is thus repeated throughout the matrix. The Kronecker
product of two positive-definite matrices is also positive definite.

• The inverse of a matrix A is denoted by A−1 which satisfies AA−1 = A−1A = I. The inverse of a matrix
is not guaranteed to exist. Numerous conditions on the inverse’s existence are detailed in the following.
When it does exist, the following properties hold.

1. If A, B are invertible matrices, (AB)−1 = B−1A−1.

2. If A, B are invertible matrices, (A⊗B)−1 = A−1⊗B−1

∗ In more abstract settings, the inner product between two vectors x and y is denoted by 〈x,y〉. There, the inner product becomes any
mapping of two vectors to a scalar that satisfies three properties.

(i) 〈y,x〉= 〈x,y〉∗
(ii) 〈ax+by,z〉= a∗〈x,z〉+b∗〈y,z〉 ,a,b scalars

(iii) 〈x,x〉> 0 ,x 6= 0
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3. Assuming that all inverses exist where used, the inverse of a sum of matrices can be written several
useful ways.

(A+BCD)−1 = A−1−A−1B
(
DA−1B+C−1)−1 DA−1

= A−1−A−1BC
(
I+DA−1BC

)−1 DA−1

= A−1−A−1B
(
I+CDA−1B

)−1 CDA−1

Note that the matrices B and D need not be invertible for these relationships to be valid. In the
latter two, the matrix C need not be invertible. Notable special cases of this result are

(
A+ µxy′

)−1 = A−1

(
I− xy′

1
µ

+y′A−1x
A−1

)
(A+B)−1 = A−1−A−1

(
A−1 +B−1

)−1 A−1

4. If the matrix A is either symmetric, Hermitian, circulant, or triangular, its inverse has the same
structure. The inverse of a Toeplitz matrix is not necessarily Toeplitz. The inverse of a Hankel
matrix is symmetric.

5. The inverse of a block diagonal matrix equals the matrix consisting of the inverses of the blocks
(if all of these individual inverses exist).

A1 0 · · · · · ·
0 A2 0 · · ·
...

. . .
...

· · · · · · 0 AN


−1

=


A−1

1 0 · · · · · ·
0 A−1

2 0 · · ·
...

. . .
...

· · · · · · 0 A−1
N


• A Givens rotation is the multiplication of a matrix A by a unitary matrix Q that zeroes a specific element

of A [37: pp. 43–7]. This simple operation lies at the core of many numerical algorithms for computing
matrix inverses and eigensystems. The rotation matrix has the form of an identity matrix augmented by
a square submatrix of sine and cosine rotation values. For example, the matrix that zeroes the second
element of the fourth column of a 5×5 matrix has the form

Q =


1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1

 ,

where c = A44/
(
A2

24 +A2
44
)1/2 and s = A24/

(
A2

24 +A2
44
)1/2. The product QA performs the rotation by

modifying only the second and fourth rows of A. Column modification is possible by post-multiplying
by the rotation matrix and suitably defining the rotation.

• The determinant of a square matrix A is denoted by det[A] and is given by

det[A] = A11Ã11 +A12Ã12 + · · ·+A1nÃ1n,

where Ãi j, the cofactor of A, equals (−1) j+1 times the determinant of the (n− 1)× (n− 1) matrix
formed by deleting the ith row and jth column of A. A non-zero determinant is a necessary and sufficient
condition for the existence of the inverse of a matrix. The determinant of A′ equals the conjugate of
the determinant of A: det[A′] = det[A]∗. The determinant of a unitary matrix has unity magnitude. The
determinant of the product of two square matrices is the product of their determinants.

det[AB] = det[A]det[B]
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The determinant of a sum of matrices is not equal to the sum of their determinants. The determinant
of a Kronecker product of square matrices equals det[A⊗B] = det[A]n det[B]m, where dim[A] = m and
dim[B] = n.

• The trace tr[A] of the square matrix A equals the sum of its elements along the main diagonal.

tr[A] =
n

∑
i=1

Aii

The trace of a sum of matrices equals the sum of their traces.

tr[A+B] = tr[A]+ tr[B]

The trace of a product of two square matrices does not necessarily equal the product of the traces of the
individual matrices; the product of two matrix’s traces does equal the trace of their Kronecker product:
tr[A⊗B] = tr[A] tr[B]. However, one of the more interesting properties of the trace is

tr[AB] = tr[BA].

Proving this property is straightforward. Using the full expression for the product of two matrices given
above, tr[AB] = ∑i ∑k AikBki. Writing a similar expression for BA easily demonstrates this property.
With this result, computation of the trace can be simplified in circumstances where the component
matrices are not square; whichever product yields the smaller matrix can be used to compute the trace.

• The gradient with respect to a vector of a scalar-valued function f (x) equals a column matrix of the
partial derivatives.

∇x f (x) = col
[

∂ f
∂x1

, . . . ,
∂ f
∂xN

]
Examples of gradient calculation derived from this definition are:

∇x xty = ∇x ytx = y
∇x xtAx = 2Ax
∇x tr[xyt ] = ∇x tr[yxt ] = y

The gradient with respect to a matrix of a scalar-valued function can be defined similarly:

[∇A f (A)]i j =
∂ f

∂Ai j
.

Examples are:

∇A tr[A] = I ∇A tr[AB] = B
∇A tr[BA] = Bt

∇A tr[BA−1] =−[A−1BA−1]t

∇A exp{xtAx}= xxt exp{xtAx}
∇A det[A] = det[A]

(
A−1)t

∇A lndet[A] =
(
A−1)t

B.4 Quadratic Forms
Quadratic forms are key quantities of study in statistical signal processing. They are comprised by a Hermitian
matrix A and a vector x to produce the real-valued scalar x′Ax. The matrix is termed the kernel of the quadratic
form. In the special case that A = I, the quadratic form reduces to the inner product of x with itself; quadratic
forms are thus considered generalizations of the inner product. If x′Ax > 0 for all non-zero choices of x, the
matrix A is said to be positive definite. If x′Ax≥ 0 under the same conditions, A is non-negative definite.
The structure of Hermitian matrices, even if they are Toeplitz, is not sufficient to guarantee that they are non-
negative definite. In contrast, Hankel matrices having no negative elements are always non-negative definite.
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The argument of the exponential in the probability density function of a Gaussian random vector is a
quadratic form. The kernel of that quadratic form is the covariance matrix of the random vector. Assuming
zero mean for algebraic simplicity, the covariance matrix is the expected value of the outer product of the
random vector z with itself: A = E[zz′]. Such matrices are always non-negative definite. To show this
result, simply consider an expanded version of the quadratic form: x′Ax = E

[
|x′z|2

]
. Because of the squared

magnitude, this quantity can never be negative.
Quadratic forms can be re-written using the trace operation. The trace of a quadratic form simply equals

its value because a quadratic form is a scalar. Using the properties of the trace operation,

tr
[
x′Ax

]
= tr

[
Axx′

]
.

Thus, a quadratic form equals the trace of the product between the kernel and the outer product of the vector
with itself. This seemingly more complicated expression has utility in signal processing. See §2.1.9 {8} on
the multivariate Gaussian distribution for the most well-known application of this formula.

Positive-definite Hermitian matrices can be expanded using the Cholesky factorization.

A = LDL′

where D is a diagonal matrix and L is lower-triangular with all of the diagonal elements equal to unity.

L =


1 0 0 · · ·

L21 1 0 · · ·

L31 L32
. . . . . .

...
...

. . .

 , D =


D11 0 0 · · ·

0 D22 0 · · ·
... 0 D33

. . .
...

...
. . .


The inverse of a lower-triangular matrix is also lower-triangular; the inverse of the matrix A is written as
A−1 = L′−1D−1L−1.

In optimization problems, the quadratic form frequently represents a squared error cost function: the
kernel imposes a shape to the range of values of x and the quadratic form grows quadratically with increasing
the vector’s length. Analytic solutions to such optimization problems are found by evaluating the gradient
of the cost function with respect to the vector x. The gradient with respect to x is evaluated by treating the
vector’s conjugate as a constant and vice versa. In this way, we find that

∇x x′Ax = Atx∗

∇x∗ x′Ax = Ax.

B.5 Matrix Eigenanalysis
One of the most powerful concepts in matrix algebra is eigenanalysis. Letting the matrix A be square, the
non-zero vector v is said to be an eigenvector of A if it satisfies

Av = λv,

where λ is the scalar termed the eigenvalue associated with v. A scaled eigenvector is also an eigenvector. Be-
cause of this property, we define an eigenvector to always have unit inner product (v′v = 1). The generalized
eigenvector v of the matrix pair (A,B) satisfies

Av = λBv .

Expressed in a slightly different form, the defining equation of eigenanalysis becomes (A−λ I)v = 0;
for generalized eigenanalysis, (A−λB)v = 0. If the matrices within the parentheses had inverses, the only
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solutions to these equations would be v = 0, a trivial and uninteresting result. To find any non-zero solutions,
the eigenvectors, these matrices must not have inverses, which implies that their determinants must be zero.

det [A−λ I] = 0 det [A−λB] = 0

For an n×n matrix, each equation becomes an nth order polynomial. The eigenvalues of a matrix are the roots
of this polynomial. Because no closed form expression exists for the roots of polynomials of greater than
fourth order, the eigenvalues of a matrix must be found numerically in most cases of interest in signal pro-
cessing. The n eigenvalues are conventionally labelled in decreasing order: λ1 ≥ λ2 ≥ ·· · ≥ λn. Eigenvalues
are not necessarily unique; the number of times a value is repeated is termed its multiplicity. For example,
every eigenvalue of the identity matrix equals unity and thus has multiplicity n. The eigenvalues of a sum
or product of matrices are not easily expressed in terms of the eigenvalues of the component matrices. One
remarkably simple result concerns Kronecker products: the eigenvalues of A⊗B equal λ A

i λ B
j , i = 1, . . . ,m,

j = 1, . . . ,n. We term the set {λi,vi}A of eigenvectors and associated eigenvalues the eigensystem of the ma-
trix A. For generalized systems to have n elements, the matrix B must be invertible. If not, the number of
eigenvectors can be zero, less than n, or infinite [37: p. 252]. When invertible, the generalized eigensystem
{λi,vi}(A,B) equals the eigensystem {λi,vi}B−1A.

Hermitian Matrices

In the special case where a matrix has Hermitian symmetry, several interesting properties arise. Because of
the prevalence of the correlation matrix, which is Hermitian, this situation occurs often in practice.

• The eigenvalues of a Hermitian matrix are real. The inner product v′v can be expressed as v′Av = λv′v.
The left side of this equation equals its conjugate transpose; since the inner product v′v is always real,
we have λ ∗ = λ and thus the eigenvalues are real.

• If A is positive definite, all of its eigenvalues are positive. The quadratic form v′Av is positive; as inner
products are positive, v′Av = λv′v implies that λ must also be positive.

• The eigenvectors associated with distinct eigenvalues of a Hermitian matrix are orthogonal. Consider
Av1 = λ1v1 and Av2 = λ2v2 for λ1 6= λ2. Noting that v′2Av1 = λ1v′2v1 and v′1Av2 = λ2v′1v2, these ex-
pressions differ on the left side only in that they are conjugate transposes of each other. Consequently,
(λ2−λ1)v′1v2 = 0, thereby indicating that v1 and v2 are orthogonal.

Define a matrix V having its columns to be the eigenvectors of the matrix A.

V = col[v1,v2, . . . ,vn]

If A is Hermitian and has distinct eigenvalues, its eigenvectors are orthogonal, implying that V must satisfy
V′V = I (i.e., V is unitary). Furthermore, the product V′AV is a diagonal matrix with the eigenvalues lying
along the diagonal.

V′AV =


λ1 0 · · · 0

0 λ2 0
...

...
. . .

0 · · · 0 λn


Because V is unitary, we find that Hermitian matrices having distinct eigenvalues can be expressed

A = V


λ1 0 · · · 0

0 λ2 0
...

...
. . .

0 · · · 0 λn

V′.
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This equation defines the matrix’s diagonal form. From this diagonal form, the determinant and trace of A
are easily related to the eigenvalues of A as

det[A] =
n

∏
i=1

λi

tr[A] =
n

∑
i=1

λi

Expressing the diagonal form of A less concisely, an important conclusion can be drawn: any Hermitian
matrix A can be expressed with the expansion A = ∑i λiv′ivi. This result is used frequently when eigenanalysis
is applied to signal processing. In particular, quadratic forms can be expressed as

x′Ax =
n

∑
i=1

λi
∣∣x′vi

∣∣2 .

In addition, because v = λA−1v, the eigenvectors of a matrix and its inverse are identical with the correspond-
ing eigenvalues being reciprocals of each other. Therefore,

A−1 =
n

∑
i=1

1
λi

viv′i .

For generalized eigenanalysis, orthogonality of eigenvectors is defined with respect to the matrix B: v′iBv j =
δi j. Then,∗

A =
n

∑
i=1

λiBviv′iB
′

A−1 =
n

∑
i=1

1
λi

viv′i

Rayleigh Quotient

An important quantity in matrix algebra easily manipulated in terms of eigenvectors and eigenvalues is the
ratio of two quadratic forms.

R =
x′Ax
x′Bx

The matrices A and B are Hermitian and B must be positive definite. The key question asked is what vector x
maximizes (or minimizes) this Rayleigh quotient. The simplest, and most prevalent case, occurs when B = I.
The Rayleigh quotient is expressed in terms of the eigenvectors and eigenvalues of A.

R =

n

∑
i=1

λi|x′vi|2

x′x

The denominator is now seen to normalize the quotient: the quotient’s value does not change when x is
multiplied by a scalar. We can thus take the norm of x to be one and the denominator is no longer a concern. To
maximize the numerator, the vector must be proportional to the eigenvector vi corresponding to the maximum
eigenvalue of A. If not chosen this way, some of x’s components would project onto other eigenvectors which
necessarily have smaller eigenvalues and thus provide less weight to the sum. A similar argument applies if
the minimizing vector is sought.

Rmin = λmin,xmin = vmin Rmax = λmax,xmax = vmax

∗Despite appearances, the second equation is correct. Test its veracity.
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Furthermore, the Rayleigh quotient is bounded by the minimum and maximum eigenvalues.

λmin ≤ R≤ λmax

When B does not equal the identity matrix, we can use the generalized eigensystem of (A,B) to find the
extrema of the Rayleigh quotient. When x is a generalized eigenvector, Ax = λBx, which implies that the
Rayleigh quotient equal λ . Because A and B are Hermitian and positive definite, the generalized eigenvectors
form a basis and the Rayleigh quotient obeys the above inequality for the generalized eigenvalues. We can
express the Rayleigh quotient in other ways. First of all, we know that the generalized eigensystem equals
the eigensystem of B−1A. In addition, define x̃ = B1/2x where B1/2 is the square root of B. Computationally,
square roots may seem difficult to find; in eigenanalysis terms, a straightforward definition emerges.

B1/2 ≡
n

∑
i=1

λ
1/2
i viv′i

With this definition, the square root of a matrix satisfies the intuitive property B1/2B1/2 = B. The Rayleigh
quotient thus becomes

R =
x̃′
(

B−1/2
)′

A
(

B−1/2
)

x̃

x̃′x̃
Thus, the vector x̃ maximizing or minimizing the Rayleigh quotient corresponds to the eigenvector having
maximum or minimum eigenvalues of the matrix product

(
B−1/2

)′A(B−1/2
)
.

Singular Value Decomposition

Related to eigenanalysis is the singular value decomposition or SVD technique. Letting A be an m×n matrix
consisting of complex entries, it can be expressed by

A = UDV′,

where D is the k×k diagonal matrix diag[σ1, . . . ,σk] and where U (m×k) and V (k×n) are matrices satisfying
U′U = Ik and V′V = Ik. Letting ui and vi denote the ith columns of U and V respectively, then

Avi = σiui u′iA = σiv′i

The scalars σi are termed the singular values of the matrix A while ui and vi are termed the left and right
(respectively) eigenvectors of A. The number of non-zero singular values equals k, which must not exceed
min(m,n). The number equals this upper limit when the side of the matrix having the smallest length (either
the rows or the columns) has linearly independent components. From these expressions, the eigenvectors of
A′A and AA′ are found to be

A′Avi = σ
2
i vi AA′ui = σ

2
i ui.

One of these products will not have full rank when the matrix A is not square. For example, if A is a column
vector, A′A is a scalar and thus is invertible while AA′ is an m×m matrix having only one non-zero singular
value. These matrices are Hermitian; they share the same non-zero eigenvalues and these equal the squares
of the singular values. Furthermore, the collections of vectors {ui} and {vi} are each orthonormal sets. This
property means that UU′ = Im and VV′ = In. The singular value decomposition suggests that all matrices
have an orthonormal-like expansion of the form

A =
k

∑
i=1

σiuiv′i .

No non-square matrix has an inverse. Singular value decomposition can be used to define the pseudo
inverse of a rectangular matrix. Assuming that all of the singular values are non-zero, the pseudo inverse A∼1
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satisfies either AA∼1 = Im or A∼1A = In according to which dimension of the matrix is the smallest. By
analogy to the eigenvalue-eigenvector expansion of an invertible matrix, the singular value decomposition of
a matrix’s pseudo inverse would be

A∼1 =
k

∑
i=1

1
σi

viu′i

or in matrix terms A∼1 = VD−1U′. The pseudo inverses can be defined more directly by either A∼1 =
A′(AA′)−1 or A∼1 = (A′A)−1A′. To be more concrete, suppose A has linearly independent rows. Its pseudo
inverse is given by A′(AA′)−1 so that AA∼1 = I: only the right inverse exists.

B.6 Projection Matrices
Eigenanalysis and singular value analysis are often used because they express a matrix’s properties “nat-
urally”. One case in point is the projection matrix. A projection matrix P has the property Pm = Pn for
m,n ≥ 0. The eigenvalues of a projection must therefore obey the relationship λ m = λ n. Two solutions are
possible: λ = 1 and λ = 0. Thus, the eigenvectors of a projection matrix either have zero eigenvalues, in
which case any vector that can be expressed by them is annihilated by the matrix (Px = 0), or the eigenvectors
have unity eigenvalues and vectors comprised of them are unaffected by the matrix (Px = x). If a vector has
components belonging to both sets of eigenvectors, the part of the vector that “survives” the matrix is that
portion represented by the eigenvectors having unity eigenvalues. Hence the origin of the name “projection
matrix”: matrices having only unity and zero eigenvalues can be used to find those components of any vector
which correspond to the eigenvectors having unity eigenvalues.

For any m×n matrix A (m < n) that is used as a linear transformation, it defines a subspace for the domain
of the transformation. In more exact terms, when the m-dimensional vectors y = Ax define a vector space,
what is the image of this space in the original, higher dimensional space containing the vectors x? The most
elegant response is in terms of the singular values and singular vectors of A. The vector y is thereby expressed

y =
m

∑
i=1

σi(v′ix)ui .

The result of the linear transformation is always a linear combination of the left singular vectors of A.
The projection matrix PA associated with a linear transformation A would project all n-dimensional vec-

tors onto a subspace defined by the linear transformation. PA would have m unity eigenvalues for the left
singular vectors of A and zero eigenvalues for all remaining m−n eigenvectors. Defining U⊥ to be the matrix
of eigenvectors corresponding to these zero eigenvalues, the projection matrix can be expressed as

PA =
[

U U⊥
][ Im 0

0 0

][
U U⊥

]′
.

This projection matrix can be expressed more directly in terms of the matrix A as A′(AA′)−1A. Note than this
expression can be written in terms of the transformation’s pseudo inverse: while AA∼1 = Im, PA = A∼1A.
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Appendix C

Ali-Silvey Distances

Ali-Silvey distances comprise a family of quantities that depend on the likelihood ratio Λ(X) and on the
model-describing densities p0, p1 in the following way.

d(p0, p1) = f (E0 [c(Λ(X))])

Here, f (·) is a non-decreasing function, c(·) a convex function, and E0[·] means expectation with respect to
p0. Where applicable, π0, π1 denote the a priori probabilities of the models. Basseville [8] is good reference
on distances in this class and many others. In all cases, the observations consist of L IID random variables.

Ali-Silvey Distances and Relation to Detection Performance
Name c(·) Performance Comment

Kullback-Leibler
D(p1‖p0)

(·) log(·) lim
L→∞
−1

L
logPF = d(p0, p1)

Kullback-Leibler
D(p0‖p1)

− log(·) lim
L→∞
−1

L
logPM = d(p0, p1)

Neyman-Pearson error rate
under both fixed and ex-
ponentially decaying con-
straints on PM (PF )

J-Divergence
((·)−1) log(·) π0π1 exp{−d(p0, p1)/2} ≤ Pe J(p0, p1) = D(p0‖p1) +

D(p1‖p0)

Chernoff (·)s,s ∈ (0,1) max lim
L→∞
−1

L
logPe = inf

s∈(0,1)
d(p0, p1)

Independent of a priori prob-
abilities
Not in Ali-Silvey class

M-Hypothesis
Chernoff

(·)s,s ∈ (0,1) max lim
L→∞
−1

L
logPe = min

i6= j
inf

s
d(pi, p j)

Bhattacharyya (·)1/2 π0π1[d(p0, p1)]2 ≤ Pe ≤
√

π0π1d(p0, p1)
Minimizing d(p0, p1) will
tend to minimize Pe

Orsak |π1(·)−π0| Pe = 1
2 −

1
2 d(p0, p1)

Exact formula for average er-
ror probability

Kolmogorov 1
2 |(·)−1| If π0 = π1, Pe = 1

2 −
1
2 d(p0, p1)

Hellinger ((·)1/2−1)2

237
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