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Abstract

We develop a simulated annealing technique to jointly optimize a distributed quantiza-

tion structure meant to maximize the asymptotic error exponent of a downstream classifier

or detector. This distributed structure sequentially processes an input vector and exploits

broadcasts to improve the best possible error exponents. The annealing approach is a robust

technique that avoids local maxima and is easily tailored to a broadcast quantizer’s structural

constraints.

1. Introduction

Quantization for classification concerns a class of problems where a quantizer serves as
a preprocessor to a downstream classifier. Distributed quantization for classification is an
extension of this idea where, instead of a single quantizer, a collection of quantizers acts
as a preprocessor. The single quantizer version of this problem was introduced in the late
1970’s [5, 11], and in the intervening years, various authors have touched on various aspects
of the distributed version [1, 9], yet quantization for classification, along with the more
general notion of distributed task-driven quantization, still remains rather underdeveloped
compared to quantization theory as a whole [3]. Here we discuss a distributed quantization
system that exploits information shared among the constituent quantizers [8] and an opti-
mization technique that optimizes the performance of the follow-on classifier. In particular,
we describe a distributed structure that broadcasts information as the quantizers sequen-
tially process an input vector and propose an efficient and robust algorithm that jointly
optimizes the quantizers so as to maximize the best possible asymptotic error exponent of
the classifier.

Despite the fact that our problem resembles typical distributed source coding (quanti-
zation) formulations, results and techniques from those problems surprisingly have little
bearing on our problem. Because we optimize asymptotic error exponents, our optimiza-
tions do not involve reconstruction points or codewords, nor do the partitions induced by
our quantizers obey the nearest neighbor rule. Thus the Lloyd optimality conditions [2]
are not applicable and consequently, neither are algorithms designed to satisfy them, even
those recently proposed for distributed settings (see e.g. [12, 14]). Here we instead develop
a simulated annealing algorithm [6] to solve the optimization. This algorithm is not only
robust to initializations and not easily trapped in local minima or maxima, but it is very
amenable to the structural and functional constraints imposed by a broadcast system, i.e.
the constraints are easily incorporated and enforced in the optimization.



2. System structure and asymptotic error exponents

2.1. Broadcast quantizers

A vector quantizer on R
M is a function α that maps a real number into an index set:

α : R
M 7→ {0, . . . , LM − 1}. If the real-valued random vector X serves as an input to α and

Y ∈ {0, . . . , LM −1} represents its quantized output, then we have Y = α(X). A distributed

broadcast quantizer φ is a vector quantizer composed of a collection of M spatially separated
component quantizers {φ1, . . . , φM} that obey,

Ym =

{
φm(Xm,Ym−1

1 ), 1 ≤ m ≤ K

φm(Xm,Ym−1
m−K), K < m ≤ M,

(1)

where Ym ∈ {0, . . . , L−1}, K ∈ {0, . . . , M − 1}, Ym−1
m−K = (Ym−K , . . . , Ym−1), and Xm ∈ R.

Each component quantizer φm thus maps a real-valued random variable plus at most K
values drawn from the set {0, . . . , L − 1} into {0, . . . , L − 1}.

The functional relationships in (1) imply a sequential ordering in how a broadcast struc-
ture quantizes its input X = (X1, . . . , XM ). First, φ1 quantizes X1 and then broadcasts
its output y1. Next, φ2 quantizes X2 but takes into account y1, and then broadcasts its
output. The process continues until all M component quantizers produce an output with
each succeeding quantizer basing its output on its input and the K preceding outputs. Be-
cause the component quantizers for K > 0 react to past outputs, the system is dynamic.
That is, partial information is shared among the quantizers as they sequentially process
the components of the input vector X. Broadcast quantizers belong to the general class
of sequential quantizers [2], but here we use the term “broadcast” to emphasis how each
component quantizer communicates.

The parameter K determines the “depth” to which outputs are broadcast. If K = M −1,
then for every m, each quantizer broadcasts its output to all remaining quantizers φk, k > m.
If K = 0, there are no inter-quantizer communications and the resulting structure is static
or noncommunicative.

Note that with the functional dependency on Ym−1
m−K , the component quantizers φm, m =

1, . . . , M are not scalar quantizers in the traditional sense because they are not characterized
by a single mapping from the reals to an index set. Rather, they are collections of scalar
quantizers since for every realization ym−1

m−K of the random vector Ym−1
m−K , we can associate

a scalar quantization rule φm,j such that Ym = φm,j(Xm), where φm,j(Xm) is shorthand
notation for φm(Xm,ym−1

m−K) and j is an index for the LK different outcomes of Ym−1
m−K .

Thus a full description of φm, for any given m > K, requires the specification of LK scalar
quantizers {φm,0, . . . , φm,LK−1}. Overall, therefore, a broadcast quantizer φ can be viewed
either as a collection of M component quantizers each satisfying (1) or as a large set of scalar
quantizers {φ1, φm,j , m = 2, . . . , M, j = 0, . . . , Lm−1, m < K; j = 0, . . . , LK − 1, m ≥ K}.

Because the quantizers φm,j are all scalar quantizers, each can also be described by a
labeled partition of the real line. Thus for fixed m and j, a partition associated with φm,j

is characterized by a threshold vector τm,j = (τ
(0)
m,j , . . . , τ

(Nm,j)
m,j ) whose elements define Nm,j

intervals,

I
(0)
m,j = (−∞, τ

(1)
m,j ], I

(1)
m,j = [τ

(1)
m,j , τ

(2)
m,j ], . . . I

(Nm,j−1)
m,j = [τ

(Nm,j−1)
m,j ,∞). (2)

To each interval one index or label is assigned from the set {0, . . . , L− 1}. Taken together,
this partition and its labeling is a complete characterization of φm,j . For a fixed m > K, the
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Figure 1. A hypothetical broadcast quantizer φ depicted as a labeled partition for

M = 2,L = 2,K = 1.

LK partitions of R defined by the set of threshold vectors {τm,0, . . . , τm,LK−1}, along with
their associated labelings, explicitly characterize the component broadcast quantization rule
φm.

A broadcast quantizer φ can also be described by a labeled partition that is formed by
taking Cartesian products of the intervals in (2) and by concatenating their corresponding
labels. For example, Figure 1 shows a hypothetical partition and labeling of R

2 (M =
2, L = 2, K = 1). The broadcast quantization rule φ1 is displayed horizontally along the X1

axis, and φ2,0 and φ2,1 are displayed vertically along the X2 axis. The hatched cell is the

product I
(3)
1 × I

(1)
2,0 and its label 10 is the concatenation of their labels. Note that all the cells

are rectangular because broadcast quantizers process their inputs in a distributed manner
according to (1). In fact, regardless of the parameter values M, L, K, every quantizer φm,j

can only operate on a single dimension of X. Thus φ’s partitioning cells always have hyper-
rectangular geometry. We refer to this induced structure as the structural constraints of
φ.

From a different perspective, Figure 1 shows the additional degrees of freedom in φ
brought by broadcasting. Unlike a comparable noncommunicative structure, φ2 consists of
two constituent scalar quantizers φ2,0, φ2,1. Thus one can either take the Cartesian product
of φ1 with φ2,0, or with φ2,1 to form the columns of φ. In Figure 1, this degree of freedom
manifests itself as “misaligned” rows with labels that change across the columns. Such
behavior is not exhibited in noncommunicative structures whose overall partition of R

M

resembles that of standard vector product quantizers.

2.2. Kullback-Leibler divergence

The Kullback and Leibler divergence is an information theoretic quantity that quantifies
the “dissimilarity” between two probability distributions and is defined as follows. Suppose
P and Q are probability measures on a measurable space (X ,L) and suppose that they are
absolutely continuous with respect to one another. Then, letting p(x) and q(x) denote the



density functions of P and Q, the Kullback-Leibler (KL) divergence between q(x) relative
to p(x) is defined as [7],

D
(
p‖q

)
, −

∫

X

p(x) log
q(x)

p(x)
dx. (3)

The choice of the logarithm’s base is arbitrary, but here we use base two. When the outcome
space X is discrete, the integral in (3) becomes a summation.

Our use of the divergence as a quantity to be optimized is motivated by Stein’s Lemma [7],
a well-known result that relates the divergence to the asymptotic performance of an optimal
detector. In words, it says that the error probabilities of an optimal Neyman-Pearson
detector decay exponentially as the number of observations increase and that the limiting
exponential rate is equal to the divergence between the distributions characterizing the
detector’s inputs. Therefore, by optimizing the divergence at the output of the broadcast
system, we maximize the best possible asymptotic error decay rate of the follow-on classifier.

Though motivated in part by Stein’s Lemma, more important for the current discussion
is the fact that the divergence obeys the Data Processing Theorem.1This result effectively
states that no processing can increase the discrimination information (i.e., the divergence)
originally present in a system’s inputs [7]. Thus, no follow-on detector can recover from a
divergence loss resulting from a distributed quantization process. It is therefore critical to
design the distributed system well and not rely on sophisticated detection algorithms. For
this reason, we investigate here broadcast quantization structures in contrast to noncom-
municative ones.

Now, suppose the input vector X is distributed in one of two ways: H0 ∼ pX, H1 ∼ qX,
where here pX and qX denote the joint input probability densities under the two hypotheses
Hj , j = 0, 1. Then, denoting the joint output probability mass functions induced by φ by
the vectors

p(φ) = (p0(φ), . . . , pLM−1(φ)) under H0

q(φ) = (q0(φ), . . . , qLM−1(φ)) under H1,
(4)

where the probabilities pi(φ) under H0 equal Pr(φ(X) = i; H0), i = 0, . . . , LM − 1, and
similarly for qi(φ) under H1, the problem of interest may be expressed as

max
φ

D
(
p(φ)‖q(φ)

)
. (5)

One can think of (5) as either a problem of determining one optimal vector quantizer φ,
or as a problem of determining M one-dimensional component quantizers φm,j . The next
section presents a solution method based on simulated annealing.

3. Simulated annealing with fixed partitions

Simulated annealing is a well-known stochastic relaxation optimization technique that
mimics the metallurgical process of annealing, where a metal (steel, for instance) is heated
and then slowly cooled [6, 15]. The slow rate of cooling allows the molecules within the
metal to crystalize in a low-energy equilibrium state, rendering the metal less brittle and
more workable. When this idea is applied in optimization problems, the objective function
is “slowly cooled” so as to prevent solutions from being trapped in local minima or maxima.

1Kullback refers to the Data Processing Theorem as the divergence’s invariance property [7, pp. 18-22].



In practice one simulates this behavior by randomly perturbing the state of a finite discrete
set over which the objective function is defined, and say for a maximization, accepting
perturbations that decrease the objective function with some probability instead of simply
rejecting them. The probabilities in a simulated annealing algorithm primarily depend on
what is known as a temperature schedule which is simply a sequence of decreasing numbers
{Tn} that controls the rate at which these probabilities decrease. Typically the probabilities
are given by the formula exp {−|∆|/Tn} where ∆ is the difference in the objective function’s
value in a current versus a perturbed state and n = 1, 2, . . . [15]. For any given temperature,
the objective function is allowed to reach what is qualitatively equivalent to an equilibrium
state for that temperature. As the temperature decreases, the algorithm converges in prob-
ability under suitable conditions to a globally optimal solution [15]. This convergence result
holds broadly; however, it is often difficult in practice to determine whether the algorithm
has indeed converged and in some cases, the time to convergence can be exponentially
slow [10].

In (5), we posed the problem of maximizing the output divergence as a functional opti-
mization problem—find the quantization rule φ on R

M that maximizes D
(
p(φ)‖q(φ)

)
and

obeys a broadcast system’s structural constraints. However to employ simulated anneal-
ing, the problem must be re-formulated since this technique is geared towards combinatoric
problems, not functional optimizations. In a nutshell, the re-formulation specifies a parti-
tion of R

M a priori and then use the annealing algorithm to search for an optimal labeling of
that partition. Thus instead of attempting to determine an optimal φ outright, we impose
a partition that conforms to a broadcast system’s inherent structural constraints and then
solve the remaining combinatoric labeling problem.

The form of this partition clearly plays an important role in the efficacy of the algorithm,
for a naive choice could severely degrade the quality of the resulting estimate φ̂, regardless of
the cells’ labelings. A convenient choice (because of its simplicity) is to uniformly tessellate
a bounded volume of R

M with hyper-cubes where the number of partitioning cells is greater
than the size of φ’s output alphabet, i.e. larger than LM . Observe that such a partition,
which we shall denote by S, is consistent with the inherent structural constraints of a
distributed broadcast system. In fact, one can form a bounded uniform tessellation simply
by setting the number of thresholds Nm,j in all component rules φm,j equal and requiring
all the thresholds within the bounded region to be equally spaced.

Each cell’s label in S represents membership in one of the LM partitioning regions (cells)
Ri associated with φ. Formally, we can define these regions as unions of like-labeled cells
in S,

Ri =
⋃

k:l(Sk)=l(Ri)
k∈Z

+

Sk, i ∈ {0, . . . , LM − 1}, (6)

where Sk denotes a cell in S and l(·) refers to the label of its argument. The annealing
process therefore attempts to find the best clustering of labels to produce the estimate
φ̂. Besides a label, each cell in S has two probabilities associated with it which are the
probability measures of the cell under H0 and H1. The probabilities pi(φ) and qi(φ) of
the output distributions p(φ) and q(φ) are computed by summing the probabilities of all
like-labeled cells in S, i.e., pi(φ) = Pr(Ri; H0), qi(φ) = Pr(Ri; H1).

At each iteration the annealing algorithm perturbs the labeling of S, computes the di-
vergence between the output distributions induced by the perturbed labeled partition, and
probabilistically updates the labels according to the annealing process. The algorithm
ceases when a stopping criterion is met and the final labeled partition S yields the estimate
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Figure 2. Example label component perturbation when S is an 8 × 8 grid. The left

panel shows an intermediate labeling of S in the annealing process. The right panel

shows the resulting labeling after a label component perturbation. Note that when

the component label in φ2,0 (circled 1) is changed to a zero, five cells in S associated

with φ2,0 are affected.

φ̂. Details about the perturbations, stopping criterion, and the temperature schedules are
given in the following sections.

Note that even though simulated annealing algorithms theoretically converge to a globally
optimal solution for combinatoric problems, our implementation yields only an estimate of
the true globally optimal broadcast quantization rule. First of all, the imposition of S
discretizes the continuous problem of (5). Thus, even if the annealing algorithm converged
to a globally optimal solution in the discretized (combinatoric) problem, this solution would
generally only approximate the actual optimal broadcast quantizer. Second, as noted above,
it is often difficult to determine if the algorithm has indeed converged. Because of this
obstacle, our implementation uses a heuristic stopping criterion that does not formally
verify convergence.

3.1. Perturbations

During the annealing process, all perturbations must conform to the structural constraints
of the distributed problem, otherwise one runs the risk that the resulting quantizer is not
realizable in a distributed setting. In a centralized scenario, where there are no structural
constraints, a perturbation simply consists of randomly selecting a cell in S and randomly
changing its label. Annealing with such perturbations would ultimately yield a φ that
would require a system to have complete access to all inputs X1, . . . , XM . Thus, to ensure
feasible solutions, perturbations in our algorithm alternate between one of two types: a
label component and a membership perturbation. A label component perturbation begins
with a random cell selection in S and is then followed by a random selection of one of the
intervals defining the cell. For example, suppose a cell defined by I5

1 × I6
2,0 was randomly
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Figure 3. Example membership perturbation when S is an 8 × 8 grid. The left panel

shows an intermediate labeling of S in the annealing process and the randomly

selected dimension (here X2’s dimension). The right panel shows the resulting

labeling after a membership perturbation. Note that the second column of S in the

right panel is now associated with φ2,0 instead of φ2,1.

chosen and I6
2,0 was selected among the pair. Next, a new label from the set {0, . . . , L− 1}

is randomly generated and assigned to the selected interval (in this case I6
2,0). Finally, in

adherence to the structural constraints this label component change must also be made to
all other cells in which the selected interval is a factor in its Cartesian product. Denoting a

generic interval by I
(k)
m,j , the initial random cell selection fixes j and in doing so, effectively

chooses one of the LK component rules comprising φm. The random interval selection fixes
m, the dimension of interest. Figure 2 shows one instance of a label perturbation when
M = 2, L = 2, and K = 1.

Similar to a label perturbation, a membership perturbation involves a random cell se-
lection in S and a random selection of an interval (or equivalently a random choice of
dimension). But a membership perturbation also includes a second random cell selection

and the label assignments, l(I
(k)
m,j1

) = l(I
(k)
m,j2

), for k = 0, . . . , N − 1, where m, j1, and j2

are all determined by the two random cell selections. The overall effect therefore is to re-
place the quantization rule φm,j1 with φm,j2 in the randomly chosen dimension m. Figure 3
illustrates an example.

3.2. Temperature schedule and stopping criterion

At each temperature, the algorithm must satisfy a stopping criterion before moving onto
the next temperature. In accord with the annealing analogy, the stopping criterion should
mark the points when “equilibrium states” are reached. Here, like [4], we tie the notion of
equilibrium to the rate of accepting perturbations (those accepted either because they pro-
duce an increase in divergence or those that decrease it but are probabilistically accepted).
The acceptance rate is periodically calculated, and its empirical variance is then compared



to a threshold.

acceptance rate =
no. of times perturbations are accepted in a period at temp Tn

total no. of iterations in period at temp Tn

When the threshold is exceeded, iterations at the current temperature stop and the algo-
rithm either proceeds to anneal at the next temperature or stops altogether if the index n
reaches its maximal value J . The number of temperature stages is determined beforehand
and held fixed throughout the process.

As the algorithm progresses through its temperature schedule, the acceptance rate tends
to decrease for two reasons. First, it becomes less likely that a perturbation will increase the
divergence as the labeling improves and second, lower temperatures reduce the probability of
accepting perturbations that decrease the divergence. Thus the set of threshold values used
in the stopping mechanism is a non-increasing sequence whose length equals the number
of temperature stages. For the example presented below, threshold values for the standard
deviation of the acceptance rate ranged from 10−2 to 10−3.

Unfortunately, as with any application of the simulated annealing algorithm, setting a
temperature schedule is problem dependent. Through experimentation we found that the
schedule, reported in the vector quantization literature [2, p. 369], was useful for the range
of problems considered: Tn = T0(1 − n/J)3, n = 1, . . . , J , where T0 represents an initial
temperature.2

The difficulty in finding appropriate schedules is a commonly voiced drawback to simu-
lated annealing. An approach such as deterministic annealing [13, 14] is appealing in this
regard because it completely eliminates the finicky dependence on temperature schedules.
However, it is not obvious (at least to the authors) that a broadcast system’s structural
constraints can be successfully enforced in the deterministic annealing setting.

4. Numerical example

Consider a simple broadcast structure composed two component quantizers with a single
broadcast link from φ1 to φ2 (M = 2, K = 1). Let each quantizer have a two-element output
index set (L = 2) and suppose the inputs X1 and X2 are jointly Gaussian N (mj , Σj) , j =
0, 1, under both hypotheses, where

H0 : m0 =
(
0 0

)
, Σ0 =

(
1 0
0 1/3

)
; H1 : m1 =

(
1
4

1
4

)
, Σ1 =

(
1 ρ

√
1/3

ρ
√

1/3 1/3

)
.

Letting S be a 64 × 64 grid of cells and ρ (correlation coefficient) be 0.9, the algorithm
stepped through seven temperatures and ceased after 17000 iterations when the variance of
the acceptance rate dropped below 10−3. The left panel in Figure 4 shows the initial random
labeling of S and the right panel shows the final labeling, or equivalently the final estimate φ̂.
The final output divergence D

(
p(φ̂)‖q(φ̂)

)
equals 1.4897 bits. Compared to an optimized

noncommunicative system (with a output divergence equal to 0.7809 bits), broadcasting
improved the asymptotic error exponent of the follow-on detector by approximately 91%.
By using our annealing algorithm we find that in this case a broadcast structure achieves
significantly better performance than a noncommunicative one.

2In our implementation we actually use two temperature schedules—one associated with label component
perturbations and the other with membership perturbations. Both have the same form but differ in their
initial values.
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5. Concluding remarks

Our application of the simulated annealing algorithm requires complete knowledge of the
joint input distributions under both hypotheses. In situations where the input statistics are
not known or are only crudely modeled, training data could be used to estimate the cell
probabilities in S, if a sufficient amount of data is available.

The search complexity of this approach grows exponentially with M , L, and the resolu-
tion of S. Thus, this approach is only suitable for problems with modest sized combinations
of these parameters. However, simulated annealing is well-suited to incorporate a broad-
cast system’s structural constraints whereas it is not immediately clear how to do so in a
deterministic annealing or a Lagrangian formulation.

Broadcast quantizers, like other sequential quantizers, retain a significant amount of
structure in their associated partitions. This structure is a direct consequent of the distrib-
uted nature of the problem and leads to low encoding complexity because each component
quantizer is an easily implementable scalar quantizer. In addition, broadcast quantizers
can, as demonstrated by the example, significantly boost the divergence in comparison to
noncommunicative ones.
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