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ABSTRACT

Spike sorting refers to the detection and classification of elec-

tric potentials (spikes) from multi-neuron recordings, a diffi-

cult but essential pre-processing step before neural data can be

analyzed for information content. While several spike sorting

algorithms have been proposed, our goal is to determine the

ultimate limits of spike classification and to characterize this

error, regardless of spike sorting algorithm. We account for
the major factors influencing the sorting procedure: SNR, rel-

ative amplitude ratio and inter-spike correlation in time and

waveform morphology. Using an ideal detection/estimation

system we calculate detection probabilities and time delay

estimation errors as they vary with these parameters, estab-

lishing upper bounds on spike classification in terms of these

metrics.

Index Terms— Spike sorting, detection, estimation

1. INTRODUCTION

Neurons in our brain communicate by means of action poten-

tials, sometimes known as spikes. These brief electric pulses,
lasting no more than a few milliseconds each, propagate from

a neuron to other neurons through axonal branches. Under-

standing the ins and outs of spiking activity forms the basis

for addressing a variety of neuroscience questions about how

the brain works. In particular, neuroscientists are interested

in “cracking the neural code”: deciphering how information

is encoded in spike sequences. Spiking activity has recently

been used to develop a brain-computer interface for paralyzed

individuals [1].

In one recording approach, electrode probes are inserted

in the extracellular medium to pick up the electrical activity of

neurons. The stream of spike data thus obtained is studied for

its temporal and statistical characteristics to formulate con-

jectures on how neural activity represents information. We

define the spike sorting problem to consist of 3 steps in gen-

eral: (i) detecting the presence of spikes (ii) estimating each

spike’s time of occurrence, and (iii) classifying the detected

spikes according to the neuron that produced each of them.
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Fig. 1. Spike signal constellation model showing detection
region boundaries for spike 2 detection.

Our approach to spike sorting is not to develop a new algo-

rithm. We are interested in characterizing the theoretical lim-

its to which spikes can be correctly identified, regardless of
spike sorting algorithm. We model spike sorting as a multiple

hypothesis detection problem, and calculate detection proba-

bilities and timing estimation errors from this model using an

optimal detector. In this way we quantify the limitations in

detecting whether, and if so, when, a spike has occurred.

The major sources of error are (i) additive non-stationary

noise (due to background spiking and electronic hum), (ii) un-

predictable waveform changes (due to electrode drift and the

non-homogeneous conducting medium), (iii) temporal over-

laps and (iv) similarity between spike waveforms that hin-

ders classification. Assuming a point source model for a

neuron [2], we showed that small-spike interference can be

approximated as gaussian [3] for our analysis. These error

sources in a neural recording can be parameterized by SNR,

spike amplitude ratio and inter-spike correlation.

2. SPIKE SIGNAL CONSTELLATION MODEL

The constellation diagram that we propose is different from

traditional signal constellation diagrams in that spike correla-

tion takes into account error due to overlap in time in addi-
tion to the zero-delay correlation, what we call the morpho-

logical (maximal) correlation of the waveform template. As

shown in Figure 1, the four constellation points denote the

four different hypotheses that describe a two-neuron single-
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Fig. 2. Constellation for (a) non-overlapping spikes separated
by time delay τ and (b) completely overlapping spikes (b).

Distance of s1 and s2 from the origin represents the respec-

tive amplitudes A1, A2 of the two spikes, and their geometric

sum corresponds to the constellation point representing both

spikes occurring within the observation window.

electrode recording. They form a parallelogram having a slant

angle of θ. We take spike 1’s waveform as a coordinate, here

the x-coordinate, so that spike 2’s constellation point is de-
termined by the Gram-Schmidt process. The perpendicular

axis to spike 1 represents all spikes orthogonal in time and/or

waveform to it. Therefore inter-spike correlation accounts for

errors due to both (i) similarity in waveform morphology and

(ii) temporal overlap. Any spike that does not overlap in time

with spike 1 or is perfectly orthogonal (in the sense of an in-

ner product) to spike 1 has its constellation point located on

this perpendicular axis. The angle that spike 2 coordinates

make with spike 1 indicates its total correlation with spike 1.

Geometrically, the correlation angle θ that defines the par-

allelogram’s slant equals sin−1 ρ, where ρ is the inter-spike
cross-correlation for a given overlap τ .

ρ(τ) =

∫ T
0
s1(t)s2(t− τ) dt√∫ T

0
s21(t) dt ·

∫ T
0
s22(t− τ) dt

The distances of spike 1 and spike 2’s constellation points

from the origin indicates their respective amplitudes. The

larger the spike amplitude (as determined by SNR), the fur-

ther from the origin its corresponding constellation point. In

our representation, we use the convention that spike 2 has the

smaller amplitude (A2 ≤ A1). We study not only how SNR

affects the amplitude of both spikes simultaneously, but also

how variations in spike 2’s amplitude with respect to spike 1’s

affect classification and detection performance.

The ideal detector/estimator system that we envision is a

Fig. 3. Matched filter system to calculate upper limits of spike

time estimation error and detection probability.

system of 3 matched filters as shown in Figure 3 in which each

matched filter knows the template waveform for the spike it is

detecting, with the matched filter detecting overlaps testing

for all possible combinations of the two spikes. Each of the

matched filters must estimate the spike time at which its spike

was most likely to have occurred by its ML (Maximum Like-

lihood) estimate before calculating detection probabilities. As

delay is unknown the hypotheses being chosen between are (i)

s1(t− τ̂1) (ii) s2(t− τ̂2) (iii) s1(t− τ̂ov1) + s2(t− τ̂ov2) (iv) no
spike, where τ̂1, τ̂2, τ̂ov1 and τ̂ov2 are the times estimated by
the matched filter. The observation interval is short enough

that the occurrence of two spikes from the same unit is not of

concern. A neuron cannot produce a second action potential

during its refractory period (≈ 1 ms) after producing a spike.

3. LOWER BOUNDS ON SPIKE TIME DELAY
ESTIMATION

We investigate analytical bounds on the estimation error

of the times at which spikes occur. We consider the

Cramér-Rao lower bound on the mean-squared estimation

error for the two-signal delay estimation problem. As-

sume that two signals have occurred at τ1 and τ2 such that
r(t) = s1(t− τ1) + s2(t− τ2) + N(t). The Fisher infor-
mation matrix, whose diagonal elements give a lower bound

on individual time delay error:

F−1 =
N0

2

⎡
⎢⎢⎣

1
1− ρ̇2

1
‖ṡ1‖2

ρ̇2

1− ρ̇2
1

< ṡ1, ṡ2 >
ρ̇2

1− ρ̇2
1

< ṡ1, ṡ2 >

1
1− ρ̇2

1
‖ṡ2‖2

⎤
⎥⎥⎦

We see that the diagonal elements of F−1 depend on N0,

‖ṡ1(t)‖ (which also appears in the Cramér-Rao lower bound
for single spike timing error) and ρ̇, the correlation coeffi-
cient of the signal derivatives. From this bound we see that

the larger ‖ṡ1(t)‖, the lower the mean squared estimation er-
ror of τ1, implying that a narrower or higher frequency spike
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Fig. 4. Variation of (1− ρ̇2)−1
with τ , corresponding to the

variation of estimation error between its minimum and maxi-

mum value as overlap increases.

has a lower mean-squared error than a broader one, given that

N0 (SNR) and ρ̇ are constant. More interesting is the error
dependence on ρ̇. From this expression we see that the mean

squared error in estimating either τ1 or τ2 increases with ρ̇.
ρ̇ and ρ, the correlation coefficient of the signals, are only
loosely related, and quantify different waveform similarities.

Therefore it is the correlation between the signal derivatives,
not the signals themselves, that plays a role in the ultimate

time delay estimation error. Figure 4 describes how the RMS

error scales with overlap for a given pair of spikes at fixed

SNR (implying fixed N0 and ‖ṡ1(t)‖). RMS error grows by
approximately a factor of 12 from zero overlap. Interestingly

we note that the maximumRMS error does not necessarily oc-

cur at the point of maximum overlap between the two spikes.

We performed simulations for error estimation using

spikes from real neural data with added synthetic noise to

compare the error in time estimates with the CRLB for the

two-spike case. The resultant variation of estimation error

with spike overlap corroborates the CRLB estimation error

variation with overlap through ρ̇. Figure 5(a) illustrates how
the time estimate histograms for spike 2’s time vary as the

relative position of spike 2 changes with respect to spike 1,

for equal amplitude s1 and s2. When the spikes do not over-

lap with each other, the peak for spike 2’s time is correctly

located and of greater height than the second histogram peak.

However, in the central region of the mesh plot when spike 1

and spike 2 overlap, detecting spike 2’s location correctly be-

comes more difficult and the width of the peak increases to

a maximum before decreasing again. At close overlaps, the

detector may start to locate spike 2 at spike 1’s location or at

a time between them. These unpredictable variations occur

because of the ways in which the two waveforms overlap by

either reinforcing or negating each other, changing the inter-

spike correlation value which in turn affects the matched fil-

ter’s time MLEs. The peak estimate may lie in between the

true peaks of the two spikes depending on how the two over-

lapping spikes reinforce each other. Figure 5(b) shows spike 1

and spike 2 overlapping to reinforce each other with a time lag

of 0.33 ms (2 samples) between them. Here the detector most

0
20

40
60

20

10

0

10

20

Time (samples) 

T
im

e 
la

g 
be

tw
ee

n 
sp

ik
es

spike 1 fixed at t = 50

spike 2 moving in
time

(a)

10 0 10 20
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

Time (samples)

Time lag t
2
  t

1
= 2 samples

Spike 1

Spike 2

Sum

(b)

Fig. 5. (a) Time delay estimates of spike 2 varying with over-
lap. Spike 1 and spike 2 are equi-amplitude. (b) Two spikes

overlap to reinforce each other, creating a new peak between

the true spike times.

frequently estimated spike 2 (true t2 = 4 and true t1 = 2) to
have occurred at t = 3, when the peak of the overlap signal
occurs between the spike times.

Through simulation we calculated the variation of RMS

timing error with SNR and relative spike amplitude for two-

spike delay estimation. We found that the time estimate his-

tograms for either of the two spikes had a bimodal distribution

since the detector latches on to anything that looks spike-like.

This results in a strong possibility of switching spike times.

The heights of the two peaks in the histogram depend on the

relative amplitude of the spikes in the recording. The larger

a spike is, the taller is the histogram peak at its spike time.

Therefore relative spike amplitude plays a large part in deter-

mining how probable it is that a spike time will be estimated

correctly. Improving either SNR or the relative amplitude of

the spike to be detected lowered the RMS timing error, but

SNR had a stronger effect on lowering error than spike ampli-

tude ratio. On the other hand, spike amplitude ratio was more

influential in improving the height of the histogram peak, cor-

responding to an improved probability that the time estimate

was associated with the correct spike.

4. DETECTION PROBABILITY

We investigated detection probabilities after the spike occur-

rence times have been estimated and found that there is a

detection bias towards selecting the overlap hypothesis: re-

gardless of the true hypothesis in the recording, the matched

filter system always decided that “both spikes” were present,

regardless of SNR. This situation might be expected. Even

though Matched Filter III subtracts the amplitude of the over-

lap template, there is still a large correlation that remains that

is compared with the other matched filter outputs. This usu-

ally happens with template-based detection and has been no-

ticed experimentally as well [4]. We realize that the General-

ized Likelihood Ratio Test (GLRT) is not necessarily optimal
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Fig. 6. Ground truth is that two spikes occur in the recording
overlapping with correlation (a) 0.14π/2 and (b) 0.6π/2. The
curves show error probabilities of detecting each of the two

spikes individually, and probability of detecting the overlap.

because of the element of uncertainty in parameter estima-

tion as seen in non-coherent detectors [5]. The probability of

false alarm and probability of detection are both very high,

regardless of SNR. This behavior we see with Matched Fil-

ter III; there is always a bias towards saying the spikes are

there. Therefore we used an additional threshold to lower the

probability of false alarm.

We investigated the variation of detection probability with

our parameters of interest. Time delay of the spike is esti-

mated prior to detection. This extra step of delay estimation

introduces an additional element of error. Figure 6 illustrates

the hit that detection probability takes when delay is unknown

for single spike detection. Figure 6(a) and (b) illustrate how

detection probability varies with spike amplitude ratio in the

case that two overlapping spikes are present in the recording

for low and high correlation values. We found that detection

probability of the overlap case was best when amplitude ratio

was close to 1. However, depending on how the spikes over-

lap, detection probability of the overlap may not be as high,

or may decrease, especially if they negate each other (here

they reinforce each other positively). We notice that the indi-

vidual probabilities of detecting one of the spikes in the over-

lap largely depends on the amplitude ratio of the two spikes

concerned. The detection probability of the larger spike is al-

ways higher and increases with amplitude disparity. The spike

shapes are similar enough that the detector latches on to the

bigger spike; spike amplitude ratio greatly affects detection

probability. However, if correlation is larger (either due to

greater temporal or morphological overlap) as in Figure 6(b),

we notice that overlap detection probability is better for the

same spike amplitude ratio. Moreover, probability of correct

overlap detection extends to a wider range of spike amplitude

pairs if inter-spike correlation is higher.

5. CONCLUSIONS

We have presented a signal constellation model that ac-

counts for three major parameters of influence in the detec-

tion/estimation of the spike sorting process: noise (SNR), rel-

ative spike amplitude ratio and inter-spike correlation (tem-

poral and morphological waveform overlap). Detection prob-

abilities using an ideal detector can be calculated using this

model, or an equivalent matched filter detector/estimator sys-

tem. Through simulation we found that while relative spike

amplitude is important for detection probability, SNR is more

crucial for minimizing time delay estimation error. We de-

rived that the increase in RMS error with overlap is governed

by maximizing correlation between the signal derivatives, and

not the signals themselves. We also showed that overlap de-

tection is best for similar amplitude spikes, but the trade-off

for equal amplitude is that RMS error will worsen. Thus spike

amplitude plays a large part in correct detection and time es-

timation if there is more than one spike in the observation

interval; even an ideal detector latches on to whichever spike

is larger. An important ramification of classification errors

during the sorting stage is their effect on interval statistics of

the marked point process that the spike train is translated to.

The effects of these errors need to be taken into account when

analyzing spike trains for information content. We emphasize

that the constellation model, detection probability and esti-

mation error results here extend to any detection/estimation
problem for spike-like signals that can be parameterized by

the same sources of error. In fact, the results that we have pre-

sented are applicable to any UWB type communication sys-

tem in which identification of short pulses and their timing is

of concern.
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