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Abstract

Information processing theory endeavors to quantify how well signals encode information
and how well systems, by acting on signals, process information. We use information-
theoretic distance measures, the Kullback-Leibler distance in particular, to quantify how
well signals represent information. The ratio of distances calculated between two informa-
tionally different signals at a system’s output and input quantifies the system’s information
processing properties. Using this approach, we derive the fundamental processing capa-
bilities of simple system architectures that apply universally: the systems and the kinds
of signals they process and produce don’t affect our general results. Applications in array
signal processing and in neural signal analysis illustrate how to apply the theory.
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1 Introduction

Information-bearing signals take on a variety of forms: analog and sampled, contin-
uous and discrete-valued, numeric and symbolic, � single and multi-channel, and
single and multi-dimensional. We seek a comprehensive framework that allows us
to quantify how well a signal represents information and how well systems extract
and process information.
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An important application area that strongly influenced our thinking was neural cod-
ing. Neuroscientists want to determine from neural recordings whether the mea-
sured signals represent information and if so, what information is represented and
with what fidelity. If the signals comprising a neuron’s (or a group of neurons)
inputs are known, how is information processed and represented in the output?
Classic information theory [1] has few answers to these representation and fidelity
questions. For example, entropy is commonly used to assess a signal’s “uncer-
tainty,” but signals have an entropy regardless of whether they are bear informa-
tion or not and whether the information is relevant or not. Assuming an answer to
the information-representation question can be found, rate distortion theory [1–3]
provides an approach to answering the fidelity question. Unfortunately, using this
approach requires knowledge of the joint probability distribution of the input and
output information. Because of the elusive nature of the question “What is informa-
tion?” and because the signal being studied may or may not be the ultimate output,
determining the required joint probability function is quite difficult. Furthermore,
rate distortion theory rests on specifying a distortion measure and on computing the
mutual information between information and signals. Recent work has determined
what distortion measure matches signal encoding mechanisms [4]. One of the rea-
sons neuroscientists are making recordings is to determine the actual distortion
measure. Tishby [5] has developed the information bottleneck approach, wherein
rate-distortion theory, the Data Processing Theorem, and compression play major
roles. There, mutual information is the primary quantity; using mutual information
in this way requires information to obey a probabilistic model. We question the
ultimate validity of creating a probabilistic model for information. Is the informa-
tion contained in Shannon’s paper produced probabilistically? What we mean by
information is not the sequence of words and phrases, but rather the meaning of the
prose. If the information the meaning is random, what kind of random quantity
is it and from what probability distribution was it drawn? Because these questions
ultimately have no concrete answers, we developed a new approach to the analysis
of information processing systems. In our view, a viable information processing
theory requires an “information probe” that can examine any kind of signal mea-
sured anywhere in a complex system and determine how well it conveys relevant
information. By comparing the information probe’s result at a system’s input and
output, we should be able to quantify how well the system processes information.

In this paper, we frame a theory that recasts how one approaches quantifying the
information representation of signals and the information processing capabilities
of systems. Our theory weds results from information theory and statistical signal
processing. We use information-theoretic, generalized-distance measures between
probability distributions that describe stochastic signals. We require viable distance
measures to be analytically tractable, empirically measurable from any kind of sig-
nal, and related to the performance of optimal classification and estimation algo-
rithms. By requiring a single distance measure to be inversely related to the error
optimal processing systems incur, we find that the Kullback-Leibler distance best
satisfies our requirements. We use this measure to create a system theory of infor-
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Fig. 1. An information source produces information considered relevant, an abstract quan-
tity represented by the symbol �. This information, as well as extraneous information rep-
resented by �� and �� is encoded (modulated) onto the signal � , which we assume to
be stochastic. A system, having its input-output relationship defined by the conditional
probability function �� ���� ���, serves as an information filter, changing the fidelity with
which the information is represented by its output, possibly accentuating some aspects of
the information while suppressing others. The information sink responds to the information
encoded in � by exhibiting an action �.

mation processing structures that quantifies the inherent processing capabilities of
various architectures for information processing.

This preliminary theory complements classic information theory, which answers
different questions than the ones posed here. Warren Weaver described in his intro-
duction to Shannon’s classic paper [6] that while Shannon’s work was the mathe-
matical theory of communication, it did not touch the entire realm of information
processing notions that require analysis. He stratified communication problems on
three levels: technical, semantic, and influential. He cast Shannon’s work as the en-
gineering or technical side of the problem because it did not deal with the extraction
of meaning and with taking actions in response to the transmitted information. Our
theory takes the approach that the meaning of signals can only be determined from
actions taken as a result of interpreting the information. Thus, we merge semantic
interpretation into quantifying the effectiveness of action (i.e., influence). In our
framework, information processing ultimately results in actions, and these actions
result in signals of some sort that our information probe the information-theoretic
Kullback-Leibler distance can assess.

2 Assumptions

Our theory rests on several fundamental assumptions. We use a standard
communication-like model as a backdrop (Fig. 1).

� Information can have any form and need not be stochastic.
In general, we make no assumption about what form information takes. We rep-
resent it by the symbol � that we take to be a member of a set (either countable
or uncountable). This parameter could be multi-valued so as to represent multi-
dimensional information, each component of which is a member of a different
set. We represent parameter vectors by the boldfaced symbol �. This symbol
represents the meaning of the information that signals encode. Information unin-
teresting to the information sink may also be present; the symbols ��, �� in Fig. 1
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represent extraneous information. We do not assume information results from a
probabilistic generative process. Rather, information takes on a value selected
somehow from an abstract set.

� Signals encode information.
Information does not exist in a tangible form; rather information is always en-
coded into a signal. Signals representing the same information can take on
very different forms. For example, this text’s alphabetic/punctuation symbol se-
quence, the image of the page you are reading and the acoustic signal produced
by reading this page aloud each represent the same information. In the first case,
the signal is a sequence drawn from a discrete, finite alphabet; in the latter two,
the signals are analog. Any viable information processing theory must place a
variety of signals on the same footing and allow comparison of the various ways
information can be encoded.

� What may or may not be information is determined by the information sink.
The recipient of the information the information sink determines what about
a signal it receives is informative. Additional, often extraneous, information ��,
�� is represented by signals as well. Returning to the example, information extra-
neous to the paper’s central theme is also contained in the signal. The text comes
from a Roman alphabet expressing English prose. The page image reveals page
numbers, fonts and details of themathematical notation. The spoken text encodes
the gender of the reader and dialect, which provides clues as to his/her region of
origin. Such information may or may not be considered extraneous by some suc-
ceeding processing. For example, speaker identification systems are presumably
designed to ignore what is being said. It is for the recipient to determine what
information is. An immediate consequence of this assumption is that no single
objective measure can quantify the information contained in a signal. “Objec-
tive” here means analysis of a signal out of context and without regard to the
recipient.

� When systems act on their input signal(s) and produce output signal(s), they
indirectly perform information processing.
Systems map signals from their input space onto their output space. Because
information does not exist as an entity, systems affect the information encoded
in their inputs by their input-output map. We assess the effect a system has on
information-bearing signals by comparing the fidelity of the relevant information
represented by the input and output signals.

� The result of processing information is an action.
An action is a quantifiable behavior taken by the information sink when it inter-
prets the signal’s information content. We assume that every action is a signal
that can be measured. For example, the influence of a voice command can be
measured by observing the recipient’s consequent behavior.

4



3 Quantifying information processing

In this preliminary information processing theory, we consider information to be a
scalar parameter � or a parameter vector � that controls signal features. In this pa-
per, we take the parameters to be real-valued, but in general they could be complex-
valued or even symbolic. While parameterizing information reduces the generality
of the approach, it helps us develop results that can be applied to many information-
processing systems.

3.1 Quantifying signal encoding

As shown in Fig. 1, let � denote a signal that encodes information represented
by the parameter � as well as �� and ��. We assume that signals in our theory
are stochastic, with their statistical structures completely specified by the proba-
bility function (either a density or a mass function) ������� that depends on the
information parameter �. Implicitly, this probability function also depends on the
extraneous information. This notation for a signal’s probability function could be
misinterpreted as suggesting that signals are simple random variables. Rather, the
notation is meant to express succinctly that signals could be of any kind. We as-
sume that signals are observed over some interval in the signal’s domain and that
its probability function expresses the joint probability distribution of these observa-
tions. The dimensionality of the signal domain is suppressed notationally because
our results do not depend on it; speech, image and video signals are all represented
by the same generic symbol. For discrete domains, we use the joint distribution of
the signal’s values for the required probability function. We include continuous-
domain processes having a Karhunen-Loève expansion [7, �1.4] because they are
specified by the joint distribution of the expansion coefficients (see Appendix A).
Those that don’t have a Karhunen-Loève expansion are also included because of a
result due to Kolmogorov [7, �1.14]. Later, we will need to specify when the signal
has multiple components (i.e., multi-channel signals); in these cases, the signal will
be written in boldface.

Because we have argued that analyzing signals for their relevant information con-
tent statically is a hopeless task, we conceptually (or in reality for empirical work)
consider controlled changes of the relevant and/or irrelevant information and de-
termine how well the signals encode this information change [8]. By considering
induced information changes, we essentially specify what constitutes information.
We quantify the effectiveness of the information representation by calculating how
different are the signals corresponding to the two information states. In this way,
we have what amounts to an information “probe” that can be used anywhere in
an information system architecture to quantify the processing. Because the signals
can have an arbitrary form, usual choices for assessing signal difference like mean-
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squared error make little sense. Instead, we rely on distance measures that quantify
differences between the signals’ probabilistic descriptions. More concretely, when
we change the information from a value of �� to ��, the change in � is quantified
by the distance ������ ���, which depends not on the signal itself, but on the prob-
ability functions �������� and ��������. Basseville reviews distance measures
for probability functions in the context of signal processing applications [10]. We
require potential distance measures to satisfy ������ ��� � � with ������� � �.
Conceptually, we want increasing distance to mean a more easily discerned in-
formation change in the signal. We do not require viable distance measures to be
monotonically related to the information change because doing so would imply
that information has an ordering; since we include symbolic information, impos-
ing an ordering would be overly restrictive. We envision calculating or estimat-
ing the distance for several values of �� while maintaining a reference point ��.
In this way, we can explore how information changes with respect to a reference
produce distance changes. We have found that a systematic empirical study of a
signal’s information representation requires that several reference points be used.
This requirement would seem excessive, but the geometries of both estimation and
classification [9] clearly state that information extraction performance depends on
the reference. Consequently, a thorough characterization of information encoding
demands that the information space be explored.

A widely used class of distances measures for probability functions is known as
the Ali-Silvey class [11]. Distances in this class have the form ������ ��� �
�����	��������, where���� represents the likelihood ratio �� ������
��������, 	���
is convex, ����� denotes expected value with respect to the probability function
specified by the parameter ��, and ���� is a non-decreasing function. Thus, each
distance measure in this class are defined by the choices for ���� and 	���. Because
we require �� ����� � �, we restrict attention here on those distances that satisfy
�
�
	�	�

�
� �. Among the many distance measures in this class are the Kullback-

Leibler distance and the Chernoff distance. The Kullback-Leibler distance is de-
fined to be

������ ��� � �� ������� �
�
�������� 
��

��������

��������
� � (1)

While the choice of the logarithm’s base is arbitrary, 
����� denotes the natural log-
arithm here unless otherwise stated. To create the Kullback-Leibler distance within
the Ali-Silvey framework, 	��� � � 
�� � and ���� � �. The Kullback-Leibler
distance is not necessarily symmetric in its arguments, which means that it cannot
serve as a metric. Another distance measure of importance here is the Chernoff
distance [12].

	� ���� ��� � ���
�����


 
�� ���� ��� �
�
����������

�������������
� � (2)

It too is in the Ali-Silvey class for each value of , with 	��� � 
�� and ���� �

 
���
��. Because of the optimization in its definition, the Chernoff distance itself
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is not in the Ali-Silvey class. A special case of the Chernoff distance in the Ali-
Silvey class is the Bhattacharyya distance������ ���, which equals
 
�� ���

�
� [13,

14].

As the Kullback-Leibler distance exemplifies, the term “distance” should not be
taken rigorously; all of the distances defined here do not obey some of the fun-
damental axioms true distances must satisfy. The Kullback-Leibler distance is not
symmetric, and the Chernoff and Bhattacharyya distances do not satisfy the tri-
angle inequality [14]. �� ������� is taken to mean the distance from �� ������
to ��������; because of the asymmetry, the distance �� ������� from �� ������
to �� ������ usually differs from �� �������. Despite these technical difficulties,
recent work has shown that the Kullback-Leibler distance is geometrically impor-
tant [9, 15, 16]. If a manifold of probability distributions were created so that prob-
ability function pairs having an equivalent optimal classifier defined the manifold’s
invariance structure, no distance metric can exist for the manifold because dis-
tance cannot be a symmetric quantity. The Kullback-Leibler distance takes on that
role for this manifold. Delving further into this geometry yields a relationship be-
tween the Kullback-Leibler and Chernoff distance measures [17]. On the manifold,
the geodesic curve ����� linking two given probability distributions �������� and
�������� is given by

����� �
������������������������

���
� � �  � 	�

where ��� is defined in equation (2). Define the halfway point on the manifold de-
fined according to the Kullback-Leibler distance as the distribution equidistant from
the endpoints: � �������� � � ��������. The location � of the halfway point turns
out to also be parameter value that maximizes
 
�� ��� and the halfway-distance
equals the Chernoff distance: 	 ���� ��� � � �������� [10, 17]. The Bhattacharyya
distance essentially chooses “halfway” to mean  � �

� , which equals 
� only in

special cases.

These distance measures satisfy the following important properties.

(1) The Kullback-Leibler distance is not a symmetric quantity, but the Chernoff
and Bhattacharyya distances are.

(2) These three distances have the additivity property: The distance between two
joint distributions of statistically independent, identically distributed random
variables equals the sum of the marginal distances. Note that because of the
optimization step, the Chernoff distance is not additive when the random vari-
ables are not identically distributed; the Kullback-Leibler and Bhattacharyya
distances are. When jointly defined random variables have a Markovian de-
pendence structure, the Kullback-Leibler distance between their joint distri-
butions equals the sum of distances between the conditional distributions.
Taking the first-order Markovian case as an example, wherein �������� �
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����������
����
��� ����� ���

����������� and �������� has a similar structure,

�� ������� � ��� ������� �
����
���

����� ���
������� (3)

where

����� ���
������� ��

��������
������ ������ 
��

��������
�����������

��������
�����������

�� ���� (4)

The Bhattacharyya distance does not have this property.
(3) Through Stein’s Lemma [18], the Kullback-Leibler and Chernoff distances

are the exponential rates of optimal classifier performance probabilities. If �
is a random vector having � statistically independent, identically distributed
components with respect to the probabilistic models characterized by �� and
��, the optimal (likelihood ratio) classifier results in error probabilities that
obey the asymptotics


��
���


����
�

� 
�� ������� � fixed ��


��
���


���	
�

� 
	� ���� ���


��
���


���	
�

� 
������ ���

Here, �� , �� , and �	 are the false-alarm, miss, and average-error proba-
bilities, respectively. Loosely speaking, Stein’s Lemma suggests that these
error probabilities decay exponentially in the amount of data available to
the likelihood-ratio classifier: for example, �� � ����
��� �������� for a
Neyman-Pearson classifier [19]. Because of the form of Stein’s Lemma, these
distances are known as the exponential rates of their respective error proba-
bilities: the relevant distance for each error probability determines the rate of
decay. Whether all Ali-Silvey distances satisfy some variant of Stein’s Lemma
is not known. The only distances known to be asymptotically related directly
to optimal classifier error probabilities are the Kullback-Leibler and Chernoff
distances.

(4) When the information vector has real, continuous-valued components and the
derivatives exist, all Ali-Silvey distances have the properties that the first par-
tial of �������� with respect to each component of � is zero and that the
Hessian is proportional to the Fisher information matrix when evaluated at
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� � ��.
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���

�����
����

� �

����������

�����


�����
����

� � � �	�	�� 	���	� ����������


A Taylor series argument based on these results suggests that for perturba-
tional changes in the parameter vector, �� � �� � Æ�, the distance between
perturbed stochastic models is proportional to a quadratic form consisting of
the perturbation and the Fisher information matrix evaluated at ��.

����� � Æ����� � Æ�
�������Æ� (5)

The constant of proportionality equals 	
� for the Kullback-Leibler and Bhat-
tacharyya distances, and equals �� 
 ����� 
 for the Chernoff distance. We
refer to this result as the locally Gaussian property of distance measures: when
� is Gaussian with only the mean� depending on the information parameter,
all of the three distance measures of interest here (and many others) have the
form

��������� �
�
�����
�����

��
��

�
�����
�����

�

for all choices of the information parameter (whether perturbationally dif-
ferent or not). Consequently, the distance between perturbationally different
probability functions resembles the distance between Gaussian distributions
differing in the mean. The reason this property is important traces to the
Cramér-Rao bound, a fundamental bound on the mean-squared estimation er-
ror [20]. The bound states that for scalar parameter changes, the mean-squared
error incurred in estimating a parameter when it equals �� can be no smaller
than the reciprocal Fisher information. Thus, the larger the distance for a per-
turbational change in the parameter, the greater the Fisher information, and
the smaller the estimation error can be.

The last two properties directly relate our distances to the performances of optimal
classifiers and optimal parameter estimators. By analyzing distances, we at once
assess how well two informationally different situations can be distinguished and
how well the information parameter can be estimated through observation of the
signal � .

3.2 Quantifying system performance

To analyze how well systems process information, we let � denote the output of a
system that has � as its input as shown in Fig. 1. Because the input is stochastic
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and encodes information, � is also a stochastic process that encodes information.
Mathematically, the input-output relationship for a system is defined by the con-
ditional probability function �� ������, which means that ���� � form a Markov
chain� � � : the input signal is all that is needed to calculate the output. Note that
this formulation means that the system cannot access the information parameter �
other than through the encoded input� .

We require the distance measure to be what we call information theoretic: it must
obey the so-called Data Processing Theorem [17, 21], which loosely states that
a system operating on a signal cannot produce an output containing more in-
formation than that encoded in its input. The Data Processing Theorem is usu-
ally stated in terms of mutual information. Here, we require any viable distance
measure to have the property that for any information change, when � � � ,
������ ��� � �� ���� ���: output distance cannot exceed input distance. All dis-
tances in the Ali-Silvey class [11] have this property by construction. Many others,
such as the resistor average (to be described later) and Chernoff distances, do as
well.

To evaluate how well systems process information, we define the quantity �, the
information transfer ratio, to be the ratio of the distance between two output dis-
tributions that corresponds to two information states and the distance between the
corresponding input distributions.

���� ���� ��� �
�� ���� ���

������ ���

This ratio is always less than or equal to one for information-theoretic distances. A
value of one means that the information expressed by the input is perfectly repro-
duced in the output; a value of zero means the output doesn’t represent the informa-
tion change. Note that achieving a value of one does not require the output signal be
of the same kind as the input. Kullback [22] showed that if the information trans-
fer ratio equals one for all ��, ��, � is sufficient statistic for � . More generally,
the information transfer ratio may equal one only for some choices of �� at each
reference value �� of the information parameter. � In such cases, the information
transfer ratio quantifies those aspects of the information expressed perfectly in the
system’s output and those that aren’t. A systematic study of a system’s information
processing demands that �� and �� vary systematically, with �� usually taken as a
reference point.

For the special case wherein the information parameter vector is perturbed (�� �
�� � Æ�), we can explicitly write the information transfer ratio for all distance

� Consider a statistically independent sequence of Gaussian random variables wherein the
mean and variance constitute the components of the parameter vector. Let a system compute
the sample average. Changes in the mean will yield an information transfer ratio of one
while changes in the variance will not.
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measures that satisfy the locally Gaussian property (5).

���� ������ � Æ�� �
Æ�

�
�� ����Æ�

Æ�
�
������Æ�

Note that the information transfer ratio for perturbational changes does not depend
on the choice of distance measure. A subtlety emerges here in the multiparameter
case: the value of � depends, in general, on the direction of the perturbation Æ�,
which means that 
��Æ��� ���� ������ � Æ�� does not exist. This result is not
surprising since it tells us that the information transfer ratio differs in general for
each parameter component ��. For example, there is no reason to believe that a sys-
tem would preserve the information about amplitude and phase to the same fidelity.
Examples show that when �� and �� differ substantially, the information transfer
ratio’s value does depend on distance measure choice. For example, symmetric and
non-symmetric measures must yield different ratios.

The information transfer ratio quantifies the information-processing performance
of systems and allows us to think of them as information filters. Let �� define
an operating point and allow �� to vary about it. Some changes might yield a
dramatic reduction in � while other changes leave � near its maximal value of
one. In this sense, the system, by acting on its input signals, reduces the ability to
discern certain information changes relative to others. A plot of ���� ������� as
a function of �� reveals the system’s information transfer ability. The “passband”
occurs when the information transfer ratio is relatively large and the “stopband”
when it is much smaller. Note that in general, this ability varies with operating
point defined by ��. The maximum value of the information transfer ratio defines
the system’s information gain and quantifies how well the system’s output can be
used to extract information relative to the input.

To illustrate the information filter concept, we consider an array-processing exam-
ple. Fig. 2 shows a five-sensor linear array that attempts to determine the waveform
of a propagating sinusoidal signal observed in the presence of additive Gaussian
noise by using classic delay-and-sum beamforming [23]. With the information pa-
rameters being the amplitude and propagation angle, the Kullback-Leibler distance
between inputs corresponding to the reference and to other amplitudes and angles
is given by (see Appendix A for how the Kullback-Leibler distance between analog
Gaussian processes is calculated)

�� ����� �������� ���� �

�

���

�
�
�
��

� ��
�
�

�

 �����

������
�
� ����
 � ����

�
�����

�
� ����
 � ����

�
�
�

where � is the observation interval, ��
� is the spectral height of the white noise,
and �� �� � are the propagating sinusoid’s amplitude, frequency and angle, respec-
tively. � ��� � �

�
��� � is the propagation delay between sensors spaced � apart with
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Fig. 2. A sinusoidal signal propagates toward a five-sensor array. Each sensor measures the
propagating field at a particular spatial location in the presence of noise, which we assume
to be Gaussian and white both temporally and spatially. The left column shows analog and
digital beamformers, each of which delays each sensor’s output by an amount designed
to cancel the propagation delay corresponding to a particular angle, here equal to ��. The
digital system’s delays are quantized versions of these delays. The delayed signals are then
averaged (the summers in the block diagrams represent averagers). For analyzing the in-
formation processing capabilities of these beamformers, the input is the vector of sensor
outputs over a time interval lasting 	 � ��� s and the output is defined over a shorter time
interval of 	 � �
�. The propagating signal is � ��	�
���, with  � ���, and the noise at
each sensor had spectral height 500. In the digital case, each output is lowpass-filtered then
sampled (bandwidth equal to ���� Hz and sampling interval � � �� s). The information
vector contains the propagating signal’s amplitude and propagation angle:� � ��� ��. The
top plot shows the Kullback-Leibler distance between inputs measured in bits (choosing
base 2 logarithms in (1)), with the reference being�� � �
�� �Æ�. The right column shows
the information transfer ratios for the two beamformers.
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	 being the propagation speed. � is the number of sensors in the linear array.
How the distance varies with angle reflects the signal’s sinusoidal nature. The ana-
log beamformer, having processing delay � � � � ����, yields an output distance
�� ����� �������� ���� of

� 
 �� 
 	�� �

����

�
��

������
�
� ����
 � �

�
�����
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� ���� 
 � �
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��

������
�
� ����
 � �

�
�����

�
� ����
 � �

�
��

Fig. 2 shows the resulting information transfer ratio. The design behind a beam-
former is to produce an estimate of the waveform propagating from a specific di-
rection ��. Signals propagating from other directions should be suppressed to some
degree. Because the beamformer is linear, it does not affect signal amplitude. The
information transfer ratio should reflect these signal processing capabilities, but
in addition indicate how the processing affects the ability of optimal processors
to determine information represented by the propagating signal. Because we se-
lected amplitude and propagation angle as the information parameters, we can ex-
amine how the beamformer reduces the ability of optimal systems to extract these
parameters. First of all, the analog beamformer’s information transfer ratio maxi-
mal value does not achieve the largest possible value of one; its maximal value is
	
��
	�� �
� . This fundamental reduction occurs because each sensor produces
a signal over the same time interval that is delayed by the beamforming algorithm
relative to the others before averaging. Since averaging only makes sense over a
time interval when all delayed signals overlap, the signal-to-noise ratio at the out-
put is smaller than that of the vector of sensor outputs. The maximal information
transfer ratio is maintained for two conditions. The ridge extending along the angle
�� for amplitudes larger than the reference indicates the intended spatial filtering
properties of the array. Signals propagating from other directions are suppressed.
For smaller amplitudes than the reference, the information transfer ratio is essen-
tially constant for all propagation angles. This property, which is certainly not part
of the beamformer’s design, means that the beamformer affects little the ability to
detect smaller amplitude signals.

The Kullback-Leibler distance at the output of the digital beamformer expresses
the loss due to sampling.
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The sampling interval is �. The digital beamformer’s information transfer ratio
is smaller because the sampling restricts the angles to those wherein the sampled
delay �� �

	
��

�



is an integer. The sampling interval and reference propagation

direction were selected in this example so that the required delay would not be an
integer number of samples. The beamformer no longer provides maximal informa-
tion at an angle corresponding to that of the reference signal, and the information
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transfer ratio shown in Fig. 2 reflects this loss.

3.3 Choosing a distance measure

We focus here on the Kullback-Leibler distance and measures related to it. We use
the Kullback-Leibler distance because its computational and analytic properties are
superior to those of the Chernoff distance. For example, estimating the Chernoff
distance from data would require solving an optimization problem and the fact that
the Chernoff distance does not have the additivity property means it is less conve-
nient to use analytically. We have a complete empirical theory [24] that frames how
to estimate Kullback-Leibler distances from data, examples of which can be found
in [25, 26].

Despite the Kullback-Leibler distance’s computational and theoretical advantages,
what becomes a nuisance in applications is its lack of symmetry. We have found
a simple geometric relationship among the distances measures described here, and
this relationship leads to a symmetric distance measure related to the Kullback-
Leibler distance. Although Jeffreys [27] did not develop it to symmetrize the
Kullback-Leibler distance, the so-called � -divergence equals the average of the
two possible Kullback-Leibler distances between two probability distributions. �

Assuming the component Kullback-Leibler distances exist,

��������� �
�� ������� ��� �������

�
�

We now have a symmetric quantity that is easily calculated and the Ali-Silvey class
contains it (	��� � ���

�

�� �). However, its relation to classifier performance is

more tenuous than the other distances [10, 14].


��
���


���	
�

� 
���������

We have found this bound to be loose, with it not indicating well the exponential
rate of the average-error probability �	 (which is equal to the Chernoff distance).
Symmetrizations beyond simple averaging are the geometric and harmonic means.
The geometric mean ��������� �

�
�� ��������� ������� does not seem

have as interesting properties as the harmonic mean. We define a new symmetric
distance, what we call the resistor-average distance, via the harmonic mean.

�����������
�� � ��� ��������

�� � ��� ��������
�� (6)

� Many authors, including Jeffreys, define the �-divergence as the sum rather than the
average. Using the average fits more neatly into the graphical relations developed subse-
quently.
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This quantity gets its name from the formula for the equivalent resistance of a set
of parallel resistors: 	
�equiv �

�
� 	
�� . It equals the harmonic sum (half the

harmonic mean) of the component Kullback-Leibler distances. It is not as arbitrary
as the � -divergence or the geometric mean as it arises by considering the halfway-
point on the geodesic using the opposite sense of equidistant used in formulating
the Chernoff distance: rather than equating the distances from the endpoints to the
halfway point, equate distances from the halfway-point to the ends. Denoting this
point along the geodesic by ��, we seek it by requiring� ��������� � � ���������.
The “ends-to-middle” notion of “halfway” results in the Chernoff distance; this
“middle-to-ends” notion has a closed form solution.

�� �
� �������

� ������� �� �������

� ��������� � ����� ��� � 
�� �����

The quantities �� and � are equal when the probability distributions are symmet-
ric and differ only in mean. In these special cases, the Kullback-Leibler distance
is symmetric, making ����� ��� � �

�
� �������. The resistor-average is not an

Ali-Silvey distance, but because of its direct relationship to the Kullback-Leibler
distance, it is locally Gaussian (as is the � -divergence and the geometric mean).
The resistor-average distance is not additive when the signal has statistically in-
dependent components. However, it is directly computed from quantities that are
(Kullback-Leibler distances), making it share the computational and interpretative
attributes that additivity offers, but producing a symmetric result. For these rea-
sons, the resistor-average distance has been used in pattern and speech recognition
algorithms [28, 29].

The relation between the various distance measures can be visualized graphically
(Fig. 3). The quantity 
 
�� ��� is concave, and its derivatives at  � � and  � 	
are �� ������� and 
�� �������, respectively. The quantity �� occurs at the
intersection of these tangent lines, which means that the resistor-average distance
upper bounds the Chernoff distance: ��������� � 	� �������. Consequently,

�����

�	
��
�

� 
���������. The various distance measures described here
have a specific ordering that applies not matter what the component probability
distributions may be.

������ ������� ��� �������� � ��������� � ���������

� ������ ������� ��� ��������

� ��������� � 	� ������� � ���������

In many realistic examples the Chernoff distance roughly equals half the resistor-
average distance. � Consequently, we have an easily computed quantity that can
approximate the more difficult to compute Chernoff distance. The � -divergence

� Computer experiments show that this relationship, found in analytic examples, does not
apply in general. In some examples, the curve � ������� can lie close to the �-axis, leaving

15



t

C(p0,p1)

R(p0,p1)

tD(p0||p1)

(1-t)D(p1||p0)

0 1t*t**

D(p0||p1)

D(p1||p0)

0.5

B(p0,p1)

J(p0,p1)

–log μ(t)

G(p0,p1)

Fig. 3. This figure portrays relations among many of the most frequently used informa-
tion-theoretic distances. The focus is the function � ��� ���� used to define the Cher-
noff distance (2). The slopes of its tangent lines at � � � and � � � correspond to the
Kullback-Leibler distances. The tangent lines intersect at � � ���, the value of which
corresponds to the resistor-average distance defined in (6). The Bhattacharyya distance
����� ��� equals � ����

�
�
�

�
. The �-divergence ����� ��� equals the average of the two

Kullback-Leibler distances, with the geometric mean ����� ��� lying somewhere between
the �-divergence and the smaller of the Kullback-Leibler distances.

differs much more from the Chernoff distance while the more difficult-to-compute
Bhattacharyya distance can be quite close. This graphical depiction of these dis-
tance measures suggests that as the two Kullback-Leibler distances differ more and
more, the greater the discrepancies between the Chernoff distance and both the
� -divergence and the Bhattacharyya distance.

4 A system theory for information processing

Using the information transfer ratio based on the Kullback-Leibler distance, we can
quantify how various system organizations affect the ability to perform information
processing. We emphasize that these results make few assumptions about the sys-
tems they can be linear or nonlinear and we assume little about the signals they
process and produce.

Cascaded Systems. If two systems are in cascade (Fig. 4a), with� � � � � ,
the overall information transfer ratio is the product of the component ratios.

�������� ��� � ���� ���� ��� � �������� ��� (7)

Notice that this result holds for general distance measures (not just the Kullback-
Leibler distance). Because information transfer ratios cannot exceed one, this result

the Chernoff and resistor-average distances far apart, while in others it can hug the tangent
lines so that the Chernoff and resistor-average distances are numerically close.
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Fig. 4. The various system structures for which we can calculate the information processing
transfer ratio are shown. a: The cascade structure. b: A system having several statistically
independent inputs. c: A system having several distinct outputs. d: Several systems acting
separately in parallel in their individual inputs. e: Several systems acting separately on the
same input.

means that once a system reduces � for some information change, that loss of in-
formation representation capability cannot be recovered by subsequent processing.
This result easily generalizes for any number of the systems in cascade. However,
insertion of a pre-processing system can increase the information transfer ratio. For
example, consider a memoryless system that center-clips: if � � ��, � � �; if
� � ��, � � � . Let the parameter � correspond to the input signal’s amplitude.
If �� � ��, the output is zero and, for some range of amplitude changes, the output
remains zero, which yields ���� ���� ��� � �; no amount of post-processing will
change this. On the other hand, if we insert an amplifier of sufficient gain before
the center-clipper, � will be non-zero, making the overall information transfer ra-
tio larger than its original value, but smaller than that of the amplifier. Though (7)
may bear resemblance to transfer function formulas in linear system theory wherein
systems don’t “load” each other and system order doesn’t matter, these properties
don’t apply to information processing systems in general. In particular, our the-
ory suggests that pre-processing can improve information processing performance;
post-processing cannot.

Multiple Inputs. When the input consists of several statistically independent
components (Fig. 4b), the overall information transfer ratio is related to individ-
ual transfer ratios by an expression identical to the parallel resistor formula.

	

���� ���� ���
�
�
�

	

����� ���� ���

This result applies only to those distance measures having the additivity prop-
erty. Note that each ����� can exceed one because each input-output pair ���� � �
does not necessarily form a Markov chain. For example, if the input consists
of � independent and identically distributed Gaussian variables that encode in-
formation in the mean and the system’s output equals the sum of the inputs,
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every ����� � � , while ���� � 	. � The parallel resistor formula implies
���� ���� ��� � ���� ����� ���� ���. While this bound may not be tight (as we have
seen, the right side can actually be greater than one), it tells us that the system’s
overall information transfer ratio is smaller than the individual ratios for each input.
Processing one input badly can dramatically affect a multi-input system’s overall
processing capability.

Multiple Outputs. Let a system have one input and� outputs� � ���� � � � � �� �
as in Fig. 4c. When we use the Kullback-Leibler distance, the overall information
transfer ratio is related to the component ratios as

������������ ����� ��� � ��������� ��� �
��
���

���������������������� ��� � (8)

The conditional information transfer ratio in the summation derives from the
Kullback-Leibler distance’s additivity property for the Markovian dependence case.
Since the indexing of the outputs is arbitrary, result (8) applies to all permutations
of the outputs. Also note that this result applies regardless of the systems, the nature
of the signals ��, and how each signal represents the information. Result (8) says
that the total information transfer ratio equals the sum of one individual transfer ra-
tio plus the sum of the incremental ratios that quantify how each additional output
increases the ability to discriminate the two information states. Since � � 	, the
sum of incremental information transfer ratios must attain some asymptotic value,
which means that beyond some point, additional outputs may not significantly in-
crease the information expressed by the aggregate output. The point of diminishing
returns is reached and producing more outputs does not significantly enhance the
information processing capability.

One important special case has several systems in parallel, each of which processes
the same input. Mathematically, the � outputs are conditionally independent of
each other given the input: �������� �

�
� ��� �������. We consider two cases.

The simplest has each system with its own input that is statistically independent of
the other system’s input (Fig. 4d), as in the common model for distributed detec-
tion [30]. Because of the additivity property, the input and output Kullback-Leibler
distances equal the sum of the individual distances. Simple bounding arguments
show that the overall information transfer ratio ���� is bounded below by the
smallest information transfer ratio expressed by the individual systems and above
by the largest [31]. Consequently, this structure shows no information gain as the
number of systems grow (i.e., little variation with � ). A more interesting case oc-
curs when the systems have a common input, wherein one signal forms the input to
all� systems (Fig. 4e). When each system’s individual information transfer ratio is

� The information transfer ratio equaling one is not surprising because the sum of the
observations is the sufficient statistic for Gaussian distributions parameterized by the mean.
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greater than zero, we show in Appendix B that as the number of systems increases,
���� will always increase strictly monotonically and will have a limiting value of
one as long as the systems being added don’t have information transfer ratios that
decrease too rapidly. This result applies widely: we require no assumption about
the nature of the signals involved or about the systems (other than �  � for each
system). This result holds for any information processing system having the struc-
ture shown in Fig. B.1 regardless of what the systems do, what signal serves as the
common input, or what kinds of output signals are produced. For example, a suf-
ficiently large population of neurons operating independently on their inputs will
convey every information-bearing aspect of their inputs regardless of the neural
code employed [31] and that space-time coding systems, wherein the coding and
the channels are independent of each other, can transmit information asymptotically
error-free.

As a simple illustrative case, consider parallel systems that share a Gaussian input
(� � � ���!���) with each system adding a Gaussian random variable (mean zero
and variance !��) statistically independent of the input and that added by the other
systems. Let the mean � encode the information. Each output �� has a Gaussian
distribution and individual information transfer ratio calculated with the Kullback-
Leibler distance equals !��
�!

�
� � !���. The collective output � is a Gaussian

random vector having mean �� and covariance diag�!��� � � � � !
�
� � � !

�
���

�, where
� � col�	� � � � � 	� and � denotes matrix transpose. The overall information transfer
ratio calculated with the Kullback-Leibler distance equals

���� �
!��
�

�
�
���

	 � !��
�

�
�
���

�

If the sum
�

�
�
���
converges, the information transfer ratio does not achieve its

maximal value of one. Convergence only occurs when 
����� !
�
� � �; in other

words, when the systems become increasingly noisy at a sufficiently rapid rate.
When the sum of reciprocal variances diverges (when, for example, !�� is constant),
the collective output can be used to extract the mean with the same fidelity as the
mean can be estimated from the input. When the noise variances are bounded, we
have

	
���� ���
���

�

� 	
� ���� �

	
���� ���
���

�

� 	
�

Somewhat surprisingly, the asymptotic rates at which the information transfer ratio
increases depend only on the nature of the signal� and not on the nature of � (see
Appendix B).

����
���
�

��
��
	
 "� ����
"��� � is discrete-valued

	

"

�
� is continuous-valued

(9)

To illustrate that the asymptotic behavior depends on the nature of the input distri-
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bution, consider the case wherein the input is an exponentially distributed random
variable and each system’s output is a Poisson random variable.

����� #� � #$
���� � � �

�������� �
�%�����$����

���

Here, %� is the gain between the input and the �th output. Thus, the input is
continuous-valued. Despite the fact the output is discrete-valued, our theory pre-
dicts that the asymptotics of the information transfer ratio will resemble that of the
Gaussian example examined above. The unconditional output probability function
for each system is geometric:

������� #� �
#

#�%�

�
%�

#�%�

���
� �� � �� 	� �� � � �

For the aggregate parallel system, the input and output Kullback-Leibler distances
are
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For the information transfer ratio to achieve a value of one, the sum of the gains
must diverge. In this case, plotting the information transfer ratio when %� � %
reveals a hyperbolic asymptotic behavior. �

Changing the input in this Poisson example to a Bernoulli random variable results
in exponential asymptotics. Here, ����� � � when � � � and equals 	 
 � when
� � 	. The input and output Kullback-Leibler distances are
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Thus, if the sum of gains diverges, the information transfer ratio has an asymptotic
value of one that it approaches exponentially. Consequently, a change in the nature
of the input changes the asymptotics of the information transfer ratio.

� While the hyperbolic asymptotic formula in (9) is valid, we found that the formula

���� �
�
� � �

�

���
more accurately characterizes how � varies with � in several ex-

amples. This formula is exact in the Gaussian example and closely approximates the infor-
mation transfer ratio in this Poisson example.
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From a general perspective, a parallel structure of information processing by noisy
systems can overcome component system noisiness and achieve a nearly perfectly
effective information representation (an information transfer ratio close to one) with
relatively few systems. The information transfer ratio for each system determines
how many systems are needed: the smaller ����� is, proportionally more systems
are needed to compensate.

5 Summary and conclusions

Our theory of information processing rests on the approach of using informa-
tion change to probe how well a signal any signal represents information and
how a system “filters” the information encoded in its input. In the theory’s cur-
rent form, signals must be completely described by a probability function. Both
continuous-time and discrete-time signals are certainly in this class. Signals could
be symbolic-valued, and multichannel signals having a mixed character are em-
braced by our theory. Thus, we can within one framework, describe a wide vari-
ety of stochastic signals. The main idea is to use information theoretic distances,
especially the Kullback-Leibler distance, to quantify how the signal’s probability
function changes as a consequence of an informational change. The choice of the
Kullback-Leibler distance follows from the desire for the distance to express in-
formation processing performance. In the current theory, information processing
means either classification (distinguishing between informational states) or estima-
tion (estimating the information). If one informational state change yields a dis-
tance of 2 bits and another a distance of 3 bits, the detector for the second change
has error probabilities roughly a factor of 2 smaller than the one for the first. For
perturbational changes of real-valued information parameters, the Kullback-Leibler
distance is proportional to the Fisher informationmatrix, thus quantifying how well
the information parameter can be estimated in the mean-square sense. We used the
information transfer ratio to quantify how the information filtering properties of
analog and discrete-time beamformers differ (Fig. 2) and, in another paper, how ef-
fective a neural signal generator is [26]. Thus, our approach can cope with a variety
of signals and systems, and analyze them in unified way.

Conventional wisdom suggests that static measures those that do not require the
information to change such as mutual information and entropy could be used to
assess a signal’s information content. Unfortunately, entropy does not quantify the
information contained in a signal for two reasons. First of all, it considers a signal
as an indivisible quantity, not reflecting what is information bearing and what is not,
and not reflecting what information expressed by the signal is relevant. Paralleling
our approach, one could consider measuring entropy changes when information
changes. However, entropy does not obey the Data Processing Theorem. For ex-
ample, increasing (decreasing) the amplitude of a signal increases (decreases) its
entropy, which means the output entropy is greater (less) than the input entropy.

21



Secondly, entropy cannot be defined for all signals. The entropy of an analog sig-
nal can either be considered to be infinite or quantified by differential entropy [2].
Differential entropy is problematic because it is not scale-invariant. For example,
the differential entropy of a Gaussian random variable is �

� 
�� ��$!
�. Depending

on whether the standard deviation is expressed in volts or millivolts, the entropy
changes! Differential entropy can be related to Fisher information (de Bruijn’s iden-
tity; see [17, Theorem 16.6.2]), but this relationship is not particularly useful. The
Kullback-Leibler distance remains constant under all transformations that result in
sufficient statistics, scale being only one such transformation.

An alternative choice for the quantity upon which to base a theory of informa-
tion processing is mutual information. Mutual information is a statistical similar-
ity measure, quantifying how closely the probability functions of a system’s input
and output agree. Mutual information plays a central role in rate-distortion theory,
where it quantifies how well the output expresses the input. The information bot-
tleneck method uses this property to assess how well signals encode information
when faced with an ultimate signal compression [5]. This approach not only re-
quires specifying what is relevant information, but also the information must have
a stochastic model. While in many problems information could be considered para-
metric (this paper uses many such examples), requiring a stochastic model is overly
restrictive. We attempted to develop a parallel theory that used mutual information
using notions described by Popoli and Mendel [32]. Not only is the relationship be-
tween mutual information and classification/estimation tenuous and indirect, but no
simple structural theory could be obtained. Furthermore, using mutual information
would require all empirical studies to have access to each system’s input and output
because the joint probability function between input and output is required. From
our experience in neuroscience, this requirement can rarely be met in practice. Usu-
ally both can’t be measured simultaneously and what comprises input and output
is only broadly known. Furthermore, the well-known curse of dimensionality be-
comes apparent. If&��� data values are required to estimate either of the marginal
probability functions to some accuracy, estimating the joint distribution requires
&
�
��
�
. Estimating the Kullback-Leibler or resistor-average distances only require

estimates of a single signal’s probability function under two conditions, which is
&���.

Ultimately, we believeWeaver was right [6]: information is about meaning and how
processing information leads to effective action. On more technical grounds, using
rate-distortion theory or the information bottleneck requires specification of a dis-
tortion function that measures the error between the encoded and decoded informa-
tion. In empirical work, such as in neuroscience, wherein you gather data to study a
part of an information processing system, usually the distortion function is both un-
known and irrelevant. Unknown because intermediate signals are just that and only
encode the information: when the decoded information is not evident, distortion
can’t be measured. Irrelevant because we don’t know how to quantify the distortion
between intended and derived meaning. Information for us ultimately concerns ac-
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tions derived from signal interpretation. If action is the measurable output, it cer-
tainly lies in a different space than information or information-bearing signals. In
this case, the distortion function is again unknown. Our use of the Kullback-Leibler
distance encompasses both classification-related and mean-squared error distortion
measures. In cases where information is parametric, the mean-squared error view-
point is arbitrary and restrictive. However, when the “true” distortion measure is
not known, mean-squared error at least represents a well-understood choice.

Our analysis of various information processing system architectures indicates that
structure how systems are interconnected affects information processing capa-
bilities regardless of the kinds of signals and, in many cases, regardless of the spe-
cific information-theoretic distance chosen. The simple cascade result shows that
the ability to extract information can be easily degraded as a succession of systems
process it and the representation changes from one form to another. Once a loss
occurs, such as in our neural system, it can never be regained if only the output
is used in subsequent processing. This conclusion follows from the Data Process-
ing Theorem and consequently is not that surprising. However, the other structures
we have been able to analyze do represent new insights. One important example
is the parallel system result: when a sufficiently large number of systems operate
separately on a common input, their aggregated output can express whatever in-
formation the input expresses with little loss. Inhomogeneity among the systems
and their outputs can occur without affecting this result. If instead these same sys-
tems view statistically independent inputs that encode the same information, the
information transfer ratio cannot exceed the largest information transfer ratio pro-
vided by the component systems [31]. Consequently, this structure is ineffective in
that it provides no more information processing capability than its best component
system. In related work [33, 34], we studied alternative decision architectures for
sensor network processing, some of them incorporating feedback. Instead of try-
ing to solve the difficult problem of finding the optimal distributed quantizer and
directly analyzing its performance, we used the Kullback-Leibler distance to un-
derstand how decision performance would be affected by various design choices.
These information processing results show that exchanging decision information
is just as effective as sharing raw data, meaning that communication costs can be
greatly reduced without affecting performance.

From a broader perspective, our information processing theory goes beyond Shan-
non’s classic results that apply to communicating information. The entropy limit on
source coding defines how to efficiently represent discrete-symbol streams. Chan-
nel capacity defines how to reliably communicate signals over noisy channels, be
they discrete or continuous-valued. Rate-distortion theory assesses how compres-
sion affects signal fidelity. As useful as these entities are, they do not help analyze
existing systems to assess how well they work. More penetrating theories must be
concerned with what signals represent, how well they do so, and how classes of sys-
tems more general than channels affect that representation. Our theory tries to ad-
dress Weaver’s vision [6] of a broader theory that concerns information content. By

23



requiring the information to be changed, we effectively probe the signal’s semantic
content. By using information-theoretic measures that reflect optimal-processing
performance, we can quantify the effectiveness of any signal’s information-bearing
capability.

A Kullback-Leibler distance between two Gaussian random processes

Consider two Gaussian random processes, ������ and ������ with two different
mean functions,���� and���� and the same covariance structure'�� (�. To cal-
culate the Kullback-Leibler distance between ������ and ������ over some time
interval, we used the Karhunen-Loève expansion [7, �1.4] to represent processes in
terms of uncorrelated random variables, ��
�

� , ) � �� 	. Since these variables are
Gaussian, they are also statistically independent, which means that the Kullback-
Leibler distance between two processes can be written as a sum of Kullback-Leibler
distances between their representations
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By using the result for the Kullback-Leibler distance between two Gaussian densi-
ties with different means and the same covariance [19], the right-hand side equals
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Here, �*�� are eigenvalues of '��� �� and �����
� �� �����

� � are the coefficients of the
series expansion of the means using the Karhunen-Loève basis. Defining +�� (�
to be the so-called inverse kernel of the covariance function [35] that satisfies� 
� '�� (�+�� ,�  � Æ�( 
 ,�, it has the same eigenfunctions as '��� �� with
eigenvalues equal to 	
*�. The Kullback-Leibler distance between the processes
has the following expression.
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When the process is white with spectral height ��
� , '�� (� � ��

�
Æ� 
 (� and

+�� (� � �
��
Æ� 
 (�, in which case, the Kullback-Leibler distance between two

white-noise processes differing in their means is �������
��������
��.
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Fig. B.1. The initial portion leading to the output vector � shows what we call a non-
cooperative structure: systems transform a common input � to produce outputs �� that
are conditionally independent and identically distributed. To find the asymptotic behavior
of the information transfer ratio, we append an optimal processing system. In the discrete
case, the optimal processor is the likelihood ratio detector that indicates which value of �
occurred. In the continuous case, the optimal processor is the maximum likelihood estima-
tor of� .

B Multi-output and parallel systems

First of all, we prove that the information transfer ratio monotonically increases as
the number of systems increases regardless of the systems and the input encoding
for the separate system case shown in Fig. B.1: ����

���
� 	. This result rests on
the log-sum inequality [17]:
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��
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with �����, ����� being probability functions. The integral can be a sum in the
case of discrete probability functions. Equality occurs only when ����� � �����.
To apply this result, note that the probability function for each system’s output is
given by

��������� �
�
����������������� � �

Note that ����������, which defines each system’s input-output relation, does not
depend on �. The Kullback-Leibler distance ����� ������� between the outputs
responding to the two information conditions �� and �� equals

� �� ��
���

��� ��������������� �

�
� 
��

��
� ������������������ ���
� ������������������ �
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By applying the log-sum inequality with respect to the input, we upper-
bound this distance and demonstrate the Data Processing Theorem:
����� ������� � �� �������. Applying the log-sum inequality to the inte-
gral over �� , we find that����� �������  ������� �������, with strict inequality
arising because the individual system Kullback-Leibler distances are not zero.
Thus, as the population size increases, the Kullback-Leibler distance strictly
increases. In what follows, we find a lower bound on the rates of increase that
indicates that ���� approaches one asymptotically under mild conditions.
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To determine the rate at which the information transfer ratio approaches one, we
consider an optimal processing system that collects the outputs � to yield an es-
timate � of the input � (Fig. B.1). We then calculate the asymptotic distribution
of the estimate, derive the distance between the estimates, and find the information
transfer ratio between the input and the estimate. Because of the cascade prop-
erty (7), this ratio forms a lower bound on the information transfer ratio between
the input and the parallel system’s collective output.

Discrete-valued inputs

Let � be drawn from a set and have a discrete probability distribution. We are
interested in the asymptotic (in � , the number of parallel systems) behavior of the
information transfer ratio ����������� ��� � �

�������� ���
������ ���. Because
the input distance does not vary with � , we need only consider the numerator
distance. Because the input is discrete, the “optimal processing system” of Fig. B.1
is a likelihood ratio classifier that uses ���� � ���� � � � � �� � to determine which
value of � occurred. Let� � � and � be the output decision. The probabilistic
relation between the input set and the decision set can be expressed by an � -ary
crossover diagram. Since we will consider asymptotics in � , here equal to the
number of systems, we know that the error probabilities in this crossover diagram
do not depend on the a priori symbol probabilities ������� so long as the symbol
probabilities are non-zero. Let -
� � Pr�� � .�� � �
� denote the crossover
probabilities. Then, the output symbol probabilities are

���.���� � ��������

�
�	 
 �


 ���

-�


�
��

�
� ���

�� ������-
�
�

Note that -�� � 	 as � � �. This expression for ���.���� is written in terms
of the crossover probabilities -
� , / �� ), that all tend to � with increasing � . The
crossover probabilities do depend on the distribution of the system output but don’t
vary with the information parameter. We can collect these crossover probabilities
into the set � and explicitly indicate that the distance between classifier outputs
depends on � as ������ ��� ��. As long as the distance is differentiable with respect
to the probabilities ���.����, the distance can be represented by a Taylor series
approximation about the origin.

������ ��� �� � ������ ����� � �
��������� ��� ����� �&�-

�
����

The first term equals the distance ������ ��� since having zero crossover probabil-
ities corresponds to a classifier that makes no errors. When the distance is infor-
mation theoretic, the remaining terms must total a negative quantity because of the
Data Processing Theorem. The maximum of all the crossover probabilities, -���,
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asymptotically equals [36]

-��� � ���� ���
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with ���� a slowly varying function in the sense that 
������
� �����
� � �,
and 	 ��� �� the Chernoff distance. Because -��� dominates the performance of the
optimal classifier as the number of systems increases, the distance ������ ��� ��
decreases linearly as the crossover probabilities decrease, with the largest of these
dominating the decrease. Consequently,
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(B.1)
Here, ' is the value of that component of the negative gradient of the distance
corresponding to -���. Whenever the Chernoff distance diverges as � � �, the
information transfer ratio approaches one asymptotically. Typically, the Chernoff
distance for each system’s output �� is bounded from above and below by con-
stants: 	��� � 	 ��������� �����
�� � 	���  �. This special case means that
new systems added in parallel do not have a systematically larger or smaller dis-
crimination abilities than the others. In this case, the Chernoff distance term in the
exponent of (B.1) increases linearly in � . We thus conclude that for the case of
discrete input distribution with finite support, the asymptotic increase in the infor-
mation transfer ratio (as we increase number of parallel outputs) is exponential (or
greater) and that the information transfer ratio reaches 	 as � � � so long as the
systems being added don’t have too rapid a systematic diminished ability to dis-
criminate which input value occurred. If the regularity condition (differentiability
with respect to the probabilities of signal values) is satisfied, our result applies to
any distance measure used to define the information transfer ratio.

Continuous-valued inputs

To determine the rate of increase of the information transfer ratio when � has a
probability function defined over an interval or over a Cartesian product of inter-
vals, we use the approach shown in Fig. B.1 with � being the maximum likelihood
estimator (MLE) of � . Under certain regularity conditions [37] and because the
��’s are conditionally independent, the MLE is asymptotically (in the number of
systems � ) Gaussian with a mean equal to � and variance equal to the recipro-
cal of the Fisher information 0��� . This result applies when the systems aren’t
homogeneous so long as the third absolute moment of the score function of �� is
bounded and the Fisher information 0��� diverges as � ��. Because the quan-
tity � has conditionally independent components, 0��� �

��
��� 0���� . Thus, if
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this sum diverges, we can obtain the probability density of � .
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If the third derivative of the input probability density function, �������, is bounded,
we can expand ������� in a Taylor series around ., up to the third-order term
and then perform term-by-term integration. This procedure amounts to the Laplace
approximation for an integral. The probability density of � can be then expressed
as
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1�.���
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where 1�.��� is the second derivative of ������� evaluated at .: 1�.��� �
���������

���

���
���
. Result (B.2) says that the distance between MLEs corresponding to

the two information states equals the distance between the input probability den-
sities perturbed in a particular way. If 0��� � 0���� � 0���, then the sum of
Fisher information terms increases linearly in � . In this case, a Taylor-like series
can be written for the distance between perturbed input probability functions using
the Gateaux derivative, a generalized directional derivative.
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Here ' summarizes the negative first Gateaux derivative of the distance in the
perturbational direction. Consequently, for all information-theoretic distances for
which the first-order Gateaux derivatives exist (all Ali-Silvey distances are in this
class), the information transfer ratio between the input and the output � is lower-
bounded by the quantity above divided by ������ ���.
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This result states that the asymptotic information transfer ratio approaches one at
least as fast as a hyperbola. The Gaussian example described previously had this
asymptotic behavior, which means this hyperbolic behavior is tight.
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