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Abstract

Mutual information enjoys wide use in the computational neuroscience community
for analyzing spiking neural systems. Its direct calculation is difficult because es-
timating the joint stimulus-response distribution requires a prohibitive amount of
data. Consequently, several techniques have appeared for bounding mutual infor-
mation that rely on less data. We examine two upper bound techniques and find
that they are unreliable and can introduce strong assumptions about the neural
code. We also examine two lower bounds, showing that they can be very loose and
possibly bear little relation to the mutual information’s actual value.
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1 Introduction

Mutual information is in many ways the cornerstone of classic information
theory, playing central roles in the analysis of both digital and analog com-
munications systems [1]. One of the primary objectives in studying neural
communication is characterizing the amount of stimulus information the out-
put spike train represents. Though it is not clear that mutual information
alone answers this question [2], all agree that it is an important measure of
the statistical relationship between the stimulus and the response.

Throughout this report we consider the paradigm where a continuous-valued
stimulus S is encoded in a single neuron spike response R measured over the
time window [0, T ]. The stimulus and its probability distribution p(S) will be
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considered in an abstract sense, where S could represent a time domain signal
or a stimulus parameter. The spike response R consists of both the number
of spikes in the interval [0, T ] and the actual spike times. The probability
distribution p(R) is therefore a mixed distribution over one discrete parameter
(the count) and a variable number of continuous parameters (the spike times).

Formally, the mutual information [1, 3] between S and R is given by

I(S; R) =
∫

p(s)
∫

p(r|s) log
p(r|s)

p(r)
dr ds. (1)

It is well known that the mutual information can be written as a difference of
differential entropies [3], I(S; R) = h(R) − h(R|S), where

h(R) = −
∫

∞

−∞

p(r) log p(r) dr,

h(R|S) = −
∫

∞

−∞

p(r)
∫

∞

−∞

p(r|s) log p(r|s) ds dr.

The input probability distribution p(S) is entirely under experimental control,
but the input-output relationship of the system, p(R|S), needs to be measured.
If the spike response contains dependencies (serial or inter-neuron), then a
large number of repetitions are required to estimate p(R|S) completely.

In practice, spike responses are almost always binned with binwidth ∆ and
I(S; R) is estimated from the discrete approximation I∆(S; R) = h∆(R) −
h∆(R|S). It is true that I∆(S; R) → I(R; S) as ∆ → 0, but smaller values of
∆ require more data to make reliable estimates. The “direct method” for es-
timating mutual information [5] estimates h∆(R) by presenting stimuli drawn
from p(S), and estimates h∆(R|S) from repeated presentations of the same
stimulus. Because the amount of data required to estimate p(R|S) is usually
very large, most researchers employ techniques for bounding I(S; R).

Neuroscientists use mutual information because they want to characterize how
well a spike response conveys the information contained in external stimuli.
Information theory gives meaning to mutual information through the channel
coding theorem [1] (digital communications) and rate-distortion theory [1, 4]
(analog communications). Both cases involve optimizing mutual information
over the stimulus probability distribution p(S), and calculating I(S|R) for an-
other choice of p(S) may not be theoretically interesting [2]. Bounding tech-
niques are especially important as we consider the need to optimize I(S; R)
over p(S) instead of just calculating it once. If mutual information is to be
used in analyzing neural data, we must determine whether our present tech-
niques for bounding it are adequate. We investigate several techniques found
in the computational neuroscience literature, to see if the bounds are always
valid and useful. We specifically examine cases where spiking neurons violate
the underlying assumptions of the method (e.g., Gaussian noise). In our in-
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vestigations, we focus on the techniques themselves by assuming that we can
make perfect estimates. In reality, estimations will deteriorate with limited
sample sizes.

2 Simple bounds

One class of bounding methods are all based on simple observations. For ex-
ample, the simplest upper bound would be to claim that because mutual
information can be written as a difference of entropies, it is upper bounded
by h(R) ≥ I(S|R). However, because differential entropy can be negative, this
claim is not true in general. After binning, it is true that the discrete entropy
is always non-negative h∆(R|S) ≥ 0, meaning that h∆(R) ≥ I∆(S; R). Un-
fortunately, any entropy calculated in this way depends heavily on the choice
of ∆, and actually doesn’t converge as ∆ → 0. More importantly, the binned
mutual information converges to the true mutual information from below,
I∆(S; R) ≤ I(S; R), and for any particular choice of ∆, h∆(R) may be above
or below I(S; R). Therefore, h∆(R) is not an upper bound for the true mutual
information for all choices of ∆, and it becomes the trivial upper bound of in-
finity as ∆ → 0. Consider a simple example with an exponentially distributed
stimulus producing a constant-rate spike train. Calculating the binned entropy
according to the standard methods [7, p.967] and analytically calculating the
true mutual information [10] shows (figure 1(a)) that h(R) is not an upper
bound in general.

The simplest lower bound method involves estimating the stimulus Ŝ from
the spike response R [5, 6] . Due to a result known as the data processing
inequality [3], I(S; Ŝ) ≤ I(S; R) regardless of the estimator used. This method
will always produce a lower bound, but is estimator specific. Some estimators
could produce very tight bounds if they are based on an accurate model of the
neural coding process. Other estimators could produce the trivial bound of
zero. As [5] points out, this technique could be useful for checking the validity
of a coding model, but only if we knew I(S; R) or a correct upper bound.

3 Gaussian approximation bounds

Another class of bounding techniques assumes that if the stimulus presented
is Gaussian, then the response is also Gaussian and the result of an additive
Gaussian noise process that is independent of the stimulus. A Gaussian model
makes little sense for a spike train that consists of discrete point events, and
Poisson spiking models cannot be statistically independent of the noise (the
variance is the same as mean rate determined by the stimulus). However,
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because the intent is only to find an upper bound, the reality of the model
does not matter if the bound is accurate and effective. With this model, the
mutual information rate [1] is

I(S; R) =
∫

W

0

log (1 + SNR(f)) df, (2)

where SNR(f) = PSS(f)/PNN(f), the ratio of the power spectral densities of
the signal and the noise, and W is the bandwidth.

The upper bound method in this class [5] involves repeating the stimulus many
times and estimating the stimulus by averaging the responses at each discrete
time step (i.e., bin), S(i) = E[Rn(i)]. The noise for each trial is estimated
from the response by subtracting the mean signal, Nn(i) = Rn(i) − S(i). The
power spectrum of S and N are calculated and equation (2) is claimed as an
upper bound because of the Gaussian stimulus distribution. While this would
be true when the Gaussian additive noise assumption is true, it is not provably
true in general. Borst and Theunissen [5] mention that one must check the
correctness of the Gaussian distribution assumption, but also say explicitly
that this technique can be used on both “spiking and nonspiking neuronal
responses” [5, p.953].

To show the danger of applying this upper bound technique to spiking neural
responses, consider an example where the input is a vector of M independent,
identically distributed (iid) Gaussian random variables with S(i) ∼ N(0, σ2).
Each output bin is a Bernoulli random variable with p(R(i) = 1|S(i) ≥ 0) = q
and p(R(i) = 1|S(i) < 0) = (1 − q). Though this is only a simple example, it
could represent a spike response with probability q of firing in a bin when the
input is positive and probability (1−q) of firing when the input is negative. We
can calculate H(R(i)) and H(R(i)|S(i)) analytically to find the true mutual
information rate. Using the technique described above, the mean response
vector is S(i) = E[R(i)] = 1

2
. The autocorrelation of S is a triangle function,

and the resulting power spectrum is PS S(f) = sinc2(πfM). The noise vectors
are Nn(i) = Rn(i) − S(i), with a power spectrum of PNN (f) = 1

4
. The upper

bound on the mutual information rate is calculated according to equation (2),
and the results (calculated numerically) are plotted in figure 1(b). Though
this quantity is claimed as an upper bound applicable to spike responses, it
simply is not always valid for non-Gaussian (spiking) systems.

The lower bound method in this class [5, 7] involves calculating the coherence
function γ2(f) = |PRS(f)|2 /(PRR(f)PSS(f)), using the cross-power spectrum
PRS(f). In the additive Gaussian noise case, SNR(f) = γ2(f)/(1 − γ2(f)),
and the mutual information rate is found from equation (2). This method
is claimed as a lower bound to the true mutual information because it only
accounts for linear correlations between S and R [7, p.967], but no proof is
given that it holds for systems beyond those that simply add Gaussian noise.
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Fig. 1. (a) Binned entropy doesn’t converge as ∆ → 0 and it is not always an
upper bound (b) The Gaussian-based upper bounding technique is violated in this
example. (c) The Gaussian-based lower bound can be a trivial lower bound.

At the very least, the best linear fit for the correlation can be zero even
though there is significant correlation present. Consider a modified version of
the previous example, where the input is again a vector of M (iid) Gaussian
random variables with S(i) ∼ N(0, σ2). Each output bin is a Bernoulli random
variable with p(R(i) = 1| |S(i)| ≥ η) = q1 and p(R(i) = 1| |S(i)| < η) =
q2, where η is an arbitrary threshold. Again, this is only a simple example,
but it could represent a spike response with probability q1 of firing in a bin
when the input magnitude is above a threshold and probability q2 of firing
otherwise. H(R(i)) and H(R(i)|S(i)) are again readily calculable, and so the
true mutual information rate I(S; R) is known. In this case, the coherence

function essentially boils down to γ = Cov(R(i), S(i))/
√

Var(R(i))Var(S(i)),

and the resulting lower bound is plotted in figure 1(c). When q1 = q2, this lower
bound method produces the trivial lower bound of zero. An analysis based on
this bound appears to show that the mutual information is greatest when
|q1 − q2| ≈ 1 and smallest when q1 = q2. The true mutual information actually
has the opposite characteristics, being largest when q1 = q2 and smallest when
|q1 − q2| ≈ 1. If only this lower bound were used to analyze the system, the
results would be very misleading.

4 Conclusions

Given a stimulus set S and an associated probability distribution p(S), mutual
information measures the dependence between that specific stimulus source
and the spike response R. However, accurate estimation of p(R|S) requires
many stimulus presentations, making mutual information difficult to calculate
directly. This is especially true with responses containing complex temporal
and inter-neuron dependencies. If mutual information is directly estimated,
techniques have been developed to remove estimation bias and to decompose
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the measurement into quantities relevant to neural coding [9].

We examined two upper bound techniques in this report (entropy and the
Gaussian noise model) that are in fact not bounds at all. We could not prove
whether the coherence-function approach provides a lower bound or not. Es-
timating the stimulus from the response does indeed provide a lower bound
on mutual information, but it is estimator dependent, which makes its ap-
proximation accuracy very problem and estimator dependent. Additionally,
both lower bounds methods can produce the trivial lower bound of zero. Mu-
tual information plays an essential role in an information theoretic analysis
of communication and processing systems. Because it is difficult to estimate
it accurately, we need better estimators or bounds than currently exist. Our
experience with Gaussian-based estimators indicate that better bounds would
probably results if they reflect the nature of spiking responses produced by
both single and multiple neurons.
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