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Abstract. Wireless sensor networks are often studied with the goal of
removing information from the network as efficiently as possible. How-
ever, when the application also includes an actuator network, it is advan-
tageous to determine actions in-network. In such settings, optimizing the
sensor node behavior with respect to sensor information fidelity does not
necessarily translate into optimum behavior in terms of action fidelity.
Inspired by neural systems, we present a model of a sensor and actua-
tor network based on the vector space tools of frame theory that applies
to applications analogous to reflex behaviors in biological systems. Our
analysis yields bounds on both absolute and average actuation error that
point directly to strategies for limiting sensor communication based not
only on local measurements but also on a measure of how important each
sensor-actuator link is to the fidelity of the total actuation output.

1 Introduction

Recent interest in wireless sensor networks has fueled a tremendous increase in
the study of signal and information processing in distributed settings. Energy
conservation is very important for most interesting applications, which generally
translates into minimizing the communication among sensors to preserve both
individual node power and total network throughput. Consequently, recent sen-
sor network research has primarily focused on adapting well-known signal pro-
cessing algorithms to distributed settings where individual nodes perform local
computations to minimize the information passed to distant nodes (e.g., [1–3]).

The goal of many proposed sensor network algorithms has been to get the
information out of the network (via a special node connected directly to a more
traditional data network) with a good trade-off between fidelity and energy ex-
pended. However, in many applications the implicit assumption is that the infor-
mation coming out of the network will be used to monitor the environment and
take action when necessary. A significant and natural extension to the sensor
network paradigm is a wireless sensor and actuator network (WSAN). A WSAN
consists of a network of sensor nodes that can measure stimuli in the environment
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and a network of actuator nodes capable of affecting the environment. While one
possible strategy summarizes information for a system outside the network to
determine actuator behaviors, greater efficiency should be achieved by determin-
ing actions through in-network processing. A more subtle issue is that processing
and communication strategies optimizing sensor data fidelity may not yield the
best results when actuation performance fidelity is the desired metric.

While WSANs are often discussed, quantitative analysis of their performance
has not received much attention. Existing work can be found in areas such as
software development models for WSANs [4] and heuristic algorithms for re-
source competition based on market models [5]. Other recent work [6] has used
techniques from causal inference to evaluate specific actuation strategies. Most
relevant is the recent work of Lemmon et al. [7] analyzing distributed control
systems while considering the underlying communication network. A control sys-
tem approach is certainly appropriate for some WSAN application models, but
may use more communication resources (especially from actuators to sensors)
and may require the sensors and actuators to operate in the same signal space.

Merging sensed information directly into actions without centralizing the in-
formation and decision making has rarely been considered in man-made systems.
Fortunately, we have examples from biology that demonstrate the effectiveness
of this strategy. Neural systems perform a chain of tasks very similar to the
needs of WSANs: sensing, analysis, and response. Furthermore, evidence indi-
cates that neural systems represent and process information in a distributed way
(using groups of neurons) rather than centralizing the information and decision
making in one single location. This shrewd strategy avoids creating a single point
of vulnerability, so the system can function in the presence of isolated failures.

In neural systems, two types of behaviors exist, depending on whether there
is “thinking” involved, which we call conscious and reflex behaviors. In conscious
behavior, biological systems gather sensory information, make inferences from
that information about the structure of their environment, and generate actions
based on that inferred structure. In reflex behavior, a sensed stimulus directly
generates an involuntary and stereotyped action in the peripheral nervous system
before the brain is even aware of the stimulus [8]. An obvious example of a reflex
behavior is the knee-jerk reaction achieved by a doctor’s well-placed tap below
the kneecap. A more subtle example is the eye position correction that allows
our vision to stay focused on an object even when our head is moving.

WSAN applications have an analogous division, which we call object-based

and measurement-based network tasks. For example, the canonical target track-
ing scenario is an object-based task because it involves using sensory measure-
ments to infer information about objects in the environment. On the other hand,
an application such as agricultural irrigation is a measurement-based task be-
cause sensor measurements directly contain all the necessary information —
there is no underlying environmental object to try and infer. In this work we con-
sider models of measurement-based WSAN applications. While measurement-
based systems are simpler and possibly more limited than object-based systems,
they provide an entry point for analyzing and designing WSAN algorithms.



WSANs are complex systems with many interacting layers of operation.
There are significant communication and networking challenges in these systems
that are the focus of current research efforts. While the biological reflex sys-
tems described earlier do not appear to adaptively change their communication
strategy on short time scales, the nature of wireless networking may necessitate
dynamic decisions to employ different communication strategies based on current
network conditions. Networking strategies to limit communication in the system
must weigh the cost of executing individual communication links against the
detrimental effect of performing suboptimal information processing. The role of
our present research is to analyze a distributed WSAN model for a broad class of
applications. We want to determine the optimal information processing strategy
and to quantify the effects of suboptimal strategies resulting from eliminating
communication links. As a simple starting place for our analysis, we will use
vector space methods to model sensors and actuators, leveraging the notion of
frame theory to analyze systems of nodes with overlapping influence.

2 Sensors and actuators

As an example reflex behavior that will shape our thinking about WSANs, we
consider the crayfish visual system. The crayfish has a dorsal light reflex [9]
where light movement in the visual field elicits predictable reflex movement in
the eyestalk that attempts to keep a constant orientation of the visual field. The
main visual representation (in neurons called “sustaining fibers”) is comprised
of sensory elements that sum light activity in overlapping spatial regions. All of
the information available to the creature about the light stimulus is contained
in this collection of sustaining fiber responses.

The crayfish eyestalk movement is controlled by a set of motorneurons, which
send signals to several small muscles. Each muscle generates movement in one
specific direction. As with the sensory units, the muscle movement directions
also overlap in the movement space (i.e., muscle movements are not “orthogo-
nal”). Most importantly, the activity in each motorneuron is determined directly
from a processed combination of some sustaining fiber inputs. Though all of the
motorneurons have to be coordinated to produce the desired total action, their
distributed individual responses are generated directly from the distributed sus-
taining fiber representation and without a centralized decision-making structure.
Previous research has shown that even in this critical behavior, the contributions
of each sensory unit to the total action are simple and essentially linear [10].

Our WSAN model will follow the principles seen in this example from the
crayfish. Though the constraints facing biological systems are different from
the constraints imposed by wireless networking, neural systems must also be
very resource efficient and try to minimize communication (each neural signal
generated means expending more metabolic energy). Biological systems must
have solutions that do a good job (some would even argue optimal) at trading-
off performance and efficiency, and we use them as a rough guide.



In our model, a collection of sensors measuring overlapping spatial regions
gather information about a stimulus field. A collection of actuators have individ-
ual environmental effects that overlap and must be coordinated. Each actuator
determines its individual contribution to a behavioral goal through a combina-
tion of the sensor measurements. We start with the simplest scenario where only
this direct sensor-to-actuator communication is allowed. By eliminating inter-
sensor and inter-actuator communication, we also eliminate the communication
overhead necessary for such a scenario. It may be possible to improve system
performance by allowing additional communication and cooperation, depending
on the specific networking model and communication costs involved.

A major goal in any information processing strategy for WSANs is retaining
good performance in the total actuation while reducing the communication bur-
den from the sensors to the actuators. To analyze the performance of a WSAN
under different design decisions, we use mathematical models based in the fa-
miliar tools and terminology of vector spaces.

2.1 Vector space models of sensors and actuators

Sensor network models often begin with a collection of sensors distributed over a
2-D spatial field limited to the spatial domain W (e.g., W = [0, 1]2). Sensors are
indexed by k ∈ K, and are located either irregularly or on a regular grid. The
spatial region being sensed contains a stimulus field, denoted by x(w), where
w ∈ W is a vector indicating location in the field.

Sensor measurement models often consist of averaging the stimulus field over
non-overlapping spatial regions surrounding each sensor [11]. We generalize that
notion by representing each sensor by a receptive field sk(w) over W that per-
forms a weighted average over a spatial region. The sensor receptive fields are
defined by the physics of the devices and could indicate sensors that are direc-
tional or have varying sensitivity over a region. Sensor measurements of the field
are therefore given by

mk =

∫

W

x(w)sk(w)dw. (1)

We will not assume any particular arrangement or shape of the sensor fields; in
general we expect sensors to be irregularly spaced and have highly overlapping
receptive fields. The measurement form given in (1) includes the special case of
sensors averaging the field over disjoint local regions.

Recasting (1), the sensor measurements can be written as an inner product
over the field W , mk = 〈x, sk〉. This vector space view of the sensor measure-
ments indicates that with no further processing the measurements can represent
any stimulus signal in the space Hx = span ({sk}). The space Hx represents
a restricted class of fields that is consistent with the resolution of the sensors.
For example, Hx may be a space of spatially bandlimited functions over W .
The actual stimulus field in the environment may not be in Hx, but the sensors
have a limited resolution (depending on design and placement of the sensors)
that precludes them from sensing an unrestricted class of signals. Therefore, we



assume that x ∈ Hx, though in reality x only represents the component of the
true environmental field within the sensing resolution of the network.

Just as individual sensors have local but overlapping regions of sensitivity,
actuator networks are composed of individual actuators that each affect the envi-
ronment through (possibly overlapping) local regions of influence. Actuators are
indexed by l ∈ L, and again are located either irregularly or on a regular grid.
Whereas each sensor is represented by a receptive field, each actuator is repre-
sented by a influence field over W , denoted by a function al(w). An actuator’s
influence field depends on the physics of the specific problem, and again may
indicate actuators that are directional or have varying influence over a region.

Each actuator responds with an intensity that indicates how strongly it acts
on the environment. We will model an actuator’s intensity dl as weighting its
influence function. The resulting total actuation field over W is y =

∑
l∈L dlal,

where, for simplicity (and to emphasize the vector space view), we drop the ex-
plicit notation of spatial location w ∈ W from the actuator influence function
al(w) and the total actuation field y(w). The collection of actuators can there-
fore cause any actuation field y in the space Hy = span ({al}). The space Hy

represents a restricted class of fields that is consistent with the resolution and
placement of the actuators (e.g., a class of spatially bandlimited signals, etc.).

It is critical to note here that the collection of sensors {sk} and actuators {al}
do not share many characteristics; they can have different numbers of elements
at different locations over W . Most importantly, individual sensor and actuator
functions can have different shapes and even involve different modalities (e.g.,
temperature sensors and water delivery actuators). Consequently, Hx and Hy

can be very different functions spaces, and using general vector space definitions
allows us to connect sensed inputs to actuation outputs.

In order to design effective communication strategies between sensors and
actuators, we need methods to analyze the relationship between individual node
activity (mk and dl) and the resulting impact on signals in Hx and Hy. The
analysis is complicated because of the overlap between both individual sensor
receptive fields and actuator influence fields; in short, the representational el-
ements are not orthogonal. We appeal to the tools of frame theory to analyze
systems of linearly dependent sensor and actuator functions.

2.2 Frame theory

In section 2.1 we described the sensor measurement process as a projection of a
stimulus field onto a collection of sensor representation functions. Similarly, we
described actuators generating an effect as a weighted sum of individual actuator
representation functions. In both the collections of sensors and actuators, the ba-
sic functions form a representation for a signal space (Hx and Hy, respectively).
The notion of representing a signal in terms of a collection of orthonormal basis
(ONB) vectors is one of the most fundamental ideas in signal processing. Though
the situation here is more complicated than an ONB, the collections of sensors
and actuators are vectors that form a similar representation for their associated
signal spaces. In this section, we will consider a general collection of vectors {φj}



indexed over J . Fundamental results about this generic collection of vectors will
be applied to the sensor and actuator representations in section 3.

An orthonormal basis has the property that any energy represented by the
projection onto one vector will not be present in the projections onto any other
vectors. As a consequence, reconstructing the signal from the projections is triv-
ial; the projection coefficients simply weight the same vectors in the reconstruc-
tion. However, in general, collections of sensor receptive fields and actuator in-
fluence fields will not be orthogonal. In fact, in the most general case, these
collections of functions may be linearly dependent and no longer form a basis.

A collection of M vectors {φj} forms a frame [12] for H if there exist constants
0 < A ≤ B < ∞ so that Parseval’s relation is bounded for any x ∈ H,

A ||x||2 ≤
∑

j∈J

|〈φj , x〉|
2 ≤ B ||x||2 .

In general, there will be more vectors than are necessary to represent H (M > N ,
where N = dim (H)), meaning that the frame is redundant. When the frame

vectors are normalized ||φj ||
2 = 1 (which we assume here), the frame bounds

measure the minimum and maximum redundancy of the system and satisfy
A ≤ M

N
≤ B. Frames were originally introduced in 1952 in the context of nonhar-

monic Fourier series [13] and later played a key role in wavelet theory [14]. They
have recently been used in many other areas, including filterbanks [15], image
processing [16], communications [17], coding [18] and machine learning [19].

The frame condition given above guarantees that the analysis coefficients ob-
tained from projecting a signal onto the frame vectors contains all of the informa-
tion necessary to synthesize (or reconstruct) the signal. Mathematically, the anal-
ysis coefficients are generated through the frame analysis operator Φ : H → l2,
which is given by (Φx)j = cj = 〈φj , x〉. In vector notation, the collection of
all analysis coefficients is given by c = Φx. For finite dimensional frames (as in
practical systems), the operator Φ is a matrix multiplication.

The adjoint of the frame analysis operator is the frame synthesis operator,
Φ′ : l2 → H , given by Φ′c =

∑
j∈J cjφj . Because of the dependency present

between frame vectors, the same set of vectors cannot generally be used for both
analysis and synthesis. Even though Φ′ and Φ are inverse operations in an ONB,
in general Φ will not have a unique inverse. Therefore, the usual reconstruction
will not work, x 6= Φ′Φx =

∑
j∈J 〈x, φj〉φj . Instead, the pseudoinverse operator

Φ∗ = (Φ′Φ)
−1

Φ′ is used for reconstruction, x = Φ∗Φx = (Φ′Φ)
−1 ∑

j∈J 〈x, φj〉φj .

Equivalently, we can view the reconstruction as using a different set of vectors
{φ̃j} called the dual set, x =

∑
j∈J 〈x, φj〉φ̃j . While there are an infinite num-

ber of sets of dual vectors that will work, the canonical dual set is given by
φ̃j = (Φ′Φ)

−1
φj . These dual vectors are also a frame for H, with lower and

upper frame bounds
(

1
B

, 1
A

)
, respectively. Importantly, the frame and dual set

are interchangeable in the reconstruction equation,

x =
∑

j∈J

〈φj , x〉φ̃j =
∑

j∈J

〈φ̃j , x〉φj .



The frame bounds are related directly to the eigenstructure induced by the
frame vectors: A = λmin and B = ||Φ′Φ|| = λmax, where {λi} are the eigen-
values of (Φ′Φ). When a collection of vectors has frame bounds that are equal,
A = B = M

N
, it is called a tight frame. When a frame is tight, the dual vectors are

simply rescaled versions of the frame vectors, φ̃j = 1
A

φj . A collection of vectors
is an orthonormal basis if and only if it is a tight frame with A = B = 1.

In an ONB, perturbing a measurement coefficient (including removing it en-
tirely) has a proportional impact on the reconstruction — the energy in the
reconstruction error is the same as the energy in the perturbation. The redun-
dancy present in a frame can provide a measure of robustness to perturbations
that is not present in orthonormal systems, but it also makes the effect of such
perturbations harder to analyze. When we apply frame theoretic models to the
analysis of sensor and actuator networks, we want to know the impact of reducing
communication costs by using approximate coefficients in the reconstruction.

Stated generally, we need to calculate a bound on the maximum error when
a perturbation pj is added to each frame coefficient cj in the reconstruction,

x̂ =
∑

j∈J (cj + pj) φ̃j . Perturbations may include removing the coefficient from
the reconstruction, pj = − (cj). The error resulting from these perturbations is

||x − x̂||
2

=

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈J

pj φ̃j

∣∣∣∣∣∣

∣∣∣∣∣∣

2

. (2)

We recall that the dual set {φ̃j} is also a frame for Hx, and we denote

the analysis operator for the dual frame to be Φ̃. Note that the error signal
recast in matrix notation is (x − x̂) = Φ̃′p, where p is the perturbation vector

p =
[
p1p2 . . . p|J|

]′

. Linear algebra can yield a bound on the error,

∣∣∣
∣∣∣Φ̃′p

∣∣∣
∣∣∣
2

=
∣∣∣〈p, Φ̃Φ̃′p〉

∣∣∣ ≤
∣∣∣
∣∣∣Φ̃Φ̃′

∣∣∣
∣∣∣ · ||p||2 .

Note that because the singular values of Φ̃ are the square roots of the eigenvalues

of both
(
Φ̃Φ̃′

)
and

(
Φ̃′Φ̃

)
, it follows that

∣∣∣
∣∣∣Φ̃Φ̃′

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣Φ̃′Φ̃

∣∣∣
∣∣∣. Because the dual set

is a frame for H with upper frame bound
(

1
A

)
and because of the relationship

between the eigenvalues of
(
Φ̃′Φ̃

)
and the frame bounds, we can finally write a

useful bound (alluded to in [20]) on the reconstruction error

||x − x̂||2 ≤
||p||2

A
. (3)

In words, the perturbation energy is reduced in the reconstruction by at least
the minimum redundancy in the set of frame analysis vectors {φj}. The upper
bound in equation (3) is consistent with probabilistic robustness results when
stochastic noise is added to frame coefficients [18].



3 Connecting sensors to actuators

Following our example of reflex behavior, actuators must generate activity using
received sensors measurements without communicating with other actuators.
The overlapping actuator influence fields prevent a purely greedy approach where
each actuator generates the locally optimal activity. Nearby actuators could be
nearly identical and wildly overcompensate their actions in a greedy approach.
Sensors must coordinate behavior (without communication) to account for the
the action field components covered by the other sensors.

3.1 Generating optimal actuation

To formalize this notion of coordination, we draw on our discussion of frame
theoretic models for sensors and actuators in section 2.2. We assume that the
collection of sensors represented by {sk} form a frame for Hx with frame bounds
(As, Bs) and with dual functions given by {s̃k}. Similarly, we assume that the
collection of actuators represented by {al} form a frame for Hy with frame
bounds (Aa, Ba) and with dual functions given by {ãl}. Note that the dual
sets {s̃k} and {ãl} aren’t realized directly in physical systems. For example, the
sensor receptive field dual functions {s̃k} may have spatial characteristics that
would be impossible to build into any type of real-world sensor.

To generate coordinated behavior in the actuator network, we must neces-
sarily start with the ideal solution for generating actions. Each WSAN has an
application specific goal that defines its existence. For example, a system might
use sensed rainfall to order the diversion of floodwater or the delivery of irriga-
tion to meet specified conditions. Though the actions necessary to achieve the
goal depend on the specific observed stimulus, the goal itself is stimulus inde-
pendent. To quantify this application goal, we assume that for any measured
stimulus field x there is a mapping T : Hx → Hy that defines the ideal action
field response, y = Tx. The mapping T would be determined as a design spec-
ification for the WSAN in advance. While it may be possible to reconfigure a
WSAN to perform a different application (with a different goal) on long time
scales, we assume that the goal (as quantified by T ) stays fixed.

An ideal actuator network would have each node determine action coefficients
{dl} to generate the optimal response Tx =

∑
l∈L dlal. Drawing on the frame

theory results from section 2.2, the coefficients weighting the action influence
field vectors are given by the inner products between the action dual vectors and
the action signal that we are trying to generate,

dl = 〈ãl, Tx〉. (4)

To determine the optimal action coefficients, consider first the reconstruction
equation for the stimulus field based on the sensor measurements,

x =
∑

k∈K

mk s̃k. (5)



Substituting equation (5) into equation (4), the optimal action coefficients are

dl = 〈ãl, T
∑

k∈K

mk s̃k〉 =
∑

k∈K

mk〈ãl, T s̃k〉. (6)

The conversion from sensor measurements m =
[
m1, m2, . . . , m|K|

]′

to actuator

intensity coefficients d =
[
d1, d2, . . . , d|L|

]′

in matrix form is d = V m, where

V =




ã
′

1T s̃1 ã
′

1T s̃2 · · · ã
′

1T s̃|K|

ã
′

2T s̃1
. . .

...
...

ã
′

|L|T s̃1 · · · ã
′

|L|T s̃|K|




.

The expression in equation (6) (or equivalently the entries of V ) illuminate
the form of the actuator intensity coefficients necessary to generate the optimal
total action Tx. Unfortunately, each coefficient dl is a sum including sensor mea-
surements sk over all k ∈ K; each individual actuator would require knowledge
of every sensor measurement in order to generate an optimal actuation intensity.

A scenario where every sensor in the network communicates its measurement
to every actuator would present an unreasonable communication burden on the
network — approximately |K| · |L| communication links would be necessary.
While a portion of this burden could be reduced through broadcast communi-
cation, some sensor-to-actuator links may involve several communications in a
multi-hop routing scheme. Any realistic networking scheme will have to elimi-
nate some of these communication links based on their communication cost and
their contribution to the total actuation performance. Intuitively, some sensor
measurements will be more important than others in determining an actuators
behavior. For example, a moisture sensor spatially located a long distance away
from the influence field of a specific irrigation actuator will likely have very little
relevance on that actuator’s optimal behavior coefficient. Using the frame the-
ory results presented in section 2.2 along with the vector space model of sensor
and actuator networks, we have tools for analyzing the effects of eliminating
communication links on the total actuation performance.

3.2 Limiting communication costs

Each entry of the matrix V indicates a communication link from a sensor to an
actuator. Before blindly reducing communications, a networking scheme must
know the importance of each possible communication. In a sensor network, per-
formance is often judged by assessing the fidelity of the information removed from
the network at representing the original sensor measurements (or the underlying
stimulus field). However, the only performance metric of any consequence in a
WSAN is the fidelity of the resulting total action.

To quantify the importance of individual communications, we must deter-
mine how the total actuation performance is affected when a communication



is not executed. We quantify this notion of importance through the results de-
scribed in equation (3). Consider the case where for actuator l, a subset of sensor
nodes El ⊂ K do not transmit their measurement coefficient to this actuator.
Instead of optimal actuator intensity coefficients (see equation (6)), actuators
form approximate intensity coefficients using the received sensor measurements

d̂l =
∑

k∈(K\El)

mk〈ãl, T s̃k〉. (7)

The approximate actuator intensities generate a total action field approximating
the desired optimal action Tx,

ŷ =
∑

l∈L

d̂lal.

Generating a total action field with the approximate coefficients {d̂l} is equiv-
alent to performing a frame reconstruction with perturbed coefficients, as de-
scribed in section 2.2. Subtly, the actuator frame vectors are performing synthe-
sis, meaning that dual vectors (with lower frame bound 1

Ba

) are now the analysis
set. Therefore, equation (3) relates the fidelity of the approximate actuator in-
tensity coefficients to the fidelity of the resulting total action field,

||Tx − ŷ||
2
≤ Ba

∑

l∈L

|dl − d̂l|
2.

Using equations (7) and (6), we can write the total action field error in terms of
individual sensor coefficients not communicated to actuator nodes

||Tx − ŷ||2 ≤ Ba

∑

l∈L

∣∣∣∣∣
∑

k∈El

mk〈ãl, T s̃k〉

∣∣∣∣∣

2

(8)

≤ Ba

∑

l∈L

∑

k∈El

|mk〈ãl, T s̃k〉|
2
. (9)

As we see in equation (9), the networking strategy for sensor node k can use the

value of |mk〈ãl, T s̃k〉|
2

to quantify the maximum contribution it would make to
the total action error by not communicating its measurement to actuator l. The
bound in equation (9) can be used to set a threshold γ guaranteeing an absolute
upper limit on the actuation error.

Importantly, the form of the error bound in equation (9) isolates each com-
munication link as an independent term so that no communication overhead is
required to determine the absolute worst actuation error that can be incurred
by eliminating a communication link1. In applications where a WSAN must re-
spond quickly to critical but rare events (e.g., a fire suppression system), an

1 We are assuming that the setup phase of the WSAN has given nodes information
about the relative locations of their neighboring nodes that can be used to calculate
the necessary inner product.



absolute bound on the actuation error computed locally is probably appropri-
ate. To ensure that the actuation error is within an absolute tolerance, the active
communication links between sensors and actuators will necessarily change de-
pending on the input signal. While this dynamic decision making doesn’t impose
a large computational burden on the sensor nodes, the underlying communica-
tions network must be able to handle large fluctuations in demand for resources.

Because the sensor and actuator fields overlap and form a frame (instead
of an orthonormal basis), the contributions from two different sensor measure-
ments to an actuator coefficient could, in effect, “cancel” each other. Because
the error bound provided in equation (9) is expressly written in terms of lo-
cal sensor node measurements, this bound favors a conservative interpretation
rather than accounting for these interactions. Given a specific communication
and networking scenario, it may or may not be advantageous to allow sensors
to explicitly communicate to calculate a tighter error estimate (based on the
original error expression in equation 2) and coordinate their communication ac-
cordingly. While the frame theoretic analysis paradigm introduced here would
allow such an analysis, it would necessarily be specific to the application details
(particularly the communication and networking scenario).

In many settings, designing around an absolute error constraint results in
a system that is too conservative in its average behavior. To analyze the aver-
age actuation error one must assume a stochastic model for the measurements,
such as assuming that the sensor measurements have zero mean (E [m] = 0) and
covariance matrix Γm. The covariance matrix Γm will be determined by a com-
bination of the the sensor receptive field properties and the distribution assumed
on x within the signal space Hx. Only the first two moments of the distribution
on m are relevant, so we need not assume Gaussian distributions.

Average WSAN performance is much easier to calculate if we recast equa-
tion (8) using matrix notation. We first need to write approximate actuator
coefficients in equation (7) in terms of a perturbation of V , which captures the
ideal transformation from sensor measurements to actuator coefficients. Let the
approximate actuator coefficient be given by d̂ =

(
V + Ṽ

)
m, where the matrix

Ṽ is defined to remove inactive communication links:

(
Ṽ

)

k,l
=

{
−

(
ã

′

1T s̃1

)
if k ∈ El

0 if k ∈ (K \ El).

Incorporating this definition into equation (8) and taking the expectation of both
sides lets us bound the average error

E
[
||Tx − ŷ||

2
]
≤ BaTr

[
Ṽ ΓmṼ

′

]
, (10)

where Tr [·] is the trace operator.
A system designer could use equation (10) to characterize (on average) how

important a communication link between a specific sensor and actuator pair is
to generating the total actuation field. Using this information, a WSAN design



could choose a priori which communication links between sensors and actuators
will be active in the network. Such a scheme has the disadvantage that it may
not react well to events that are large deviations from the usual behavior. The
advantages to this type of non-adaptive communication scheme in a WSAN are
that the communication resources are used more efficiently most of the time, the
network can count on a limited communication burden for any stimulus field, and
the real cost of executing individual communication links (through a possibly
multi-hop network) can be easily integrated into generating an optimal strategy.
Also, it is worth noting that the bound in equation (10) is tighter than the bound
in equation (9) (because it is based directly on equation (8)), reflecting the fact
that all of the communication links can be considered jointly when designing the
system for average error performance.

4 An example WSAN system

As an illustrative example, consider a WSAN operating a fire suppression sys-
tem in an office building with four research labs. Each lab contains expensive
equipment, so there is a strong desire to localize the fire suppression to minimize
water damage to adjacent labs. The building space is covered with a network of 21
temperature sensors (modeled with radially symmetric, exponentially-decaying
receptive fields) and 13 actuators (modeled with an oriented and exponentially
decaying influence field), all illustrated in Fig. 1. This WSAN has 273 possible
communication links from the sensor nodes to actuator nodes. In this example
we assume an equal communication cost for each link (i.e., we would like to use
as few links as possible regardless of which links are in use).
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Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Fig. 1. Contour plot of example sensor (Far left) and actuator (Middle left) nodes.
Layout and shape of the sensor (Middle right) and actuator (Far right) nodes.

We specified a function T mapping the temperature inputs to an imaginary
desired fire suppression output. To illustrate that this mapping may be spatially
varying, we note that fire activity in all labs will induce fire suppression activity
along a path to the main exit. We used two sample temperature fields indicating
a fire in different labs areas (shown in Fig. 2, along with optimal responses). As
discussed in section 3, the quantity |mk〈ãl, T s̃k〉| determines the importance of
each communication link (sorted and plotted in Fig. 3 for these test signals). In



these signals, a threshold of γ = .2 allows approximately 15 of the 273 possible
communication links to be active, and γ = .05 allows approximately 40 active
communication links. The resulting active communication links are shown in
Fig. 3. Close examination of the connection diagrams shows that some com-
munication choices are non-obvious; the most important sensor to a particular
actuator is not always the one with heavily overlapping influence functions.
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Fig. 2. Contour plots of sample temperature fields for test signal 1 indicating a fire in
lab 3 (Far left) and test signal 2 indicating a fire in lab 2 (Middle left). Contour plots
of optimal actuation responses to the two test scenarios (Middle right and far right,
respectively). Different spatial response characteristics keep the main exits clear.
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Active links: signal 2, γ=0.05

Fig. 3. Left: The importance measurements of each communication link (|mk〈ãl, T s̃k〉|)
are sorted and plotted for the two test signals. Right: Connection diagrams for the two
test signals under the two thresholds in the example system. Sensor nodes are marked
with a blue (+) and actuator nodes are marked with a red (*). Active connections from
a sensor to an actuator are denoted by a blue line.

The actuation response is generated for both test signals using threshold val-
ues of γ = .2 and γ = .05, and the resulting total actuation fields are plotted in



Fig. 4. The reduced communication scheme based on the thresholds resulted in
the number of active communication channels and associated percentage errors
given in Table 1. The principles discussed in section 3 allow the WSAN to gen-
erate excellent approximations to the optimal actuation field by using local rules
to activate only a fraction of the communication links. Interestingly, if we acti-
vate the same number of links using the more intuitive measure |mk〈al, T sk〉|,
the resulting actuation error increases by roughly an order of magnitude.
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Approximate response to signal 2: γ=0.2
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Approximate response to signal 2: γ=0.05

Fig. 4. Contour plots of actuation responses when using only a subset of possible
communication links (determined by thresholding each link’s importance to the total
actuation). Approximate responses to test signal 1 are shown when using 14 and 40
communication links (Far left and middle left). Approximate responses to test signal 2
are shown when using 17 and 45 communication links (Middle right and far right).

Table 1. Results from the example WSAN fire suppression system

γ = .2 γ = .05 γ = .2 γ = .05

Active links 14 40 Active links 17 45

Relative error 2.22% 0.04% Relative error 2.46% 0.15%

Test signal 1 Test signal 2

5 Conclusions and future work

WSANs are often discussed as a logical extension to sensor networks, but there
is little research investigating sensor and actuator systems working in concert
together. While algorithms that reduce communications and ensure data fidelity
for sensor measurements are important for many applications, they are not the
ultimate arbiter for obtaining good actuation performance. The total system
must be designed and managed with the final actuation goal in mind. Our
frame-theoretic WSAN model illustrates one strategy for taking such a holis-
tic information management view with actuation fidelity as the relevant metric.



The analytic tools we present characterize the effect of eliminating an indi-
vidual communication link between a sensor and an actuator, both in terms of
absolute (for specific sensor measurements) and average actuation error. Choos-
ing a networking strategy for eliminating communication links is both difficult
and non-intuitive. While intuition would indicate that the relationship between
the activation fields of a sensor and an actuator are the relevant quantity char-
acterizing the importance of the communication between those two nodes, our
work shows that it is the relationship between the mathematical duals of the
activation fields that captures this inherent importance. It is through these dual
functions that the relationship of the whole sensor network to the whole actu-
ator network can be accounted for in local communications between pairs of
nodes. Characterizing the importance of individual communication links to the
overall goal points directly to how a networking strategy could weigh the costs
and benefits of each communication link to achieve the desired balance between
performance and energy efficiency. The value of our analysis is highlighted in an
example WSAN system where link activations based on the sensor and actuator
duals performed an order of magnitude better than activations based on the
simple overlap of the sensor and actuator receptive field functions.

Today we are only seeing the beginning of work in information management
in WSANs. In this work, we have given explicit upper bounds on actuation error
that can be determined locally with no cooperation between the sensors. We have
also indicated how this analysis framework could be used in a specific applica-
tion and networking scenario to investigate the benefits of allowing local sensor
coordinate their communications to an actuator. Finally, we have also derived
analogous average error bounds that could be used to design static networking
strategies for applications where that approach is more appropriate.

We are currently working on many extensions to this work. We have consid-
ered the case where perfect (analog) coefficients are sent on active communication
links. While real systems would have to use quantized coefficients, we believe that
typical quantization schemes would have only a second order effect relative to
other actions taken to limit communication (such as eliminating communication
links). However, it is more interesting to consider a variable rate communica-
tion scheme where some links could send coefficients with variable fidelity. Such
variable rate schemes could be particularly interesting as we consider incorporat-
ing information about the variable networking costs of different communication
links. We are working to more tightly integrate the costs and benefits of individ-
ual communication links to find optimal strategies for determining which links
to activate dynamically and with minimal overhead.

Finally, our system model considers a single actuation response to a set of
sensor measurements. This is something of an open-loop system because the
sensors don’t necessarily receive any direct feedback from the actuators. This
generality is appealing in many senses; our model allows sensors and actuators to
live in separate signal spaces and it may be possible that actuation is not directly
observable by the sensors. However, in many practical applications, future sensor
measurements will be affected by actuator behavior even when they operate in



different signal spaces (e.g., fire suppression actions will reduce the temperature
measured by sensors). We are working on methods for extending this work to
consider the dynamic properties of such an implicit feedback system.
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