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ABSTRACT

Practical sparse approximation algorithms (particularly greedy algo-
rithms) suffer two significant drawbacks: they are difficult to im-
plement in hardware, and they are inefficient for time-varying stim-
uli (e.g., video) because they produce erratic temporal coefficient
sequences. We present a class of locally competitive algorithms
(LCAs) that correspond to a collection of sparse approximation prin-
ciples minimizing a weighted combination of reconstruction MSE
and a coefficient cost function. These systems use thresholding func-
tions to induce local nonlinear competitions in a dynamical system.
Simple analog hardware can implement the required nonlinearities
and competitions. We show that our LCAs are stable under normal
operating conditions and can produce sparsity levels comparable to
existing methods. Additionally, these LCAs can produce coefficients
for video sequences that are more regular (i.e., smoother and more
predictable) than the coefficients produced by greedy algorithms.

Index Terms— Approximation methods, visual system, image
coding, video coding, nonlinear systems

1. INTRODUCTION

Sparsity has become an important concept in many signal and image
processing paradigms. The connection between sparsity and applica-
tions such as denoising [1] and compression [2] is well-established.
Recent advances in reconstruction from highly undersampled mea-
surements (often referred to as compressed sensing) [3] have again
brought attention to sparse approximation as a valuable signal pro-
cessing tool. Furthermore, recent theoretical and experimental evi-
dence indicates that many sensory neural systems appear to employ
similar sparse representations, encoding a stimulus with the activity
of a small subset of neurons in a population [4].

Optimal sparse approximation is computationally intractable,
leading practitioners to often employ two alternate strategies: con-
vex relaxation and greedy algorithms. Convex relaxation substitutes
a convex penalty on the coefficients in place of simply counting the
non-zero coefficients [5]. Greedy algorithms iteratively select the
single best dictionary element to represent the current residual sig-
nal. While not optimal in any sense, greedy algorithms often perform
well in practice [6]. However, existing algorithms have two signifi-
cant drawbacks: they are difficult to implement directly in hardware,
and they do not efficiently handle time-varying signals (e.g, video).
In particular, these algorithms often produce erratic temporal coeffi-
cients even when presented with a smoothly varying input.
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Motivated by neurally plausible sparse coding mechanisms, we
introduce and study a new class of sparse approximation algorithms
based on the principles of thresholding and local competition that
addresses many of drawbacks observed in existing methods. In our
Locally Competitive Algorithms (LCAs), each dictionary element is
assigned to a node that may continually compete with neighboring
nodes. Node dynamics are described by a set of non-linear ordinary
differential equations (ODEs) that correspond to simple analog hard-
ware components. Unlike greedy algorithms that irrevocably select
a single dictionary element at each iteration, LCAs allow many co-
efficients to simultaneously enter or leave the representation.

This paper develops an architecture for LCAs and shows their
correspondence to a broad class of sparse approximation problems
that minimize a combination of reconstruction mean-squared error
(MSE) and a sparsity-inducing cost function. We show that a spe-
cific LCA displays several critical properties: it is stable, it produces
image coefficients with comparable sparsity to greedy algorithms,
and it produces time-varying video coefficients that are significantly
more regular than greedy algorithms.

2. BACKGROUND AND RELATED WORK

2.1. Sparse approximation

Given an N -pixel image s ∈ R
N , we seek a representation in terms

of a dictionary D composed of M (unit-norm) vectors {φm} that
span the space R

N . When the dictionary is overcomplete (M > N ),
there are an infinite number of ways to choose coefficients {am}

such that s =
PM

m=1 amφm. Optimal sparse approximation seeks
the fewest number of non-zero coefficients (known as the `0 quasi-
norm of the coefficients) representing s to a specified fidelity, but is
an NP-hard optimization [7].

Two suboptimal approaches to solving the optimal sparse
approximation problem are typically employed. The first ap-
proach of convex relaxation is typified by Basis Pursuit De-Noising
(BPDN) [5]. BPDN finds the coefficients having minimum `1 norm
and can be solved using modern interior point-type methods. The
second approach of using greedy algorithms is typified by Matching
Pursuit (MP) [8]. MP is initialized with a residual r0 = s. At the kth
iteration, MP finds the index of the dictionary element best approxi-
mating the current residual signal, θk = arg maxm |〈rk−1, φm〉|.
The resulting coefficient is recorded and the residual is updated,
rk = rk−1 − φθk

dk. Though globally suboptimal, greedy algo-
rithms often efficiently find good sparse signal representations [6].

2.2. Related work

While there are many other sparse approximation methods, the
most interesting for our purposes are recent papers developing al-
gorithms that also combine hard thresholding and simple linear op-



erations [9–11]. While these models have many differences in their
details (especially the homogeneity of the threshold in time and over
the node index), our LCAs have two primary deviations. First, the
LCAs have a “charging up” behavior due to the leaky integrator that
allows continual competition and helps to smooth the time-varying
coefficients. Second, each LCA can be exactly related to a spar-
sity cost function that is being (locally) minimized regardless of the
dictionary structure (including tight and non-tight frames). It is not
clear how the performance of these methods directly compares.

3. LOCALLY COMPETITIVE ALGORITHMS (LCAS)

We begin by drawing from knowledge of sensory neural system ar-
chitectures to develop a system that can be easily implemented in
analog hardware. Our LCAs use a parallel set of nodes where each
node is associated with an element of the dictionary φm ∈ D. The
system is presented with an input image s(t), and node state vari-
ables um(t) begin “charging up” like a leaky integrator. When state
variables reach an activation threshold λ, the node also produces a
significant non-zero output coefficient am that inhibits the driving
input of neighboring nodes. Each coefficient is related to the in-
ternal state through an activation function am = Tλ(um), that is
essentially zero for values below λ and linear for values above λ.

Our LCA node dynamics are expressed by the non-linear ODEs

u̇m(t) = f(um(t)) =
1

τ

2
4bm(t) − um(t) −

X

n6=m

Gm,nan(t)

3
5 ,

(1)
where the node’s input is bm(t) = 〈φm, s(t)〉. The nodes best
matching the stimulus will have internal state variables that charge at
the fastest rates. If node m crosses the threshold and becomes active,
it inhibits the driving input for the n node by an amount proportional
to their similarity Gm,n = 〈φm, φn〉. The possibility of unidirec-
tional inhibition gives strong nodes a chance to prevent weaker nodes
from becoming active and initiating inhibition.

For a fixed input (i.e., an image), the steady state set of active
coefficients {am(t)} represent the input. If the changes in a video
sequence (i.e., the frame rate) are slower than the system time con-
stant, the coefficients will also reach steady-state for each change.
The goal is to define the LCA system dynamics (including the ac-
tivation function) so that few coefficients non-zero values while ap-
proximately reconstructing the input, bs (t) =

P
m

am(t)φm.
In addition to being implementable in hardware, the LCA archi-

tecture solves a family of sparse approximation problems. We have
shown [12] that LCAs descend an energy function combining the
reconstruction MSE and a sparsity-inducing cost penalty C(·),

E(t) =
1

2
||s(t) − bs (t)||2 + λ

X

m

C(am(t)) .

The specific form of the cost function is determined by the form of
the activation function Tλ(·) according to the relationship

λ
dC(am)

dam

= um − am = um − Tλ(um). (2)

This correspondence can be seen by computing the derivative of E

with respect to the active coefficients and then allowing the internal
state dynamics to descend this gradient, u̇m ∝ − dE

d am
.

We focus specifically on the cost functions associated with
thresholding activation functions that set small values identically to
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Fig. 1. Mean tradeoff between MSE and `0-sparsity for normalized
(32 × 32) patches from a standard set of test images.

zero. Thresholding limits the competition to only the “strong” nodes.
We choose a smooth sigmoidal thresholding function

Tλ(um) =
um − αλ

1 + e−γ(um−λ)
, (3)

where γ is a parameter controlling the speed of the threshold transi-
tion and α ∈ [0, 1] indicates what fraction of an additive adjustment
is made for values above threshold. We are particularly interested in
the limit as γ → ∞, making this thresholding function become dis-
continuous. We focus primarily on the special case α = 0, known as
a “hard” thresholding function. Using (2), this hard-thresholding lo-
cally competitive algorithm (HLCA) applies an `0-like cost function
by using a constant penalty regardless of coefficient magnitude,

C(am) =
λ

2
I(|am| > λ) ,

where I(·) is the indicator function evaluating to 1 if the argument is
true and 0 if the argument is false. While the `0-like energy function
is very appealing, this energy function is not convex. This normally
poses an unwanted danger of only finding a local minima, but we will
show that this property works to our advantage by inducing inertia in
time-varying coefficients. It is worth noting that the soft thresholding
locally competitive algorithm (SLCA) with α = 1 corresponds to an
`1 coefficient penalty (i.e., the BPDN objective function).

4. HLCA SYSTEM PROPERTIES

We require that LCAs exhibit three critical properties: stability un-
der normal operating conditions, sparse coefficients for fixed images,
and smooth (or “regular”) coefficient sequences for video inputs.
While we focus on the HLCA, our analysis generally applies to all
LCAs through straightforward (perhaps messy) extensions.

4.1. Stability

Non-linear systems are often characterized in terms of their input-
output relationship and their behavior near an equilibrium point
u∗, f(u∗) = 0. To describe HLCA system stability, we first
define M

u(t) ⊆ [1, . . . , M ] as the set of nodes above threshold,
M

u(t) = {m : |um(t)| ≥ λ}. We say that the HLCA meets the sta-
bility criteria if for all time t the set of active vectors {φm}m∈M

u(t)

is linearly independent. This condition ensures that node competi-
tions do not balance to have zero net effect, and we will draw on it
to show several different properties. Under normal operating condi-
tions (i.e., typical thresholds, time constants, and dictionaries), the
HLCA should satisfy the stability criteria.
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Fig. 2. Encodings of the “Foreman” test video sequence. Average values are noted in the legend. (a) The number of active coefficients in
each frame. (b) The number of changing coefficient locations for each frame. (c) The ratio of changing coefficients to active coefficients.

We first consider local behavior in the ball around an equilibrium
point, Bε (u∗) = {u : ||u − u∗|| < ε}. A system is locally asymp-
totically stable [13] at an equilibrium point u∗ if you can specify
ε > 0 such that u(0) ∈ Bε (u∗) =⇒ limt→∞ u(t) = u∗. This
local stability notion also implies that the system will remain well-
behaved under perturbations (Theorems 2.8 and 2.9 in [13]). We
have shown [12] that if the stability criteria is met, then the HLCA:

• has a finite number of equilibrium points;
• has equilibrium points that are almost certainly isolated (no

two equilibrium points are arbitrarily close together); and
• is almost certainly locally asymptotically stable for every

equilibrium point.
With a finite number of isolated equilibria, we can be confident that
the HLCA steady-state response is a distinct set of coefficients rep-
resenting the stimulus. Regarding input-output behavior, we have
also shown that the HLCA output coefficients have bounded energy
for bounded energy inputs if the stability criteria are met and if the
system nodes don’t cross threshold “too often” [12]. We expect that
infinitely fast switching can be avoided either by the physical princi-
ples of the implementation or through an explicit hysteresis.

4.2. Sparsity and representation error

To understand the HLCA reconstruction fidelity, we note from
rewriting equation (1) that (for a constant input) the HLCA equilib-
rium points (u̇ (t) = 0) occur when the residual error is orthogonal
to active nodes and balanced with the inactive nodes,

〈φm, s(t) − bs (t)〉 =

(
um(t) if |um| ≤ λ

0 if |um| > λ
.

Therefore, the HLCA will perfectly reconstruct the component of the
input that projects onto the subspace spanned by the active nodes.

Though the HLCA may not find the globally optimal solution,
we must ensure that it is being reasonably efficient. We cannot deter-
mine the LCA steady-state coefficients for arbitrary starting points,
but it is possible to rule out some sets as not being possible. For ex-
ample, let M ⊆ [1, . . . , M ] be an arbitrary set of active coefficients.
We have shown [12] that when the stability criteria are met, the fol-
lowing statement is true for the HLCA: If s = φm, any set of active
coefficients M with m ∈ M and |M| > 1 cannot be a steady-state

response. In other words, the HLCA may use the mth node or a col-
lection of other nodes to represent s, but it cannot use a combination
of both. This result extends intuitively beyond one-sparse signals:
each component in an optimal decomposition is represented by ei-
ther the optimal node or another collection of nodes, but not both.
While not necessarily finding the optimal representation, the HLCA
does not needlessly employ both the optimal and extraneous nodes.

We have verified numerically that the HLCA achieves a sparsity
comparable with greedy algorithms. We simulated the HLCA on
normalized (32 × 32) bandpass patches from a standard set of test
images using τ = 10−3 and a dictionary of four orientation bands
in the bandpass level of a steerable pyramid [14] (i.e., the dictio-
nary is approximately four times overcomplete). Figure 1 shows the
tradeoff between `0 sparsity and MSE for HLCA, MP, a standard
BPDN solver followed by thresholding to enforce `0 sparsity (de-
noted “BPDNthr”) and SLCA with the same threshold applied (de-
noted “SLCAthr”). Most importantly, note that the HLCA and MP
are almost identical in their sparsity-MSE tradeoff. Though there
are connections between HLCA and MP (the competition signal for
a fully charged node is the same as the MP update step), the resulting
coefficients can be very different. In fact, HLCA can produce opti-
mal coefficients in pathological cases where MP runs forever [12].

4.3. Time-varying inputs

The temporal irregularity observed when applying sparse approx-
imation methods to successive video frames introduces additional
uncertainty that hinders both encoding and computer vision tasks.
While some methods for correcting this problem have been em-
ployed (e.g., motion prediction and spatio-temporal dictionaries),
these tactics would be difficult to implement in hardware. In con-
trast, the HLCA exhibits inertia that smooths the coefficient time se-
ries. The HLCA seeks a local energy function minima, with sparse
coefficients that are “near” the coefficients from the previous frame.
To illustrate the increased regularity, we simulated the HLCA (and
SLCA) on (144 × 144) bandpass, normalized frames from the stan-
dard “Foreman” test video sequence (using the setup described in
Section 4.2). The LCA input is switched to the next video frame
every (simulated) 1/30 seconds. Figure 2 shows comparisons to MP
and BPDN applied to each frame. Changing coefficient locations are
nodes that either became active or inactive at each frame.

This simulation shows that the HLCA uses approximately the
same number of active coefficients as MP but is much more efficient
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Fig. 3. Example time-series coefficients for the test video sequence.

in how it chooses the coefficient locations. This difference is quanti-
fied by the ratio of the number of changing coefficients to the number
of active coefficients. MP has a ratio of 1.7, meaning that MP is find-
ing almost an entirely new set of active coefficient locations at each
frame. In contrast, the HLCA ratio of 0.5 means that it is changing
approximately 25% of its coefficient locations. This difference can
be seen in an example coefficient time-series (Figure 3).

We can quantify the increased predictability of the active coef-
ficient locations by calculating their conditional entropy. At frame
n, each coefficient can be classified as being in one of three possi-
ble states: negative, zero and positive, σm(n) ∈ (−, 0, +). View-
ing each coefficient time-series as a Markov chain we can calculate
the conditional probabilities P (σm(n) |σm(n − 1)) of moving to a
state given the previous state (shown in Figure 4). While the HLCA
and MP are equally likely to have non-zero states, the HLCA is over
five times more likely than MP to have non-zero coefficients retain
their state. The conditional entropy indicates how much uncertainty
there is about the state of the current coefficients given the coefficient
states from the previous frame. The HLCA and MP conditional en-
tropies are 0.7 and 0.14 bits, respectively, further confirming that
HLCA coefficients are much more predictable than MP coefficients.

5. CONCLUSIONS AND FUTURE WORK

We have proposed a class of locally competitive algorithms that
solve a series of sparse approximation problems and address some
of the drawbacks of common sparse approximation algorithms (es-
pecially greedy methods). In addition to being implementable using
a parallel network of simple hardware elements, the HLCA exhibits
stability, achieves sparsity levels comparable to MP, and produces
video coefficient sequences that are substantially smoother than MP.

As data collection rates increase, we will require faster and more
efficient processing strategies. LCAs offer an opportunity to rethink
the traditional (and somewhat inefficient) paradigm of sampling fol-
lowed by compression on a single CPU. Instead, LCAs offer a fast
and energy efficient method for compressing signals in a parallel
and analog computational platform before digitization. We antici-
pate that the sparse and smooth LCA representations could produce
efficient video coders as well as improving many computer vision
applications relating to scene understanding.
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