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ABSTRACT

This paper develops a new systematic method of studying the ben-
efits of 2-bit soft decisions by applying the concepts of information
processing theory. We quantify performance in terms of the infor-
mation transfer ratio and demonstrate the performance gain over
hard decision detectors in several noise environments. In addition,
we show that likelihood ratio tests maximize the information trans-
fer ratio, and we propose a method of optimizing threshold values
for the 2-bit soft decision detector.

1. INTRODUCTION

In our theory of information processing, information is defined
only with respect to the ultimate receiver. Consequently, no single
objective measure can quantify the information a signal expresses.
For example, this paper (presumably) means more to a signal pro-
cessing researcher than it does to a Shakespearean scholar. To
probe how well systems process information, we resort to calcu-
lating how well an informational change at the input is expressed
in the output. The complete theoretical basis of this theory can
be found elsewhere [1]. Briefly, information is represented by the
abstract quantityα and signals (here binary data) represent infor-
mation. To quantify an informational changeα1 → α2, we calcu-
late the information-theoretic distance, specifically the Kullback-
Leibler distance1(KL), between the probability distributions char-
acterizing thesignalsthat encode two pieces of information. We
assume the signals, but not the information, are stochastic. The
Data Processing Theorem (DPT) [1] says that the KL distance be-
tween the outputs of any system responding to the two inputs must
be less than or equal to the distance calculated at the input. Here,
we use this framework to quantify the informational gain achieved
by 2-bit soft decision detectors over hard decision detectors.

We adopt the digital communication system model shown
schematically in Figure 1. The input binary data worduα of
lengthK represents the information the receiver ultimately wants.
The modulator maps the data word into its signal representation
(uα → sα) and transmits a continuous-time signal using an an-
tipodal signal set. Viewed from the framework of information pro-
cessing, we say that the information is encoded in the received
signal vectorrα.

We calculate two KL distances. The first is between the distri-
butions of the two received baseband signal vectorsrα1 , rα2 at the
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1The worddistancedoes not imply a metric since the KL distance is
not symmetric in its arguments and does not satisfy the triangle inequality.

input of the detector. The second is between the discrete distribu-
tions associated with the corresponding output vectorswα1 ,wα2 .
If the detector makes hard decisions, each of theK elements of
wα belongs to the set{0, 1} (one bit per decision). If the detector
makes 2-bit soft decisions, then each element ofwα belongs to the
setS = {00, 01, 10, 11}. We denote the input and output KL dis-
tances byDr (α1‖α2) andDw (α1‖α2), respectively. These dis-
tances quantify the informational change between the inputs and
outputs of the detector.

Through Stein’s Lemma [2], the KL distance is the expo-
nential decay rate of the false alarm probability of an optimum
Neyman-Pearson detector. Thus,Dr (α1‖α2) andDw (α1‖α2)
quantify our ability to discriminate between the two information
bearing signals at the input and output of the detector. Because
of the DPT [1], the detector can at best preserve the distance pre-
sented at their input and at worst, reduce it to zero causing the
ultimate recipient of the transmission to lose all ability to discern
the informational change.

The performance criterion we use is theinformation transfer
ratio, denoted byγ, and defined as the ratio of the KL distances at
the input and output of any system.

γdet =
Dw (α1‖α2)

Dr (α1‖α2)
(1)

It is a number between zero and one and reflects the fraction of
the informational change preserved across a system. Ideally, the
information transfer ratio across the detector would equal one in-
dicating no informational loss. However in reality, we expect in-
formational losses because the probability of error is never zero.
Here, we constrast the performance of a detector making 2-bit soft
decisions with one making hard decisions.

2. KULLBACK-LEIBLER DISTANCE CALCULATIONS

Each transmitted data word induces a probability distribution on
the received signal vector at the output of the demodulator. For
example, if the channel adds white Gaussian noise,rα would be a
jointly normal random vector with mean vector±

√
Eb1 and co-

varianceN0/2IK , where1 is a vector of ones andIK is aK ×K
identity matrix. (Eb is the energy per data bit.) The statistical in-
dependence of the received vector elements allows us to write the
KL distance at the input of the detector as a sum of the distances
between each received vector element [3].

Dr (α1‖α2) =

K∑
j=1

Drj (α1‖α2) (2)
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Fig. 1. Two binary data blocksuα1 , uα2 are separately transmitted. The Kullback-Leibler distance between the distributions induced by
each of the data blocks is calculated at the input and output of the detector. The ratios of the input and output distances provide a measure
of how well the detector preserves the informational change encoded the input signals.

We can further simplify this expression becauseDrj (α1‖α2) = 0

if the jth bits in each word are the same.

Dr (α1‖α2) = dH(uα1 ,uα2) · Dr (α1‖α2) (3)

Here, dH(uα1 ,uα2) represents the Hamming distance between
the datawords. Table 1 lists the KL distancesDr (α1‖α2) for var-
ious noise distributions as a function ofSNR.

2.1. Hard Decisions

If the detector makes hard decisions it compares each received
samplerαj (j = 1, . . . , K) to a threshold and declares as its out-
put either a one or a zero. The detected binary wordwα is
the collection ofK such outputs. We calculate the KL distance
at the output of the detector by viewing each binary vectorwn

(n = 1, . . . , 2K ) as the output of a binary symmetric channel with
error probabilityPe. (See Table 1 for expressions ofPe for differ-
ent noise distributions.) Accordingly, the probability of receiving
wn when we transmituα is

Pr[wn|uα] = P dH (wn,uα)
e (1− Pe)

K−dH (wn,uα).

These probabilities define the discrete distribution over the output
of the detector. Thus, by definition we obtain

Dw (α1‖α2) =

K∑
j=1

Dwj (α1‖α2)

=

2K∑
n=1

Pr[wn|uα1 ] log
Pr[wn|uα1 ]

Pr[wn|uα2 ]
. (4)

Like equation (2), we can simplify equation (4) because
Dwj (α1‖α2) = 0 if the jth bits in each word are the same.

Dw (α1‖α2) =

dH(uα1 ,uα2) ·
[
(1− Pe) log

1− Pe

Pe
+ Pe log

Pe

1− Pe

]
(5)

The bracketed term is the KL distance between two binary distri-
butions which result from the transmission of corresponding bits
of uα1 anduα2 .

2.2. 2-Bit Soft Decisions

When the detector makes 2-bit soft decisions, each elementwj

is distributed over the setS conditioned on a transmitted bit. As
depicted in Figure 2, these probabilities are the probabilities of the
four different regions defined by the thresholds0 and±θ.

Pr[wj = n|uj = 0] =

∫
Rn

prj |uj=0(x) dx

For soft decisions,n ∈ S. The probabilities givenuj = 1 are
defined similarly with the distributionprj |uj=1. In the next sec-
tion, we find the thresholds that maximizeγ for specifiedSNR
values subject to the following constraints. First, we require zero
to always be a threshold. Second, we require the remaining two
thresholds be symmetric about zero. The first limitation seems
reasonable because of the inherent symmetry of the problem. We
impose the second to make the maximization tractable. As before,
because each bit is transmitted independently, the total KL dis-
tance between the distributions ofwα1 ,wα2 is again the sum of
the distances between each element.

Dw (α1‖α2) =

K∑
j=1

Dwj (α1‖α2)

With the imposition of the above restrictions we can write

Dw (α1‖α2) =

dH(uα1 ,uα2) ·
3∑

n=0

Pr[n|uj = 0] log
Pr[n|uj = 0]

Pr[n|uj = 1]
(6)

where the value ofn corresponds to the decimal equivalent of the
binary numbers inS.

3. RESULTS

3.1. Hard Decisions

From equations (3) and (5) we immediately notice that the in-
formation transfer ratio across the detector is independent of the
input data words. In particular, this means the performance of
hard decision detectors is invariant to data word length and to the
Hamming distance between the two input data wordsuα1 ,uα2 .
Furthermore, in this setting the KL distances are symmetric
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Table 1. The Kullback-Leibler distances between the received random variablesrα1j andrα2j and the detector’s hard decision bit error
probabilities are shown in columns two and three for various noise distributions. In each expressionξ = Eb/N0 is the signal-to-noise ratio
per bit (SNR). For the Cauchy distribution, the quantityN0 is understood to be the “width” parameter. The fourth and fifth columns list the
asymptotic values of the information transfer ratio across when the detector makes hard decisions.

R0 R1 R2 R3

−θ +θ0 ��� ��

p(rj|uj=0) p(rj|uj=1)

Fig. 2. The probabilities overS for the 2-bit soft decision detec-
tor are simply the probability mass ofprj |uj

over the appropriate
regionsRn, n ∈ S. There are three thresholds0,±θ, but because
of the symmetry of the problem we can maximize the informa-
tion transfer ratio as a function ofθ to find its optimal value for a
specifiedSNR.

(Dr (α1‖α2) = Dr (α2‖α1) andDw (α1‖α2) = Dw (α2‖α1)).
We plot information transfer ratios for four noise distributions as a
function ofSNRin Figure 3. Table 1 lists their asymptotic values.
These curves show the informational loss for making hard deci-
sions. Notice the decrease in performance as theSNRincreases.
This means hard decision detectors better preserve informational
changes at lowerSNRvalues than at higher values. In other words,
hard decision detectors are more sensitive to bit changes at lower
SNRvalues than at higher values.However, even though the detec-
tor is less informationally efficient withSNR, the loss is not great
compared to other physical systems (e.g. neurons [4]). We prove
in Appendix A that likelihood ratio tests maximize the information
transfer ratio across binary detectors. Thus, the curves in Figure 3
represent the best achievable performance acrossanyhard decision
detector.
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Fig. 3. The information transfer ratio quantifies the informational
loss associated with making hard decisions. At lower SNR val-
ues likelihood ratio detectors are more sensitive to informational
changes than at higher SNR values.

3.2. 2-Bit Soft Decisions

Our immediate goal is to find the thresholdθ which maximizesγ
for a specifiedSNR.

max
θ>0

γ(θ) =
Dw (α1‖α2)

Dr (α1‖α2)
(7)

Because the denominator does not depend uponθ, maximizing
Dw (α1‖α2) is equivalent to maximizingγ. For the four distribu-
tions listed in Table 1 it can be easily shown that this maximization
is not a convex optimization problem; however, at least one max-
imum does indeed exist. We numerically computed a maximizing
θ for several values ofSNRusing Matlab’s optimization program
fmincon . They are listed in Figure 4 along with the associated
information transfer ratio plots.

These plots clearly show that with the addition of just one
bit of soft decision, significant informational gains can be real-
ized over hard decision detectors. Not surprisingly, the gains are
not uniform but are centered around theSNRvalue specified in
the maximization ofθ. The performance of hard decision detec-
tors (Figure 3) serves as a lower bound for all 2-bit soft decision
schemes. This fact becomes evident by direct application of the
DPT. Because hard decisions are a special case of 2-bit soft de-
cisions we can model the hard decision detector as a 2-bit soft
decision detector cascaded with another system. Thus, the overall
informational loss (γ over both systems) must be greater than or
equal to the loss across the soft decision detector [1].

4. CONCLUSION

By applying the precepts of information processing, we were able
to take new look at an old problem. In fact there is nothing new in
the notion that soft decisions provide benefits over hard decisions,
but what is new is our analysis approach and the interpretation of
the results. Quantifying performance in terms of the information
transfer ratio allows us to tackle non-Gaussian noise environments
and analyze detector performance in a new information-theoretic
sense. Our results also suggest that this method has the potential
to determine how soft (i.e. how many bits) a decision has to be in
order to achieve a specified performance level.

A. APPENDIX

Consider a general binary detection problem whererα1 andrα2

are two possible received signal vectors presented at the input of



Gaussian

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

SNR per data bit (dB)

γ θ=1
θ=1.22
θ=2.56
Hard Decisions

Laplacian

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

SNR per data bit (dB)

γ θ=0.37
θ=0.67
θ=1.25
Hard Decisions

Hyperbolic Secant

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

SNR per data bit (dB)

γ θ=.6216
θ=.9814
θ=1.7922
Hard Decisions

Cauchy

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

SNR per data bit (dB)

γ θ=0.31
θ=0.43
θ=0.75
Hard Decisions

Fig. 4. Each plot compares hard and soft detector performance in terms of the information transfer ratio in various noise environments. The
three threshold values listed in each case are the thresholds which maximizeγ at SNRvalues of−5, 0, 5 dB, respectively. The solid black
curve is the performance of the hard decision detector. All curves were generated with input data wordsuα1 = 0000, uα2 = 1011. For the
Laplacian and Cauchy cases, the parameterσ = 1 (noise variance for Laplacian and width parameter for Cauchy).

the detector under hypothesisα1 andα2 respectively. Letp(r|α1)
andp(r|α2) be conditional probability density functions associ-
ated with each hypothesis. Denote the output decisions of the de-
tector asΛ1 andΛ2.

The information transfer ratio equals

γ =
DΛ (α1‖α2)

Dr (α1‖α2)

=
PD log (PD/PF ) + (1− PD) log (1− PD)/(1− PF )∫

p(r|α1) log p(r|α1)
p(r|α2)

dr

wherePD is the probability of detection andPF is the probability
of false alarm. Explicitly,

p(Λ1|α1) = 1− PF p(Λ2|α1) = PF

p(Λ1|α2) = 1− PD p(Λ2|α2) = PD.

Maximizing γ is equivalent to maximizing the numerator
which translates into finding values ofPD andPF which maxi-
mize

PD log

(
PD

PF

)
+ (1− PD) log

(
1− PD

1− PF

)
=

−H(PD)− PD log PF − (1− PD) log (1− PF ). (8)

whereH(·) denotes the entropy function of a Bernoulli distribu-
tion. SincePD andPF are coupled they can not be independently
optimized, so without loss of generality, assumePF = a and
PD = a+ l. Substituting these values into equation (8) and setting
its derivative equal to zero we obtain

log

[
−(a2 + al) + a + l

−(a2 + al) + a

]
= 0.

For a given value ofa (PF ), we note that the derivative is
positive for l > 0, negative forl < 0, and zero whenl = 0

(minimum). Thus to maximize the numerator of equation (8) we
choose the largest possiblel but constrained to0 ≤ l ≤ 1−a. The
upper bound results from the fact thatPD andPF are probabilities
and thus must be between zero and one.

Formally, for a given false-alarm probability

max
l<1−a

l = max
PD

PD − PF

= max
Λ1

∫
Λ1

p(r|α2)− p(r|α1) dr

ThereforeΛ1 should be defined as

Λ1 = {r|p(r|α2) > p(r|α1)}

which is exactly the condition of the likelihood ratio test. This
result is general and holds for all noise distributions. �
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