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ABSTRACT input of the detector. The second is between the discrete distribu-
tions associated with the corresponding output veotors, wo., .
If the detector makes hard decisions, each of Khelements of
w, belongs to the s€i0, 1} (one bit per decision). If the detector
rmakes 2-bit soft decisions, then each elementgfbelongs to the
setS = {00,01,10,11}. We denote the input and output KL dis-
‘tances byD; (a1||a2) and Dy, (a1 ||az), respectively. These dis-
tances quantify the informational change between the inputs and
outputs of the detector.
Through Stein's Lemma [2], the KL distance is the expo-
nential decay rate of the false alarm probability of an optimum
1. INTRODUCTION Neyman-Pearson detector. ThaB, (a1 ||az) and Dy (v [|oa)
) ) ) ) o ) quantify our ability to discriminate between the two information
In our theory of information processing, information is defined bearing signals at the input and output of the detector. Because
only with respect to the ultimate receiver. Consequently, no single ¢ the DPT [1], the detector can at best preserve the distance pre-
objective measure can quantify the information a signal expressesgented at their input and at worst, reduce it to zero causing the
For example, this paper (presumably) means more to a signal pro-timate recipient of the transmission to lose all ability to discern
cessing researcher than it does to a Shakespearean scholar. T@e informational change.
probe how well systems process information, we resort to calcu- The performance criterion we use is finéormation transfer

lating how well an informational change at the input is expressed (a1i0 denoted byy, and defined as the ratio of the KL distances at
in the output. The complete theoretical basis of this theory can ihe jnput and output of any system.

be found elsewhere [1]. Briefly, information is represented by the
abstract quantityr and signals (here binary data) represent infor- Dw (a1]|az2)
mation. To quantify an informational change — -, we calcu- T Dy (an || az) (1)
late the information-theoretic distance, specifically the Kullback-
Leibler distanchKL), between the probability distributions char- It is a number between zero and one and reflects the fraction of
acterizing thesignalsthat encode two pieces of information. We the informational change preserved across a system. Ideally, the
assume the signals, but not the information, are stochastic. Thdnformation transfer ratio across the detector would equal one in-
Data Processing Theorem (DPT) [1] says that the KL distance be-dicating no informational loss. However in reality, we expect in-
tween the outputs of any system responding to the two inputs mustformational losses because the probability of error is never zero.
be less than or equal to the distance calculated at the input. HereHere, we constrast the performance of a detector making 2-bit soft
we use this framework to quantify the informational gain achieved decisions with one making hard decisions.
by 2-bit soft decision detectors over hard decision detectors.

We adopt the digital communication system model shown 2. KULLBACK-LEIBLER DISTANCE CALCULATIONS
schematically in Figure 1. The input binary data ward of
length K represents the information the receiver ultimately wants. Each transmitted data word induces a probability distribution on
The modulator maps the data word into its signal representationthe received signal vector at the output of the demodulator. For
(ua — sqo) and transmits a continuous-time signal using an an- example, if the channel adds white Gaussian naiseyould be a
tipodal signal set. Viewed from the framework of information pro- jointly normal random vector with mean vecten/E,1 and co-
cessing, we say that the information is encoded in the receivedvarianceN, /21, wherel is a vector of ones arllk isaK x K

This paper develops a new systematic method of studying the ben
efits of 2-bit soft decisions by applying the concepts of information

processing theory. We quantify performance in terms of the infor-
mation transfer ratio and demonstrate the performance gain ove
hard decision detectors in several noise environments. In addition
we show that likelihood ratio tests maximize the information trans-

fer ratio, and we propose a method of optimizing threshold values
for the 2-bit soft decision detector.

signal vectorr,, . identity matrix. (£ is the energy per data bit.) The statistical in-
We calculate two KL distances. The first is between the distri- dependence of the received vector elements allows us to write the
butions of the two received baseband signal veatg[sr.., at the KL distance at the input of the detector as a sum of the distances

- ) ) ) between each received vector element [3].
This work was supported by the National Science Foundation under

Grant CCR-0105558. K
1The worddistancedoes not imply a metric since the KL distance is Dy (o ||a) = Z D, (ou]laz) 2)
not symmetric in its arguments and does not satisfy the triangle inequality. =
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Fig. 1. Two binary data blocks,., , u., are separately transmitted. The Kullback-Leibler distance between the distributions induced by
each of the data blocks is calculated at the input and output of the detector. The ratios of the input and output distances provide a measure
of how well the detector preserves the informational change encoded the input signals.

We can further simplify this expression becalitg (a1 |laz) = 0 2.2. 2-Bit Soft Decisions

B -th . .
if the 5 bits in each word are the same. When the detector makes 2-bit soft decisions, each elemgnt

is distributed over the s&& conditioned on a transmitted bit. As
depicted in Figure 2, these probabilities are the probabilities of the
four different regions defined by the thresholdand+6.

D: (aillaz) = du(Uay, Ua,) - Dr (a1 |a2) 3)

Here, dy(ua,, ua,) represents the Hamming distance between
the datawords. Table 1 lists the KL distan@s(« ||a2) for var-

ious noise distributions as a function®KR Pr{w; = nlu; = 0] = /72 Prjlu;=0(x) dz

For soft decisionsp € S. The probabilities giveni; = 1 are
defined similarly with the distributioprj‘ujzl. In the next sec-
If the detector makes hard decisions it compares each receivedion, we find the thresholds that maximizefor specifiedSNR

2.1. Hard Decisions

samplers; (j = 1,..., K) to a threshold and declares as its out- values subject to the following constraints. First, we require zero
put either a one or a zero. The detected binary wergd is to always be a threshold. Second, we require the remaining two
the collection of K" such outputs. We calculate the KL distance thresholds be symmetric about zero. The first limitation seems
at the output of the detector by viewing each binary veetor reasonable because of the inherent symmetry of the problem. We
(n =1,...,2%) as the output of a binary symmetric channel with impose the second to make the maximization tractable. As before,
error probabilityP,. (See Table 1 for expressions Bf for differ- because each bit is transmitted independently, the total KL dis-
ent noise distributions.) Accordingly, the probability of receiving tance between the distributions ef., , wa, is again the sum of
w,, when we transmiti,, is the distances between each element.
K
_ pda(Wn,ua) (1 _ K—dpg(Wn,uq)
Pr{wn|ua] = Pt (1= Fe)™ : Dy (aaflaz) = Y Du, (aalaz)
j=1

These probabilities define the discrete distribution over the output !
of the detector. Thus, by definition we obtain With the imposition of the above restrictions we can write

X Dw (a1fla2) =

Dy (anflaz) = > D, (oulaz) 3 Prln| 0]
j=1 _ rnju; =
SK du(Uay, Uay) - Z Pr[n|u; = 0]log m (6)
Pr{wy|ua,] n=0
= Z Pr[wy|uqa,]log =———=. (4) ) )
— Pr{w, |ua,] where the value of. corresponds to the decimal equivalent of the
binary numbers irS.
Like equation (2), we can simplify equation (4) because
D, (on]laz) = 0 if the j*" bits in each word are the same. 3. RESULTS
Dw (a1]jaz) = 3.1. Hard Decisions
1-P. P. From equations (3) and (5) we immediately notice that the in-
dii (Uay, Uay) - | (1~ Pe) log P, + Pelog 1—-P. ®) formation transfer ratio across the detector is independent of the

input data words. In particular, this means the performance of
The bracketed term is the KL distance between two binary distri- hard decision detectors is invariant to data word length and to the
butions which result from the transmission of corresponding bits Hamming distance between the two input data watds, u,,.
of u,, andug,. Furthermore, in this setting the KL distances are symmetric



Noise Distribution D, (cullaz) Pe SNF;L 0 SNR1 0
Gaussian 4 Q (V2¢) = i
Laplacian e WVE 1448 le 28 1 3
Hyperbolic Secant | —21In [sech(Z+/2€)] | 1 — 2 tan™" [sinh (Z/2€)] £ 3
Cauchy In (1 + 2¢) 3 5 tan”' (VE) = 3

Table 1. The Kullback-Leibler distances between the received random variablesindr.,; and the detector’s hard decision bit error

probabilities are shown in columns two and three for various noise

distributions. In each expgessigyy N is the signal-to-noise ratio

per bit SNR. For the Cauchy distribution, the quanti¥ is understood to be the “width” parameter. The fourth and fifth columns list the
asymptotic values of the information transfer ratio across when the detector makes hard decisions.
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Fig. 2. The probabilities ove§ for the 2-bit soft decision detec-
tor are simply the probability mass pf.|,; over the appropriate
regionsR,,n € S. There are three thresholts+6, but because
of the symmetry of the problem we can maximize the informa-
tion transfer ratio as a function éfto find its optimal value for a
specifiedSNR

(Dr (a1]|a2) = Dr (azllon) andDyw (an[|az) = Dw (az2(|a1)).

We plot information transfer ratios for four noise distributions as a
function of SNRin Figure 3. Table 1 lists their asymptotic values.
These curves show the informational loss for making hard deci-
sions. Notice the decrease in performance as $iNRincreases.

3.2. 2-Bit Soft Decisions

Our immediate goal is to find the threshdldvhich maximizesy
for a specifiedSNR
Dw

7(0) _ > (O“HO‘?)

max B
v (a1 |az)

0>0

()

Because the denominator does not depend uhamaximizing

Dw (a1 ||a2) is equivalent to maximizing. For the four distribu-
tions listed in Table 1 it can be easily shown that this maximization
is not a convex optimization problem; however, at least one max-
imum does indeed exist. We numerically computed a maximizing
0 for several values dBNRusing Matlab’s optimization program
fmincon . They are listed in Figure 4 along with the associated
information transfer ratio plots.

These plots clearly show that with the addition of just one
bit of soft decision, significant informational gains can be real-
ized over hard decision detectors. Not surprisingly, the gains are
not uniform but are centered around t8&IRvalue specified in
the maximization of). The performance of hard decision detec-

This means hard decision detectors better preserve informationaf©rs (Figure 3) serves as a lower bound for all 2-bit soft decision
changes at loweBNRvalues than at higher values. In other words, Schemes. This fact becomes evident by direct application of the
hard decision detectors are more sensitive to bit changes at lowelPPT- Because hard decisions are a special case of 2-bit soft de-

SNRvalues than at higher valugdowever even though the detec-
tor is less informationally efficient wit8NR the loss is not great

cisions we can model the hard decision detector as a 2-bit soft
decision detector cascaded with another system. Thus, the overall

compared to other physical systems (e.g. neurons [4]). We proVeinformational loss 4 over both systems) must be greater than or

in Appendix A that likelihood ratio tests maximize the information

equal to the loss across the soft decision detector [1].

transfer ratio across binary detectors. Thus, the curves in Figure 3

represent the best achievable performance aargsard decision
detector.
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Fig. 3. The information transfer ratio quantifies the informational

loss associated with making hard decisions. At lower SNR val-
ues likelihood ratio detectors are more sensitive to informational
changes than at higher SNR values.

4. CONCLUSION

By applying the precepts of information processing, we were able
to take new look at an old problem. In fact there is nothing new in
the notion that soft decisions provide benefits over hard decisions,
but what is new is our analysis approach and the interpretation of
the results. Quantifying performance in terms of the information
transfer ratio allows us to tackle non-Gaussian noise environments
and analyze detector performance in a new information-theoretic
sense. Our results also suggest that this method has the potential
to determine how soft (i.e. how many bits) a decision has to be in
order to achieve a specified performance level.

A. APPENDIX

Consider a general binary detection problem whereandr,,
are two possible received signal vectors presented at the input of
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Fig. 4. Each plot compares hard and soft detector performance in terms of the information transfer ratio in various noise environments. The
three threshold values listed in each case are the thresholds which maxiatis&Rvalues of—5, 0, 5 dB, respectively. The solid black

curve is the performance of the hard decision detector. All curves were generated with input dataawcrd8000, u., = 1011. For the

Laplacian and Cauchy cases, the parameter1 (noise variance for Laplacian and width parameter for Cauchy).

the detector under hypothesis anda, respectively. Lep(r|a;) (minimum). Thus to maximize the numerator of equation (8) we
andp(r|az) be conditional probability density functions associ- choose the largest possiilbut constrainedtd <! < 1—a. The
ated with each hypothesis. Denote the output decisions of the de-upper bound results from the fact tHat and Pr are probabilities

tector as\; andA.. and thus must be between zero and one.
The information transfer ratio equals Formally, for a given false-alarm probability
_ Da (0a]az) max ! = maxPp — Pr
Dr (OélHCKQ) I<l—a Pp
_ Pplog(Pp/Pr) + (1— Pp)log (1 — Pp)/(1 — Pr) = max / p(rlaz) — p(rlar) dr
- » p(rla1) M
J p(rlea)log Z5ons dr

. . . . . ThereforeA; should be defined as
wherePp is the probability of detection anBr is the probability

of false alarm. Explicitly, Ay = {r|p(r|az) > p(r|a1)}
p(Ailar) =1— Pp p(Az|ar) = Pr which is exactly the condition of the likelihood ratio test. This
p(Ai]az) =1— Pp p(Az]az) = Pp. result is general and holds for all noise distributions. |

Maximizing ~ is equivalent to maximizing the numerator
which translates into finding values & and Pr which maxi-
mize
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