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Computing Linear Transforms of Symbolic Signals
Wei Wang and Don H. Johnson, Fellow, IEEE

Abstract—Signals that represent information may be classi-
fied into two forms: numeric and symbolic. Symbolic signals
are discrete-time sequences that at, any particular index, have
a value that is a member of a finite set of symbols. Set mem-
bership defines the only mathematical structure that symbolic
sequences satisfy. Consequently, symbolic signals cannot be di-
rectly processed with existing signal processing algorithms de-
signed for signals having values that are elements of a field
(numeric signals) or a group. Generalizing an approach due
to Stoffer, we extend time–frequency and time-scale analysis
techniques to symbolic signals and describe a general linear ap-
proach to developing processing algorithms for symbolic signals.
We illustrate our techniques by considering spectral and wavelet
analyses of DNA sequences.

Index Terms—DNA sequences, linear transforms, symbolic
signal.

I. INTRODUCTION

M UCH of signal processing has focused on analyzing
numeric information. Real and complex-valued data

satisfy the mathematical properties of afield. Arithmetic op-
erations between numbers can subsequently be derived from
the definition of a field [8]. Specifically, the values of most
data form an ordered field. Signal processing techniques all
rely on this mathematical structure.

Information is often written in the language of symbols. Each
element in a sequence of symbols is a member of a set. Symbolic
signals differ from numeric signals in that symbolic sets have
no additional mathematical structure. A set of symbols is not a
field because algebraic operations on symbols are usually not
meaningful. For example, addition, multiplication, and numeric
ordering cannot be performed on symbols. At the fundamental
level, digital signals are composed from the set ,1 text files
consist of a sequence of characters, and multiple neuron dis-
charge patterns may be represented by symbols indicating the
occurrence of action potentials [12]. The arbitrary assignment
of a number to each symbol would impose a mathematical struc-
ture not present in the original data. Therefore, numeric signal
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1In this paper, we use a different font to denote symbols such asf0; 1g. Note
how this differs from the numeric valuesf0;1g.

processing algorithms cannot be readily applied to symbolic sig-
nals. The specific application we will take here is the genetic
code. DNA sequences are built from the set of nucleotides rep-
resented by the symbols , and sequence index
indicates location along the genome. See [9] and [14] for engi-
neering-oriented overviews. Despite the fact that we concentrate
here on analyzing DNA sequences, they serve only as an ex-
ample; we describe a general approach to the spectral and scale
analysis of symbolic data.

Symbolic signals can have a rich statistical structure that is the
focus of many signal processing algorithms. For example, sto-
chastic symbolic signals are discrete random processes with an
unknown amplitude distribution (probability mass function) and
a correlation structure. The amplitude distribution can be easily
estimated as a histogram and, thus, forms a type [6]. It is the cor-
relation structure we want to elucidate here, primarily using fre-
quency-domain or wavelet-domain analysis. Applying a trans-
form technique requires mapping the symbolic domain into the
numeric domain in such a way that no additional structure is
placed on the symbolic sequence beyond that inherent to it. For
example, one arbitrary map for the DNA sequence application
would be to assign the alphabetically sorted nucleotides to an
increasing sequence of integers: .
This mapping would suggest that one nucleotide is somehow
greater than another, which is a property the symbolic set does
not possess. A recent paper [2] uses a much better, but arbitrary
assignment of nucleotide to number to calculate spectrograms
of DNA sequences.

Approaches have been developed for processing signals
within restricted mathematical domains. For example, wavelet
transform algorithms have been defined over groups and fi-
nite fields [5], [18]. In the statistical literature, symbolic
data are termed categorical data [1]. We use the termi-
nology “symbolic signals” rather than “categorical time se-
ries.” The latter term arises when data are drawn from cat-
egories, such as the kind of animals going into a vetenarian
facility. Sequences of symbols arise in information theory,
wherein information sources produce symbols (like letters of
the alphabet) that need to be encoded into bit strings, which
are themselves simple symbols. We find the term “symbolic
signal” more appropriate from a signal processing viewpoint,
but many symbolic algorithms go under the heading of cat-
egorical time series. Markov chains and link-function-based
regression models have been examined for time-domain anal-
ysis of categorical time series. However, a methodology for
the frequency domain analysis of symbolic signals is needed.
Symbols have been associated with vectors so that spectral
analysis could be performed [2], [7], but again, this assign-
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ment is arbitrary. Some authors have exploited the comple-
mentary structure of DNA sequences [19]. Becauseis
paired with and with on the parallel strands of the
double helix, these pairs are grouped together to create a
new set of two symbols . We show later that
such binary-symbol sequences pose no challenge in applying
numeric signal processing techniques. Stoffer developed an
approach for spectral analysis of categorical time series [16],
[17] that we elaborate here. He proposed a mapping of a
symbolic sequence to a numeric one in a nonarbitrary manner
that emphasizes any periodic feature that might exist in the
categorical process. However, he assumed that the categorical
time series was stationary. We expanded Stoffer’s approach
to processing nonstationary symbolic signals in the frequency
domain. We describe time-frequency and time-scale (wavelet)
domain analysis techniques for symbolic-valued signals. Our
approach to symbolic signal processing is sufficiently gen-
eral to allow any linear transform of symbolic data to be
calculated.

II. M ETHODS

The procedure requires two parts: mapping the symbolic data
to a numeric form in a nonarbitrary manner and calculating
the transform of that numeric sequence. In passing from sym-
bolic to numeric data (as shown in Fig. 1), the set of symbols

is first mapped to a set of indicator vec-
tors . Each indicator vector has dimen-
sion equal to the size of the symbolic set, and it has a “1”
in the row corresponding to the occurrence of a symbol and a
“0” otherwise. The symbolic sequence can thus be mapped
to a sequence of indicator vectors by replacing each symbol
with its corresponding indicator vector when .
Symbol set indexing (and, thus, rows of the indicator vector)
has no any significance in the data processing. Note that vectors
of dimension greater than one cannot be ordered, and any non-
trivial arithmetic operation on an indicator vector would not re-
sult in an indicator vector. Thus, the set of indicator vectors does
not constitute a field, and the sequenceis also symbolic in
nature. To obtain a numeric sequence, we evaluate the inner
product of each element of the sequencewith a weight vector

(dimension ). Determination of the weight vector is
therefore critical. In the example shown in Fig. 1, the weighting
is arbitrary and seems to imply that and . Our
algorithm determines the weight vector according to signal pro-
cessing criteria to maximally highlight structure in the data. In
this way, the data and the type of analysis being performed de-
termine the weight vector.

Assume for the moment that we have a weight vector
and have converted the symbolic sequence into a discrete
numeric sequence to which we can apply time-frequency
and time-scale analyses.We will discuss two transforms:
the short-time Fourier transform and the wavelet transform.
Developing a meaningful transform is the same for each; we
use the Fourier transform to exemplify the process. Taking a
discrete linear transform of the discrete-time numeric sequence

Fig. 1. First step is mapping the symbolic sequence to a sequence of indicator
vectors. Using the genetic code as an example,x is the sequence consisting of
the four symbolsfA, G, C, Tg, makingy a sequence of(4� 1) indicator
vectors. Here, we assigned indicator vectors according to col[1 0 0 0] $ A;

col[0 1 0 0] $ G; col[0 0 1 0] $ C; col[0 0 0 1] $ T. The upper panel
shows how a specific nucleotide sequence would be assigned an indicator vector
sequence with respect to this choice. We used the arbirtarily selected weight
vectorw = col[1 2 3 4], creating the depicted numeric sequencez . However,
this weighting is arbitrary and seems to imply thatT > A andC > G. A better
weight choice is to optimize some aspect of the transformed sequence according
to some criterion. For linear transforms, which are represented in the middle and
lower panels by a multiplication byL , we can interchange the multiplications
byw andL so that the weight-vector optimization can be performed on the
transform of the indicator vector sequence.

is computationally equivalent to a matrix multiplication
(see Fig. 1). Because the symbolic-to-numeric mapping and
the transform are linear operations, we can interchange their
order. At any particular frequency, we represent the column
vector of transform coefficients by . Collecting a sequential
set of values of starting at index together into arow
vector , we want to transform
this segment, advance the segment’s time originby some
amount, resegment, etc. The transform of the segmented nu-
meric sequence can be expressed by . Therefore,
the Fourier transform of the numeric equivalent of the symbolic
sequence can be written as

(1)

where denotes the matrix formed by collecting the sequence
of indicator vectors together: . Thus,
we transform the sequence of indicator vectors first, creating
the vector at each frequency, and then apply the weight
vector. The transform calculation thus becomes a multichannel
Fourier transform, with the transform of each row of the
indicator vector sequence computed separately. This
reordering of applying the weight vector and transforming
allows us to determine the weight vectorafter transforming
the signal to its frequency representation. Thus, the weight
vector can be optimized according to signal processing criteria
at eachanalysis frequency [17]. In the time domain, no single
weight vector results as the equation would
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suggest. Because we determine the weight vector according
to the signal’s frequency domain structure within a particular
time window, an equivalent time-domain weight vector does
not exist. Because of this data-dependent optimization, the
weight vector depends on the data, making the calculation of
the transform of symbolic sequences nonlinear.
2 The wavelet transform does not involve windowing, but the
idea of interchanging application of the weight vector and the
wavelet transform operation still applies. Here, we optimize the
weight vector according to scale and analysis time. Forany
linear transform, we optimize the weight vector according to
the signal’s structure in the transform’s domain.

We used the optimization criterion of maximizing the energy
of the transform output at each frequency. More specifically, we
maximize the magnitude squared of the transform output in the
transform domain ,3 imposing
the normalization constraint that . This constrained
energy optimization corresponds to the unconstrained maxi-
mization of the Rayleigh quotient ,
which is maximized when is proportional to the eigenvector
corresponding to the largest eigenvalue of [11].
Thus, the weight vector depends on the analysis frequency
and on the time origin about which the averaging operation
took place. We indicate this dependence explicitly by .
The largest eigenvalue equals the power of the transform output
at a particular frequency, and thus provides the power spectral
values we seek.

Note that the indicator vector sequences and are
rank deficient by one. Any particular row is completely deter-
mined from the other rows because each column of the matrix
can only hold a single 1 with the remaining entries equaling
0. Thus, we need only compute the transform of
rows of the indicator vector sequence , where equals
the number of symbols. For a two-symbol sequence, we need
only compute the transform of one row of the matrix ,
and either will do. Because the transforms considered here
are linear, the selected row can be multiplied by any real
number without affecting spectral structure. In this case, we
can map from a two-symbol set to the real numbers arbitrarily
without imposing an ordering. Assign one of the two symbols
the value zero and the other any real number. No special algo-
rithms are needed for this case.

We implemented this approach by developing Fourier and
wavelet transforms for symbolic sequences. Because our
data are nonstationary, we computed the short-time Fourier
transform for time-frequency analysis of symbolic signals:
STFT , where rep-
resents a moving window [15]. We window each row of the
matrix and compute the Fourier transform of each. At each
frequency, we form the outer product , creating the

2The fact that the transform calculation is nonlinear does not obviate
the manipulations given in (1), which depend on the properties of matrix
multiplication.

3The notationw means the transpose ofw and Y , which is
the conjugate-transpose ofY . The notationh�i refers to an averaging
window that is used to derive nontrivial solutions for the weight vector.
We describe the reason behind the averaging subsequently.

so-called cross-spectral matrix [13, ch. 14]. It is the eigenstruc-
ture of the cross-spectral matrix we seek. Because a matrix
consisting of a single outer product has rank one, we average
these outer products over several windowed segments to create

. The largest eigenvalue of this matrix constitutes
the power spectrum of the symbolic sequence at the timeand
the frequency . We use these values to create a spectrogram
of the symbolic sequence.

Wavelet analysis has the desirable characteristic that it
makes no stationarity assumptions on the signal it pro-
cesses, and it has adaptive time-scale resolution. Since the
usual wavelet transform steps along the time axis by the
length of the wavelet basis, a short duration pattern in
the data could easily be missed completely by the corre-
lating wavelet basis if the two are not exactly in phase.
We used theredundant wavelet transform because it is
shift-invariant (no down-sampling occurs after highpass
and lowpass filtering at each wavelet decomposition scale):
WT . The choice of wavelet
basis further adapts the wavelet transform to the particular
signal; we used the Haar basis because of its square-wave
waveform [4]. It is worth noting that the Haar basis is the
only appropriate basis for symbolic sequences because the
sequence of indicator vectors is binary valued. We calculate
the optimal weight vector independently at each scale of the
wavelet decomposition by averaging across different length
time windows according to the time-frequency resolution
tiling of the wavelet transform. We then display the power of
the time-scale content of the symbolic signal in a scalogram.
Because the shift-invariant transform does not down sample,
we normalize the scalogram display at increasing scales by
dividing by powers of .

By displaying the short-time Fourier or wavelet transforms
as spectrograms or scalograms, respectively, local structure
can be visually detected. The frequency or scale of the dis-
play indicates the periodicity of the structure. Once struc-
ture is located, the weight vectors provide additional in-
formation about the structure of the pattern. Recall that
the weight vectors are optimized to maximize transform
power. Thus, the relative weights given to each symbol in-
dicates the level of participation of each symbol in the
detected pattern. Repeating symbols receive higher weight
values, while nonrepeating symbols are suppressed. We found
that by multiplying weight vector sequences by the spec-
trogram or scalogram as appropriate, we can create a dis-
play that highlights regions of periodicity and clearly shows
the symbolic structure. Thus, for spectrograms we computed
STFT , what we call the weighted spectro-
gram, and displayed the components of the resulting vector
as a function of segment time origin.

III. RESULTS

We present as examples some spectrograms, scalograms, and
weight vector displays of real and simulated DNA data and show
how these displays provide information about the correlation
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Fig. 2. We created a sequence of random noise (or randomly distributed
fA, G, C, Tg symbols) and interspersed short sections of patterns with
varying periodicities and at varying intervals. One pattern we created, shown in
the top panel, for our pseudo DNA sequence consisted of the period-2 pattern
GAGA . . . immediately followed by a period-4 patternACTGACTG . . .. In the
bottom panel, we show the period-4 patternAACC � � �.

Fig. 3. Spectrogram displays the power of the symbolic short-time Fourier
transform of the test DNA sequence. High power is found at frequencies of 0.5
and 0.25 at indexes of approximately 500 and 1300, respectively, accompanied
by no power at all other frequencies at those locations except at zero frequency.
These high-power regions indicate the detection of a pattern with a periodicity
of 2 at base pair index around 500 and a pattern with a periodicity of 4 at around
1300. These regions and patterns indeed correspond to the patterns shown in
Fig. 2. Weight vectors are calculated independently at each frequency of the
Fourier transform of test DNA. The entries of the weight vector corresponding
to each symbol are then multiplied by the power density spectrum to create
the weighted spectrogram that displays what symbols formed the patterns
that produced power in the short-time spectrum. The figure indicates that the
first high-power burst around index 500 corresponds to a period–2 pattern of
alternatingA andG, followed by a period-4 pattern involvingA, C, T , andG.
The second high-power region at index 1300 corresponds to a period–4 pattern
of A andC. Because no power is present at frequency 0.5, the pattern must be
AACC. These regions and patterns correspond to the patterns shown in Fig. 2.

structure of the symbolic signals. Structure corresponds to re-
gions of high energy in the spectrogram and scalogram. The se-
quence index locates the pattern while the highlighted frequency
or scale indicates the periodicity of the structure: or

. Since we used the Haar basis in the wavelet transform, high

Fig. 4. Scalogram displays the power of the cross-spectral matrix of the
shift-invariant wavelet transform of test DNA. We normalize at scales by
dividing by2 . High power values are found at scale 1 at index location 500
and at scale 2 at index location 1300. Note that if we zoomed in, we can locate
the pattern to the exact DNA base pair index because of the higher time index
resolution of the wavelet transform. Since we used a Haar basis (with period 2),
this corresponds to patterns of period 2 and 4 at scales 1 and 2, respectively. The
weight vector is calculated independently at each scale of the shift-invariant
wavelet transform using varying length averaging windows according to the
desired time-scale resolution. The elements of the weight vector associated
with each symbol are multiplied with the power of the wavelet transform to
create the weighted scalogram. The display shows that the first pattern detected
involves the symbolsA andG, whereas the second pattern involvesA andC.
These regions and patterns correspond to the patterns shown in Fig. 2.

power at scale indicates the occurence of a pattern with pe-
riod . Conceptually, a symbolic pattern with periodicityin-
dicates that a symbol repeats at regular intervals of length.
An example of a period 2 pattern in the symbolA would be

.
We generated some simple “pseudo DNA” data to show how

the spectrogram and scalogram display temporal periodic struc-
ture. Fig. 2 shows the symbolic patterns used, whereas Figs. 3
and 4 display the spectrogram and scalogram of the pseudo
DNA, respectively. The spectrogram and scalogram each detect
the high energy sections of pattern with the frequenciesand

, or scales 1 and 2. The weighted spectrogram and scalo-
gram clearly identify the corresponding period 2GAand period
4 ACTGandAACCpatterns.

We applied the method to analyze E.coli and human hemo-
globin DNA sequences. The spectrogram and weighted spec-
trogram displays of E.coli are given in Fig. 5. The DNA
sequences corresponding to high-energy spectral components
are shown in Fig. 6. The scalogram and weighted scalogram
displays of human hemoglobin are given in Fig. 7, and Fig. 8
shows the sequence found in one high-energy segment. These
displays allow visual detection and location of structure in
symbolic sequences.

Generally, the wavelet transform gives finer time index res-
olution such that patterns can be exactly located, whereas the
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Fig. 5. The spectrogram of a 10 000 length section of E.coli DNA displays a
faint line at a frequency of1=3 across the entire sequence, indicating a weak
recurring pattern with period 3. The presence of this line indicates that DNA
coding is occurring. The weighted spectrogram shown in the bottom panel
displays the behavior of the individual symbols. For example, at index locations
of around 1200 and 8200, the pattern seems dominated byT. There also
appears to be structure at index 8000 involvingC andT. Examination of these
areas (Fig. 6) indeed shows that these symbols do repeat every third symbol.

Fig. 6. Two base pair segments are shown around locations where a high
degree of synchrony to a frequency of1=3 is found in the E.coli spectrogram.
A frequency of1=3 corresponds to a symbol recurring every third position.
The dashed line markers indicate precise synchrony of this nature. In the top
panel, synchrony of the symbolsC andG (the first in particular) is found; the
bottom one reveals synchrony toT.

Fourier transform only indicates the region in which the pattern
can be found. However, for lengthy symbolic sequences (on the
order of tens of thousands), this high time index resolution may
be too much information to be useful for visual detection. If a
pattern has a periodicity that is not a power of 2, the wavelet
transform energy will not “live” in a single scale but will spill
across adjacent scales. This effect could be observed in the E.
coli data that contained a structure with period 3. The Fourier
transform does not have this limitation (see Fig. 5).

IV. CONCLUSION

Computing the power spectrum for numeric signals usually
ends with a display of the spectrum. For symbolic signals,
the spectrum is not enough. When we find a peak in the
Fourier spectrum of a numeric signal, we know that the un-
derlying signal at that point in time contained an additive
sinusoidal component. A peak in a symbolic signal’s spec-
trum merely indicates that one or several symbols are period-
ically repeating. (Note that the frequency at which symbols
repeat must be rational.) Which symbols contribute to this
repetition are not expressed by the spectrum. Furthermore,
multiple peaks do not mean that several symbolic compo-
nents are added; they cannot be because symbols cannot be
added. Instead, the components must interleave, which means
that some spectral combinations—periods that are mutually
prime—cannot occur.

When periodicities do occur, we can determine which
symbols contribute by considering the weight vector. Be-
cause the weight vector maximizes spectral power, those
weight vector components that have the larger values must
correspond to the symbols contributing to the periodicity and
smaller ones do not. Thus, our symbolic spectral or wavelet
algorithm has two phases: We compute the spectrum first
and then reveal the weight vectors corresponding to inter-
esting time intervals.

Fourier and wavelet methods may not elucidate structure in
symbolic signals. For example, where does the word “symbol”
occur in this paper, or where does the sequenceATAGCToccur
in a DNA chain? Especially in the case of DNA sequences,
interesting patterns occur in blocks separated by segments
having a different pattern or none at all. Pattern matching algo-
rithms that locate when a particular symbolic sequence occurs
in a longer sequence would perform better. The Boyer-Moore
algorithm [3], for example, gives good performance in such
cases. In more complicated cases, symbols may not only be
wrong (a situation well described by a stochastic model), but
they can be missing. In signal processing terms, samples are
missing without any indication of absence. Stochastic models
for deletions or the sequence location problem may not be
most appropriate, making signal-processing-oriented detection
algorithms suspect. The transform techniques presented here
would not work well as pattern-matching algorithms in such
cases. On the other hand, when one wants to scan a sequence
for periodic structure without specification of what symbols
comprise the period, the method described here may be better
suited than targeted algorithms. Another consideration in
choosing algorithms is the computational complexity. While
the transforms described here have low complexity, the opti-
mization step amounts to finding the largest eigenvalue and
the corresponding eigenvector of a sym-
metric matrix at each frequency or scale. Thus, our approach’s
complexity increases with both number of symbolsand the
number of frequencies. Furthermore, interesting patterns are
not necessarily periodic. In such cases, Fourier and wavelet
techniques may not work well.
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Fig. 7. Scalogram of a 16 000 length section of human hemoglobin DNA detects a period–2 pattern (scale 1) at index 8800. The weighted scalogram (see Fig.8)
shows that this pattern consists ofATAT . . .. There is a weaker period–2 pattern detected at index 13200, which seems to be comprised of interspersedACandAT
patterns.

Fig. 8. Examination of a section of the human hemoglobin DNA sequence
reveals the period–2AT pattern detected in the weighted scalograms (Fig. 7).

It should be also noted that symbolic signals can be pro-
cessed in many wayswithout using the techniques described
here. In stochastic frameworks (for example, detection prob-
lems), the likelihood ratio can be calculated just as easily for
symbolic as it can for numeric observations. The likelihood ratio
depends solely on the data’s hypothesized probability distribu-
tions, and these impose no ordering on the symbols and map the
value of a random variable, be it symbolic or numeric, to a nu-
meric value precisely in the way needed for optimal detection.
Estimating the needed probability distribution is accomplished
via histogram estimators (types). Because symbols are discrete,
these estimates will converge to the true distribution; just as in

any detection scenario, proper account of serial dependencies
must be made to achieve optimal detection performance. Em-
pirical detection algorithms [10], which have no hypothesized
distribution and rely solely on training data, are tailored to sym-
bolic or discrete real-valued random variables and asymptoti-
cally yield optimal performance. Thus, in the case of detection
and other algorithms dependent on the probability function for
data, our approach is not needed.

We have shown that signal processing algorithms requiring
numeric signals can be extended to symbolic ones as well. We
have used a linear, data-dependent, algorithm-dependent map-
ping to pass from symbolic to numeric representa-
tions. Because the weight vector depends on frequency or scale,
the weight vector does not exist as a single entity. Because of
this data- and algorithm-dependent weight, this technique for
converting from symbols to numbers does not impose an ar-
bitrary structure. The generality of this approach allows other
linear signal processing algorithms, such as filtering, to be de-
veloped. This paper’s approach can be used in such cases to
bridge between symbolic and numeric signals.
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