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THE STATISTICAL INTERPRETATION OF 

DEGREES OF FREEDOM 

WILLIAM J. MOONAN 

University of Minnesota 

Minneapolis, Minnesota 

1. Introduction 

THE CONCEPT of "degrees of freedom" has 
a very simple nature, but this simplicity is not 

generally exemplified in statistical textbooks. It 
is the purpose of this paper to discuss and define 
the statistical aspects of degrees of freedom and 

thereby clarify the meaning of the term. This 
shall be accomplished by considering a very elem 

entary statistical problem of estimation and pro 
gressing onward through more difficult but com 

mon problems until finally a multivariate prob 
is used. The available literature which is devot 
ed to degrees of freedom is very limited. Some 
of these references are given in the bibliography 
and they contain algebraic, geometrical, physical 
and rational interpretations. The main emphasis 
in this article will be found to be on discovering 
the degrees of freedom associated with certain 
standard errors of common and useful significance 
tests, and that for some models, parameters are 

estimated directly or indirectly, by certain d e - 

grees of freedom. The procedures given here 
may be put forth completely in the system of es 
timation which utilizes the principle of least 

squares. The application given here are special 
cases of this system. 

2. 
In most statistical problems it is assumed that 

n random variables are available for some anal 

ysis. With these variables, it is possible to con 
struct certain functions called statistics with which 
estimations and tests of hypotheses are made. As 

sociated with these statistics are numbers of de 

grees of freedom. To elaborate and explain what 
this means, let us start out with a very simple 
situation. Suppose we have two random variables, 

y i and y2. If we pursue an objective of statistics, 
which is called the reduction of data, we might 
construct the linear function, Yx = 

?- yx + ? y2. 
This function estimates the mean of the popu 

lation from which the random variables were 
drawn. For that matter so does any other linear 
function of the form, Yi = axl yx + a12 y2 where 
the a's are real equal numbers. When the coef 
ficients of the random variables are equal to the 

reciprocal of the number of them, the statistic de 
fined is the sample mean. This statistic may be 
chosen here for logical reasons, but its specif i - 

cation really comes from the theory of estimation 
mentioned before. We also could construct an 
other linear function of the random variables, Y2 = 

This contrast statistic is a measure of how 
well our observations agree since it yields a meas 
ure of the average difference of the variables. 
These statistics, Yx and Y2, have the valuable 

property that they contain all the available inform 
ation relevant to discerning characteristics of the 

population from which the y's were drawn. This 
is true because it is possible to reconstruct the 

original random variables from them. Clearly, 
Yi 

= 
Y2 

= 
yx and Yx 

- 
Y2 

= 
y2. We discern that 

we have constructed a pair of statistics which are 
reduceable to the original variables, but they state 
the information contained in the variables in a 

more useful form. There are certain other char 

acteristics worth noticing. The sum of the coef 
ficients of the random variables of Y2 equals zero 
and the sum of the products of the corresponding 
coefficients of the random variables of Yx and Y2 
equals zero. That is, (?)(?) + t?)X-?) 

= 0. This 
latter property is known as the quasi-orthogonal 
ity of Yi and Y2. This property is analogous to 
the property of independence which is associated 

with the random variables. 

In changing our random variables to the statis 
tics we have performed a quasi-orthogonal trans 

formation. Quasi-orthogonal transformations are 

of special interest because the statistics to which 

they lead have valuable properties. In particular, 
if our data are composed of random variables from 

a normal population, these statistics are indepen 

dent in the probability sense, (i.e., stochastically 
independent) or in other words, they are uncorrel 

ated. That remark has a rational interpretation 
which says that the statistics used are not over 

lapping in the information they reveal about the 
data. As long as we preserve the property of orth 

ogonality we will be able to reproduce the original 
random variables at will. This reproductive prop 
erty is guaranteed when the coefficients of the 
random variables of the statistics are mutually 
orthogonal (i. e., every statistic is orthogonal to 

every other one), since the determinant of such 
coefficients does not vanish when this is true, our 

equations (statistics) have a solution which is the 

explicit designation of the original random vari 
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ables. The determinant for this problem is 

(1) 
i i 

i 
= (?-X-?) 

- 
(*)(*) = 

There is another valuable property of quasi-orth 
ogonal transformations which we shall come to a 
little later. 

3. 
If we have three observations, we can construct 

three mutually quasi-orthogonal statistics. Again 
we might let Yx be the mean of the random vari 
ables with Y2 and Y3 as contrast statistics. Spec 
ifically, let Yx = i yx = i y2 = t y3. There exist 
two other mutually quasi-orthogonal linear sta 

tistics which might be chosen, and it can be said 
that we enjoy the freedom of two choices in the 
statistics we actually use to summarize the data. 

We could let 

(2) Y2 = ?yx 
- 

iy2 + fy3; Y3 = iyx + ?-y2 
- 

t'y*. 

or, 

(3)Y2 =?y1 + iy2 -iy3; Y3 = 
iyx -iy2 -|y3. 

(It can be shown that there exists an infinity of 

possible choices! ) 

Either pair of the statistics which we have 
chosen together with Yx can be shown to reproduce 
the random variables y1} and y2 and y3. As a 

consequence, they possess all the information that 
the original variables do. In general, if we have 
n random variables, we might construct a statis 

tic representing the sample mean (which estimates 

9) and have n - 1 choices or degrees of freedom 
for other mutually quasi-orthogonal linear statis 

tics to summarize the data. Each degree of free 
dom then corresponds to a mutually quasi-orthog 
onal linear function of the random variables. In 

general, the term degree of freedom does not nec 

essarily refer to a linear function which is orth 

ogonal to all the others which are or may be con 

structed; however, in common usage it usually 
does refer to quasi-orthogonal linear functions. 

When the observational model we are working 
with contains only parameter which is estimated 

by a linear function, there is little purpose in spec 
ifying the remaining degrees of freedom in the 
form of contrasts. For instance, if our model is 

yi =0 + ei is normally distributed with zero mean 
and variance a2, i. e., N(o, a2), and i = 

1,..., n, 
we would also like to estimate a2. Unfortunately, 
this parameter is not estimated directly by linear 
functions other than Yx. 

Before proceeding, the other property of quasi 
orthogonal transformations will be discussed. One 

(5) 

might inquire about the relationship of the number 
called the sum of the squares to the yi's to the 
sum of squares of the Yj's. If we require this 
number to be invariant, then 

n o n 
(4) S 

Yj2= 
S yi2. 

J=l i=l 

For two statistics, we can write in matrix notation, 

*z j |^a21 a22 J ^y2 J n 
Then, 

.^yj2 
= Y' Y = (a y) '(Ay) = y' A' Ay. 

n 
Now if S 

Yf 
= Y'Y is to equal L y?2 

= y!y, J i=l 

then A'A is a two row-two column matrix with 
ones in the main diagonal, i. e., A!A = /1 Ox 

vo r 

A matrix, A', which when multiplied by its trans 

pose, A, equals a unit matrix, then A' is called 
an orthogonal matrix and the y^s which are trans 
formed to the 

Yj's by this matrix are said to be 

orthogonally transformed. You will notice that 
the matrix of the coefficients of Y! and Y2 of sec 
tion 2 is not an orthogonal matrix since 

A'A -J2 ? 

i 

If the coefficients of the Y's had been 1/V2's 
instead of ?-'s then A' would be an orthogonal ma 

trix. Because the matrix of our transformations 
does not fulfill the accepted mathematical defin 
ition of orthogonal transformations, but one very 

much like them, they are termed, for the purposes 
of this paper, quasi-orthogonal transformations. 

However, it seems unnatural to beginning students 
to define Yx as yx =_l_y1 +_1_ Ya- Actually, for 

/2" y/T 

Yx any linear function with positive and equal co 

efficients would serve as well as Yx itself for they 
would be logically equivalent and mathematically 
reducible to the usual definition of the sample 

mean. If we are to use the common-sense statis 

tics, obviously something must be done in order 
to preserve the property (4). One thing that can 

be done is to change our definition of what the sum 

of squares of the jth linear function, Y*, would 
be. Let us define the sum of squares associated 
with the linear function Yj to be 

(6) SS(Yj) 
= <aH y* +a2-i Ya + + 

*nj Yn)2 

afj 
+ 

a22j 
+-+ 

an*j 
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Using this definition instead of just the numerator 
of it, property (4) will be preserved. As an illus 
tration of this formula let j = 1 and 

Yx =?yx + 3Ly2 + ty3, then 

3 

(7)ss(y1)= (iyi + JYa + iys)2 
(?yQ2 

(*) 2 + (*) 2 + (i) 2 3 

n 
or for n random variables, SS(Yi) = (S yi)2/n. 

i=l 

Further, if yx = 24, y2 = 18 and y3 =36, then 

SS(YJ = 2028, and if we use (2), then SS(Y2) 
= 18 

and SS(Y3) = 150. Note that SS(YJ + SS(YJ + SS 

(Y2) +SS(Y3) = 2196 and that 
3 
Z y? 

= 242 + 182 + 362 = 2196 
i=l 

Thus the sum of squares of the linear function 

equals the sum of squares of the random variables. 
These results can, of course, be generalized to 
the n-variable case. Clearly, the sum of squares 
of the two linear functions Y2 and Y3 equals the 
total sum of squares of the random variables min 
us the sum of squares associated Yx, so: 

3 3^2 
(8) SS(Y2 ) + SS(Y, ) = S yf 

- 
SS(YX ) = S y* 

~ 
<? 7? 

1=1 i=l 
->=%? 

or, in general, 

(9) SS(Y2) + ....+ SS(Yn) = S Yi2 
- 

(& yj)2 
1=1 

n-" 

Now define the sample variance of a set of lin 
ear functions as the average of the sums of squares 
associated with the contrast linear functions. We 
see that for the special case where n = 

3, our di 
vision for this average will be 2 because three are 
two sums of squares to be averaged in (8). This 

argument accounts for the degrees of freedom di 
visor which has been traditionally difficult to ex 

plain to beginning students in the formula 

(iQ)s^Azi- (liyi)8 
= 
A M^ii! 

n -1 n(n 
- 

1) 
1=1 n - 1 

The statistic Ylf accounts for one degree of free 
dom in the numerator of the formula for Student's 
t and the denominator is a function of (10) and is 
associated with n - 1 degrees of freedom. Note 
that it is not necessary to construct the contrast 

degrees of freedom to obtain the sums of squares 
associated with them. 

4. 
The problem just presented is a simple analy 

sis of variance (anova) type and leads to the test 

of the hypothesis, 9 = Go. The next logical elab 
oration would be to consider Fisher's t test of the 
hypothesis. 0X = 0E. The observation model is 
yik 

= 
9fc+ eik, where i=l,..., n^ k=l, 2 and 

eik are N(o,a2 =of = a22). The orthogonal linear 
functions which estimate the parameters 6X and 

02, are respectively, 

Yi 
= l yn + ...+l 

ynix+ 
o y12+...+ o 

yn22 
nx nx n2 n2 

andY2=o ylx+...+o 
ynii 

+ 1 y12 +.. .+1 
yn22. 

nx nx n2 n2 

Then, 

nk 2 
(11) SS(Y3) +... + 

SS(Yn1+Il2) 
= 

.^ .^yik 
-SS(YJ 

nk 2 2 (sVii)2 (.Syi2)2 
SS(Y2)= S Z 

Yy 
- 

_M_-_lz?_= 
i=l 3=1 

J 
n2 n2 

ni _ . na _ . 
? (yii 

- 
y if + S (yi2 

- 
y2)2 

i=l i=l 

and if we average these sum of squares, the ap 
propriate denominator will be nx + n2 "2. The 
numerator of Fisher's t is Yi -Y2 under the null 

hypothesis Bx = 92 and the denominator is a func 
tion of (11) and is associated with nx + n2-2 de 
grees of freedom. 

5. 
As another example, we might consider the re 

gression model, yx 
= G + ? (xi 

- 
x) + ex, where 

i = 1,..., n and ei are N(0> o$.x). 
The lineur 

functions of interest are Yx = 1 yn and Y2 = (Xi-5Q 
n n 

yx +... + (Xn 
- 

X) yn. For these functions, Yx 
n 

is used to estimate the mean, G and Y2, being an 
an average product of the deviation x's and con 

comitant y's, leads to an estimate of the unknown 
constant of proportionality, ?. This is rationally 
and algebraically true, since if yi and (xi 

- 
x)tend 

to proportionately increase and decrease simul 

taneously or inversely, Y2 will tend to increase 

absolutely. However, if yx and (xi 
- 

x) do not pro 
portionately rise and fail simultaneously or in 

versely, Y2 will tend to be zero. This can be 
shown by the following table. In this table, sev 
eral sets of x's designated by xjk, k = 1,..., 3, 
each of which have the same mean, 4, are substi 
tuted in Y2*together with their corresponding yj's. 
The values of the Y2k are given in the bottom line 
of Table I. 
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TABLE I 

EVALUATION OF Y2 FOR CHANG 
ING VALUES OF Xi IN THE SIMPLE 

REGRESSION MODEL 

xil Xi3 xi5 

Y2k 

Using (6) we find 

(12)SS(YX) = 
(j|yi)2 andSS(Y2)= gXxi 

-x)yiV 
"IT 

?\2 
S.(xi-x)' 1=1 

Consequently, to find the sample estimate of o& x, 

(13) SS(Y3)+...+ SS(Yn) = 
| Yi2 

- 
SS(YX) 

- 
1-1 

SS(Y2)=i=l 

ft yi2 - (i=?i yi)2 W*' 

E(xi-x)2 
1=1 

7? \2 S (Yi 
- 

y) -b S (xi 
- 

x)yi 
= s (yt 

- 
yx) 

1=1 1=1 1=1 

where b is the usual regression coefficient for 

predicting y from a knowledge of x and y is the 

predicted value of yi. Again to find the variance 
associated with these sums of squares we divide 
their sums of squares by the number of degrees 
of freedom from which these sums of square were 
derived. This number is n - 2. Under the null 

hypothesis, ? = 
0, the denominator of the t test, 

t = b/S. ED, has (n 
- 

2) degrees of freedom and 
the numerator is associated with one degree of 
freedom. 

6. 

It is fairly laborious to calculate the 
SS(Yj) 

and because of this it is desirable to have a meth 
od whereby the sum of squares associated with 
several linear functions may be conveniently 
found. The proof of the method is fairly long and 

will not be reproduced here. Its exposition will 
have to suffice. 

Let ai be the coefficient vector of the random 
variables of the jth degree of freedom and let y 
be the observation vector, (yx y2,..., yn). With 

these values construct the following system o f 

equations : 

Pi(ax. ax) + p2(ax. a2) + ... + 
Pm(ax. am) 

= 

(ax.y) 

(14) 

Pi(a2 
. 

ax)+p2(a2. a2)+.. . + 
pm(a2 

. 
am)= (a2 

. 
y) 

Pi(am.ax)+p2(am. a2)+...+ pm(am. am) 
= 

(am. y) 

When these equations are solved, by whatever 
method is convenient, the sum of squares for the 
m degrees of freedom, Yx, Y2,..., Ym(m<n) 
is given by 

(15) px(ax.y) + p2(a2.y)+. .. + pm(am.y) 

The method reveals the correct sum of squares 
whether or not the degrees of freedom are mutu 

ally orthogonal, but we shall illustrate it for the 

orthogonal case. Consider again (2) and then let 

a2 = 
(i, -?-, y), a3(f, ?, -?) 

and y = 
(yx, y2, y3) 

= 
(24, 18, 36). Correspond 

ing to (14) we have 

(16) p2(i) + p3 (0) = 3 p2(0) + p3(f) = 10. 

Therefore p2 = 6 and p3 = 
15, then SS(Y2)+SS(Y3)= 

6(3)+(15)(10) 
= 168. In some previous work in 

section 3, we found SS(Y2) =18 and SS(Y3) 
= 

150, 
so this result checks. In this problem, Yx was 

neglected in order to show that (4) is quite general 
for any m<n. 

7. 

All of these principles may be easily general 
ized to the multivariate case. What is needed is 
to use matrix variables instead of the single ones 

we have been using. Using the Least Squares 
Principle, the ideas presented here (and many 
others) have been applied to multivariate analysis 
of variance in reference number 4. The follow 

ing and last example is taken from this source. 

Suppose, 

Y? = 
H, y* = 

5, yi = 
8; y2 

= 
2, y22 = 

6, y3* 
= 13. 

Here the superscripts indicate which variate is 

being considered (these numbers are not to be 
confused with powers), and the subscripts desig 
nate the variables. Also let 

Y"= f^ # + 
?. Y*a= ^ 

- 
? and Y* ? 
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3 3 3 ' 

where a = 1, 2. We have, corresponding to (14) 
Pi1 (*) + P21 (0) + p3x (0) = 8 

(17) P.1 (0) + p? (i) + p,1 (f) = 0 

Pi1 (0) + pi (0) + p3x (*) = 0 

Therefore, p/ = 24, p^ = 6, p3* = 0 and using (15) 
we find (24)(8) + (4)(2) + (0)(0) = 210 which is equal 
to ll2 + 52 + 82. For the second variate px2 (?) + 

P? (0) + pi (0) = I 

(18) px2 (0) + p2 (i) + p32 (0) = -2 

Pi2 (0) + p22 (0) + p32 (f) 
= -6 

Solving, we get px2 
= 

21, p22 
= 

-4, p32 
= -9 and 

corresponding to (15), (21)(7) + (-4)(-2) + (-9)(-6)= 
209 which is equal to 22 + 62 = 132. The sum of 

cross-products of these three vector degrees of 
freedom for the two vari?tes may be found in one 
of two ways; either (24)(7) + 6(-2) + 0(-6) 

= 156 
or (21)(8) + (-4)(3) + (-9)(10) = 156. Both results 
are equal to (H)(2) + (5)(6) + (8)(13). The matrix 

210 156 
156 209 

corresponds to the total sum of squares and cross 
products for the bivariate sample observations 
which have been transformed by the vector de 
grees of freedom 

Yja, j=l, 2, 2. We note that 
the sums of squares and cross-products of the 

variables for each variate is preserved by the 

orthogonal vector set of degrees of freedom. This 

simple problem serves to illustrate this invari 
ance property for a multivariate case. 

8. Summary 

We have seen that certain statistical problems 
are formulated in terms of linear functions of the 
random variables. These linear functions, called 

degrees of freedom, served the purpose of pre 
senting the data in a more usable form because 
the functions led directly or indirectly to estimates 
of the parameters of the observation model and the 
estimate of variance of the observations. More 

over, these estimates may be used to test hypoth 
eses about the population parameters by the stand 
ard statistical tests. 

Modern statistical usage of the concept of de 

grees of freedom had its inception in Student's 
classic work, reference 7, which is often consid 
ered the paper which was necessary to the devel 

opment of modern statistics. Fisher, beginning 
with his frequency distribution study, reference 

2, has generalizations to work in their many con 
tributions to the general theory of regression an 

alysis. 
This paper has resulted from an attempt to 

bring clarification to the statistical interpreta 
tion of degrees of freedom. The author feels that 
his attempt will not be altogether successful for 
there remain many questions which students may 
or should ask that have not been answered here. 
A satisfactory exposition could be given by a com 

plete presentation of the thepry of least squares 
which is slanted towards the problems of modern 

regression theory of the analysis of variance type. 
This discussion would appropriately take book 

form, however. 
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