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ABSTRACT

We describe a proof of concept for class knowledge transfer from a
labeled hyperspectral image to an unlabeled image, captured with a
different (hyper-/multi-spectral) sensor, when the spatial extents of
the images partially overlap. By defining a set of spatio-spectral cor-
respondences between the labeled source image and the unlabeled
target image, we create a mapping between the images we can use to
propagate labels from the source to the target image. This mapping
allows us to classify the target image using the source labels without
manually defining training labels in the target image. We evaluate
the technique using state of the art synthetic hyperspectral imagery.

Index Terms— hyperspectral, knowledge transfer, synthetic,
classification, DIRSIG, HYDICE, MASTER

1. KNOWLEDGE TRANSFER FOR HYPERSPECTRAL
IMAGE CLASSIFICATION

Machine learning techniques have been widely used to classify re-
motely sensed images into known land cover or surface material
types. Once an image has been classified, however, transferring that
knowledge to new imagery is often quite difficult. This is particu-
larly challenging when the images are captured using distinct sensor
types, where it is necessary to reconcile differences in spectral res-
olution, sensor noise, and capture geometry. Furthermore, dynamic
changes in atmospheric and illumination conditions can dramatically
alter the composition of the image data between capture times. Due
to the numerous unknowns to be considered in the knowledge trans-
fer problem, a sensible approach for algorithm development and val-
idation is to analyze synthetic data. In recent years, techniques for
generating synthetic hyperspectral imagery have made significant
advances in modeling complex physical and chemical phenomena,
and are now capable of generating imagery of exceptional detail and
realism. Additionally, as the environmental conditions and surface
materials within synthetic imagery are user-defined, one can gener-
ate imagery with characteristics similar to real-world scenes.

The knowledge transfer approach is not a new one. In the remote
sensing domain, one of the first works employing this approach was
Shashahani et al. [1]. Here, a set of unlabeled samples are used to im-
prove the classification accuracy of a maximum a posteriori classifier
(with assumptions on the distribution of the unlabeled samples) by it-
eratively labeling unlabeled samples, and then adding those samples
with their classified labels to the training set. An analogous approach
taken in other works ([2], [3], [4] for example) is to characterize
spectral, spatial or temporal relationships captured by a trained clas-
sifier for a particular dataset, and then propogate class information
where similar relationships in new data are found.
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In this work, we present a technique for knowledge transfer be-
tween a labeled source image and an unlabeled target image, cap-
tured by different sensors. We assume the spatial extents of the
images partially overlap, which provides set of natural correspon-
dences between the images. These correspondences allow us to ap-
ply weights to the class similarity function to account for spectral
differences between sensors. By defining a threshold on a class sim-
ilarity function, we prevent new classes present in the target image
but not in the source image from being incorrectly classified, allow-
ing for discovery of new classes. We evaluate our technique using
state of the art DIRSIG synthetic hyperspectral image data [5].

2. THE RELTRANS ALGORITHM

We seek to estimate the probability, p(yS |xT )1, that a target im-
age pixel xT belongs to source image class yS ∈ [1, kS ]. Our data
consists of two disjoint sets: spectra from the source image S =˘
xS

1 , . . . ,xS
nS

¯
with class labels yS =

˘
yS
1 , . . . , yS

nS

¯
, and spectra

from the target image T =
˘
xT

1 , . . . ,xT
nT

¯
, where nS , nT are the

number of samples in S and T, respectively. Each xS
i , i ∈ [1, nS ]

and xT
j , j ∈ [1, nT ] is a d-dimensional vector, where d is the num-

ber of bands in S and T. If the source and target images do not have
the same number of image bands, we upsample the lower spectral
resolution image to the wavelengths of the higher resolution image.

In most traditional classification settings, it is assumed that both
the training (source) and testing (target) data come from the same
distribution. If both the source and target image were captured by
the same sensor (under similar environmental conditions), one may
make this assumption and use these methods to estimate p(yS |xT ).
But, since we compare spectra from images captured using different
sensor types, we cannot assume that the distributions of the source
and target images are the same. Thus, we need additional informa-
tion to map the domain of the target image to the domain of the
source image. Here, that information comes in two forms:
(1) Correspondence Spectra: We assume that some common-
alities exist between the two images - otherwise there would be
nothing to gain in knowledge transfer. To exploit these com-
monalities, we define a set of nC correspondence spectra C =˘
(cS

1 , cT
1 , lS1 ), . . . , (cS

nC
, cT

nC
, lSnC

)
¯

, where cS
i and cT

i are pixels
with matching spectral footprints (i.e., matching materials) in the
source and target images, respectively, and lSi ∈ [1, kS ] is the label
assigned to cS

i , for i ∈ [1, nC ]. In this work, we assume that these
spectra are pixels at the same spatial locations in an overlapping sub-
region shared by the source and target images, but, in principle, these
correspondences need not be determined by spatial relationships.
(2) Relation Vectors: Defining a robust comparison function be-
tween samples generated from different distributions can be a diffi-
cult task. In such cases, it can be advantageous to capture structured,

1In subsequent paragraphs, we denote scalar variables in italics, vectors
in bold, and matrices in bold caps.



relative relationships between classes within each dataset (i.e., intra-
dataset relationships), and use these relationships to evaluate similar-
ity between datasets (i.e., inter-dataset relationships). In this work,
we characterize intra-dataset relationships in the following manner:
given a d-dimensional data vector v (pixel) and an kS × d matrix of
prototype (e.g., class mean) vectors M, we define the relation vector
between v and M as

rel(v,M) =

"
d(v,m1)PkS
j d(v,mj)

, . . . ,
d(v,mkS )PkS
j d(v,mj)

#
(1)

where d(·, ·) is a distance measure (e.g., Euclidean distance). .
rel(v,M) is kS-dimensional unit vector whose i-th element is the
spectral discriminatory probability [6] which estimates the likeli-
hood of distinguishing v from each representative mi ∈ M, i ∈
[1, kS ]. We can then evaluate the relation similarity relsim(r1, r2)
between a pair of relation vectors r1 and r2 as follows:

relsim(r1, r2) = 1− 1

2
||r1 − r2||2 (2)

where || · ||2 is the L2 norm. relsim(r1, r2) yields values in the [0, 1]
range with similar relation vectors taking values near one.

Algorithm 1 describes the RelTrans procedure, which calculates
the class similarity matrix Σ and predictions p for target data T.
The algorithm first calculates the class means of the source (train-
ing) data and correspondence spectra. The class means of the source
pixels Sµ are used to calculate relation vectors for the means of the
correspondence spectra, and for the Sµ vectors themselves. A target
pixel T(i), i ∈ [1, nT ] is classified by selecting the source label with
the highest relsim score between the pixel relation vector ri and the
source relation vectors SR, weighted by the relsim scores between
ri and the source/target relation vectors CS

R and CT
R.

Algorithm 1 RelTrans

Input: nS × d matrix of target pixels S. nT × d matrix of
target pixels T. Set of nC correspondence points C =˘
(cS

1 , cT
1 , lS1 ), . . . , (cS

nC
, cT

nC
, lSnC

)
¯

. Similarity threshold τ .
Output: nT × kS class similarity matrix Σ, length nT prediction

vector p.
1: Calculate class means for source data, source and target corre-

spondence spectra:
˘
Sµ,CS

µ ,CT
µ

¯
2: Calculate the relation vectors between source class means and

source and target correspondence spectra:
SR ← [rel(Sµ(j),Sµ)]kS

j=1, CS
R ←

ˆ
rel(Sµ(j),CS

µ)
˜kS

j=1
,

CT
R ←
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µ )
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3: for i = 0 to nT do
4: Calculate relation vector for current target pixel:

ri ← rel(T(i),Sµ)
5: Σ(i)← relsim(ri,SR) · relsim(ri,C

S
R) · relsim(ri,C

T
R)

6: p(i) =

(
argmax

j
Σ(i) if Σ(i, j) > τ

0 otherwise
7: end for

3. DIRSIG SYNTHETIC HYPERSPECTRAL IMAGERY

We analyze synthetic hyperspectral imagery generated with the RIT
Digital Imaging and Remote Sensing Image Generation (DIRSIG)
[5] model. We study a subregion of the the RIT “Megascene” [7],
with 400x400 pixels at 4m/pixel resolution. Spectral responses are
modeled after the HYDICE [8] instrument, with 210 bands over 0.4-
2.5 microns. Radiance values are converted to reflectance using em-
pirical line correction in ENVI [9], and illumination normalization

is performed by dividing each pixel by its Euclidean norm. Addi-
tional preprocessing details are described in [10]. We extract two
partially overlapping sub-images (“Source” and “Target” in Fig. 1).
The source image remains at HYDICE spectral resolution, while
the target image is downsampled to MASTER [11] spectral resolu-
tion. Initial experiments using spectral responses modeled after the
128-band HyMap [12] instrument proved trivially classifiable with
a baseline (Minimum Distance) classifier. Thus, we opted for the
lower spectral resolution of the MASTER instrument, with 23 bands
in the 0.4-2.5 micron range. After upsampling the MASTER spec-
tra back to the HYDICE wavelengths and removing saturated water
absorption bands in both images, 159 wavelengths remain for evalu-
ation. Examples of HYDICE spectra and their MASTER equivalents
are shown in Fig. 2.
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Figure 1: Source (left, red tint), and Target (right, green tint) sub-images of
the RIT DIRSIG synthetic image. The source image remains at HYDICE
spectral resolution, and the target image is downsampled to MASTER spec-
tral resolution. The target image is then upsampled back to HYDICE spec-
tral resolution. Correspondence spectra are selected from the overlap region
(blue tint). The relative difference between source and target pixels (right) is
greatest for shaded pixels (see Fig. 2, class C).

4. HYDICE VS. MASTER RESULTS

We consider three knowledge transfer scenarios. In the first scenario
(I (nS = nT ) in Table. 1), all classes present in the source data are
present in the target data. Here, the source and training datasets share
a similar class structure, so we expect the highest accuracy in this
case. In the second scenario (II (nS > nT ) in Table. 1), the source
data contains several classes not present in the target data. Here,
we potentially increase inter-class confusion by including extrane-
ous source classes. In the third scenario (Table. 1, III (nS < nT )),
the target data contains classes not present in the source data. In this
case, the classes present only in the target data represent “undiscov-
ered” classes. Here, we expect the lowest overall classification accu-
racy, since these classes cannot be labeled correctly given the source
data. This can be improved by applying a threshold to the class
similarity vector to flag samples as “unknowns.” In each scenario,
we perform random stratified sampling of the Self-Organizing Map-
based segmentation described in [10] and collect 2000 labeled spec-
tra from each of the source and target images (target labels are used
only in validation). An additional 300 labeled spectra are selected
from the overlap region as correspondence points. For simplicity, we
assume that at least 1 correspondence point for each class is avail-
able, but we are experimenting with situations when a subset of the
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Figure 2: Mean and std. deviation for classes B,U,V and C from source
(HYDICE, green) and target (MASTER, magenta) images. Class B consists
of a combination of tan asphalt shingle and gray gravel roof spectra, and is
often confused with class U (brown asphalt shingles) and class V (black and
gray asphalt materials). Class C is an example of a shadow class consisting
of several (heterogeneous) materials. Due to the heterogeneity, such classes
tend to have low relsim scores.

I (nS = nT ) II (nS > nT ) III (nS < nT )
MinDist 0.858 (1.898e-03) 0.825 (4.922e-04) 0.579 (2.054e-04)
MinDistrel 0.947 (3.355e-04) 0.877 (4.197e-04) 0.640 (1.038e-04)
RelTranstrain 0.947 (3.355e-04) 0.877 (4.197e-04) 0.640 (1.038e-04)
RelTransfull 0.990 (3.454e-06) 0.933 (1.736e-05) 0.664 (2.036e-06)
RelTransthresh 0.997 (8.343e-08) 0.936 (1.599e-06) 0.744 (1.210e-07)
Improvement (%) 13.2% 10.8% 8.5%

Table 1: Mean and variance of cross-validated classifier (test) accuracies for
HYDICE (source) vs. MASTER (target) data, along with the improvement
in accuracy between MinDist and RelTransfull.

source classes lack correspondence points. We compare results be-
tween scenarios using the following classifiers: Minimum Euclidean
Distance (MinDist), MinDist between relation vectors instead of im-
age pixels (MinDistrel), RelTrans algorithm using training data only
(i.e., Σ(i) = relsim(ri,SR)) in evaluating the class similarity func-
tion (RelTranstrain), RelTrans algorithm using source and target cor-
respondences in addition to training data (RelTransfull), and finally,
a thresholded version of RelTransfull with pixels with relsim scores
< 0.95 flagged as “unknown” (RelTransthresh). Classification accu-
racy reported on unflagged pixels only. Predictions for each classifier
are determined by majority vote over ten randomized subsamples.

Classification results for the selected scenarios and classifiers are
summarized in Table. 1. We see a dramatic performance increase in
all scenarios by simply classifying relation vectors instead of tar-
get pixels. This is not surprising, since the spectral shapes of pixels
of the same material type in the two images can be smoothed sig-
nificantly (particularly at longer wavelengths where downsampling
from HYDICE to MASTER spectral resolution causes aliasing, see
Fig. 2 for examples), but the change in spectral resolution does not
significantly alter inter-class relationships within each image. Thus,
by characterizing these class relationships within each image, we are
able to form a more robust descriptor for inter-image comparisons
than the pixels themselves (a similar observation was also made
by Rajan et al. in [4]). The prediction rules for MinDistrel and
RelTranstrain are functionally equivalent and as a result these clas-
sifiers behave equivalently. Correcting for spectral differences be-
tween the source and target images using the correspondence points

gives another signficant performance boost. This is further improved
in all three scenarios after thresholding by making a compromise be-
tween classification accuracy and the number of labeled samples.

To evaluate capabilities for discovery of “new” classes, we ex-
clude several classes (specifically, classes B, E, M, P, S and k) from
the source data, forcing the classifier to choose the best matching
class when the “true” class is not present, or assign a label of “un-
known” to such samples. These classes were selected since both the
source and target images contained pixels belonging to these classes,
so we can easily observe the effects on the classification accuracy
caused by their exclusion. Table. 2 gives class statistics before and
after thresholding for this scenario using the RelTransfull classifier.
Of the 303 pixels marked as unknowns, 227 are from classes not
present in the source data. 113 of these pixels are from class P (red
tennis court) and another 113 belong to class E (glass). Both of these
classes are significantly different in character from the other spectra,
and are flagged appropriately as unknowns.

Of the remaining flagged pixels, 34 from class K (green and
brown grass) are flagged due to close similarity to class K (Norway
and silver maple trees). Class V has trace elements of gray gravel
rooftop spectra (along with several asphalt-based materials), and is
often confused with class k (containing only gray gravel rooftop
spectra). The pairings of class M (also gray gravel rooftops) with
class Q (red weathered stained wood), and class S (gray tarp) with
class j (brown mixed brick) are rather odd, given their respective ma-
terial compositions. Nonetheless, these spectra are extremely similar
in terms of spectral shapes, even at full HYDICE resolution, and as
a consequence will generally receive high relsim scores.

More interesting are the results for classes B and C. The mate-
rial composition of class B (a class removed from the source data)
is a combination of tan asphalt shingles (73.9%) and gray gravel
roof (23.6%) spectra. This combination explains the large variance
in reflectance values for this class at wavelengths shorter than 0.9
µm (see Fig. 2). Class U consists entirely of brown asphalt roof
shingles, and class V is primarily composed of black (25.6%) and
gray (73.9%) asphalt surfaces, with trace elements of gravel rooftop
materials. Of the 113 target pixels in class B, the RelTrans classi-
fier assigns 84 (74.3%) to source class U, and 28 (24.7%) to source
class V, not surprisingly reproducing the true proportions of U and
V, with high relsim scores. Class C, which is not excluded from the
source data, is small (64 pixel), consisting of heterogeneous mate-
rial in shadows (specifically, gray and black asphalt roof shingles
(53.1%, 1.6%), brown plank wood siding (18.8%), concrete cinder
blocks (23.4%), and dark gray BMW Paint (1.6%)). Due to this
heterogeneity, these pixels are assigned low relsim scores and are
flagged as unknowns accordingly.

5. DISCUSSION AND FUTURE WORK

A problem with working with synthetic data is that it is almost
always much cleaner than real image data. In this study, cross-
validated classification of the source data and the target data (in-
dependently) both yield overall classification accuracies near 99%
(test accuracy). While it is certainly possible to achieve such high
accuracy when classifying real data, validation of these results on
less pristine, real image data is currently in progress.

Another important issue is how we measure confidence in the
quality of the spectral correspondences. Since in this work the only
difference between the source and target images is spectral resolu-
tion, we can assume that the pixels in the overlap region share similar
spectral footprints in both images. However with real data, environ-
mental conditions or the underlying scenery itself may have changed
between image capture times. Thus, an additional filtering step may



RelTransfull RelTransthresh

Class Primary Materials ? n PA(%) EO(%) EC(%) CA(%)
A Roof Shingle, Asphalt, Brown and Red Blend 0 109 100.0 0.0 50.9 49.1

B* Roof Shingle, Asphalt, Tan (73.9%), Roof, Gravel,
Gray (23.6%) 0 113 0.0 100.0 0.0 100.0

C Shadow Materials 0 30 100.0 0.0 0.0 100.0
E* Glass 0 113 0.0 100.0 0.0 100.0
J Tree, Maple, Silver (46.7%), Norway (53.3%) 0 113 100.0 0.0 9.6 90.4
K Grass, Green, Healthy (91.1%), Brown (8.9%) 0 113 89.4 10.6 0.0 100.0
M* Roof, Gravel, Gray (98.9%) 0 92 0.0 100.0 0.0 100.0
P* Tennis court, Playing Surface, Red 0 113 0.0 100.0 0.0 100.0
Q Wood, Stained, Red, Old, Weathered 0 113 100.0 0.0 45.4 54.6

R Roof Shingle, Asphalt, Brown, Black, New (86.5%),
Roadway Surfaces, Asphalt, Old, Gray (8.7%) 0 113 100.0 0.0 0.0 100.0

S* Gray Tarp 0 112 0.0 100.0 0.0 100.0
U Roof Shingle, Asphalt, Mix Brown 0 113 100.0 0.0 42.9 57.1

V Roadway Surfaces, Asphalt, Old, Gray (73.9%), As-
phalt, Black, New (25.6%) 0 113 97.3 2.7 56.0 44.0

Y Grass, Brown and Green w/Dirt 0 113 100.0 0.0 0.0 100.0
a Roof Shingle, Asphalt, Black, Weathered 0 110 100.0 0.0 0.9 99.1

c Sheet Metal, White, Fair (72.8%), Saturn Hood
Paint, White (18.5%) 0 79 100.0 0.0 0.0 100.0

d Roof Shingle, Asphalt, Black 0 113 100.0 0.0 50.0 50.0
j Brick, Siding, Mix Brown, Fair (98.8%) 0 113 100.0 0.0 49.8 50.2
k* Roof, Gravel, Gray 0 112 0.0 100.0 0.0 100.0
Totals 0 2000 OVR=66.4%, AVG =67.6%, κ=0.6445

? n PA(%) EO(%) EC(%) CA(%)
0 109 100.0 0.0 0.0 100.0

1 112 0.0 100.0 0.0 100.0

30 0 100.0 0.0 0.0 100.0
113 0 100.0 0.0 0.0 100.0
0 113 100.0 0.0 2.6 97.4
34 79 96.2 3.8 0.0 100.0
0 92 0.0 100.0 0.0 100.0

113 0 100.0 0.0 0.0 100.0
0 113 100.0 0.0 44.9 55.1

8 105 100.0 0.0 0.0 100.0

0 112 0.0 100.0 0.0 100.0
0 113 100.0 0.0 42.6 57.4

4 109 100.0 0.0 56.2 43.8

0 113 100.0 0.0 0.0 100.0
0 110 100.0 0.0 0.0 100.0
0 79 100.0 0.0 0.0 100.0

0 113 100.0 0.0 0.0 100.0
0 113 100.0 0.0 49.8 50.2
0 112 0.0 100.0 0.0 100.0

303 1697 OVR=74.4%, AVG =78.5%, κ=0.7277

Table 2: RelTrans class statistics for scenario III before thresholding (left table) and after thresholding (right table). ?=Unknown class counts, n=Labeled
class counts, PA=producer’s accuracy, CA=consumer’s accuracy, EO=omission errors, EC=commission errors, OVR=#correct/#samples, AVG=mean producer
accuracy, κ=kappa statistic. Classes with an asterisk* were not included in the source (training) data. Green cells indicate excluded classes that were correctly
flagged as unknowns, orange cells indicate flagged source classes which were included in source data, and red cells indicate excluded source classes which
were not flagged. Classes B, U, V, and C shown in Fig. 2

be necessary to discard/weight correspondences based on how well
they match between images. This also involves an assessment of the
robustness of the class similarity function in the presence of noisy
correspondences, and is a crucial focus of future work.

Since this method allows for the discovery of new classes in the
target data, one has to decide how to annotate these new classes. In
previous work [13], [14], we employed external spectral libraries to
annotate clusters in hyperspectral imagery. One could use a similar
approach here as a post-processing step: after we transfer the source
labels to the target image, we could compare pixels flagged as un-
knowns to a database of known material signatures to automatically
annotate newly discovered classes.
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