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Abstract 
We present a methodology to predict the presence of myopa-
thy (muscle disease) from intramuscular electromyography 
(EMG) signals. By evaluating the shape and frequency of 
electrical action potentials produced by muscular fibers and 
captured in EMG measurements, a physician can often detect 
both the presence and the severity of such disorders. 
However, EMG measurements can vary significantly across 
different subjects, different muscles, and according to ses-
sion-specific characteristics such as muscle fatigue and de-
gree of contraction. By considering fixed-duration (0.5-2 sec) 
frequency-domain samples of diagnostic regions in EMG 
signals measured at full muscle contraction, we can automati-
cally detect the presence of myopathies across different sub-
jects and muscles with ~90% accuracy. We argue that our 
methodology is more generally applicable than existing 
methods that depend upon accurate segmentation of individ-
ual motor unit action potential (MUAP) waveforms. We pre-
sent a rigorous evaluation of our technique across several 
different subjects and muscles.  
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1 Automated Diagnosis of Myopathy from EMG Signals 

Myopathy (muscle disease) is a form of neuromuscular disor-
der that results in muscle weakness due to dysfunctioning 
skeletal muscle fibers [2]. A wide variety of both acquired 
and hereditary myopathies have been identified, many of 
which are serious and often debilitating conditions that are 
difficult to accurately diagnose and treat [3]. Early detection 
of these diseases by clinical examination and laboratory tests 
can greatly reduce patient suffering and medical costs. 
Moreover, data gathered during such examinations may lead 
to an improved understanding of the nature and treatment of 
such diseases, and allow development of automated systems 
that assist diagnosis.  

In clinical practice, intramuscular EMG is a standard 
method used to assess neurophysiologic characteristics of 
skeletal muscles to diagnose neuromuscular diseases. EMG 
records electrical action potentials generated by groups of 
muscle fibers controlled by the same motor nerve, called a 

motor unit. These motor units are the basic functional units of 
the muscle that can be voluntarily activated. The shape of 
individual motor unit action potential waveforms reflect the 
status and structure of a given motor unit. EMG measure-
ments from patients with myopathy differ from healthy sub-
jects in that their recruited MUAPs usually have shorter dura-
tion, lower amplitude, and increased polyphasicity. Figure 1 
illustrates the difference between 0.5 second samples of EMG 
traces from the deltoid muscle of a healthy subject vs. the 
deltoid of a subject with myopathy. These, and many addi-
tional subtleties characterize differences between healthy and 
abnormal subjects, depending on the nature and severity of 
pathology and are extensively discussed in the literature. 

In recent years, a number of techniques have been pro-
posed to classify EMG signals for medical diagnosis. Several 
authors (e.g., [8, 9, 4, 5, 7, 10]) propose segmenting the EMG 
data in the temporal domain into individual MUAP wave-
forms, which are then labeled and classified based upon (fea-
tures derived from) the segmented waveforms. However, such 
techniques are limited in that they assume that individual 
MUAPs can be extracted from data in a consistent and reli-
able manner. Extracting individual MUAPs may be difficult 
or impossible since MUAPs at high muscle contraction are 
often in superposition, while pathologies of interest may not 
be observable at low muscle contraction. Most previous 
works analyze data obtained with low (less than full) muscle 
contraction. Moreover, the ratio of recruited MUAPs is an-
other indicator of presence or absence of myopathy, and 
should also be taken into account, which is often not the case 
with previous work. 

Given the issues with time-domain MUAP segmentation, 
classifying EMG data in the frequency domain may be a more 
robust approach. Some recent work has shown good results in 
classifying neuromuscular disease from EMG data in the fre-
quency domain. For instance, [6] demonstrated 85% overall 
accuracy in classifying EMG signals of 59 subjects in the 
frequency domain into Normal, Myopathy and Neuropathy 
classes. In this work, we present a novel methodology for 

 
Figure 1: 0.5 second samples of EMG traces from the deltoid muscle 

from a healthy subject (top) vs. a subject with myopathy (bottom). 
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analyzing EMG data in the frequency domain.  Our method-
ology is distinct from previous research in the following:  

a) We consider EMG data measured at full muscle con-
traction, which improves the objective evaluation of per-
subject and per-muscle characteristics;  

b) We classify diagnostic regions of the full EMG signal 
in the frequency domain, rather than pre-segmented 
individual MUAP waveforms; and  

c) In addition to evaluating classification performance on 
data across different subjects, we also evaluate the character-
istics of different muscles for diagnostic purposes.  

In this work, we present a proof-of-concept of a novel 
methodology for classifying EMG signals of neuromuscular 
disease in the frequency domain. We are developing this 
methodology with the goal of classifying EMG signals ac-
cording to disease severity.  However, due to limited data, we 
demonstrate our methodology on the problem of classifying 
EMG signals into normal vs. myopathic categories in this 
work. We provide a rigorous evaluation of generalization 
capabilities across subjects and muscles via cross-validation, 
in contrast to a number of existing works [e.g., 8, 9, 5, 6].  

 

2 EMG Data Description 

Our EMG data was collected at the EMG Laboratory in 
the Department of Neurology of the Baylor College of Medi-
cine in Houston, TX, by (or under the direction of) Dr. James 
Killian, M.D. The data we consider consists of 15 EMG ses-
sions from 8 different subjects measured in one or more dif-
ferent muscles. Three of the subjects are female and the re-
maining subjects are male. The mean age of the subjects is 
56.63 (std. dev=16.4) years. The currently available data are 
from the biceps brachii, triceps brachii, deltoid and vastus 
lateralis (VL), selected for their diagnostic utility by the phy-
sician. We use the term trace to denote a record of a “full” 
EMG session for a single subject on a single muscle. Each 
trace is collected using the following methodology: A mo-
nopolar needle electrode is inserted into a designated skeletal 
muscle in a proximal arm or leg. The signal is processed 
through the differential preamplifier to a Cadwell Sierra EMG 
machine amplifier (Cadwell Laboratories, WA, USA) which 
transfers the signal to a computer display and loudspeaker for 
clinical evaluation. The subject then exerts maximum con-
traction of the muscle under study as the electrode is moved 
by several millimeters  until an adequate interferential muscle 
pattern of firing motor units is noted on the screen. A 60 sec 
sample is then recorded. The process is repeated on 4 to 6 
separate muscles and the captured traces from each muscle 
are stored for subsequent signal analysis.  

In a post-labeling session the physician designates each 
trace as a member of one of the following five classes based 
upon the observed severity of the pathology in the EMG sig-
nal: Healthy/Normal (Nor), Borderline Myopathy (Myo1), 
Mild Myopathy (Myo2), Moderate Myopathy (Myo3), Severe 
Myopathy (Myo4). The basis of the clinical diagnostic grad-
ings of abnormal myopathic motor units (individual motor 
unit with durations of activity under 6ms) is related to the 
estimated percentage of myopathic units relative to the total 
number of firing motor units. Borderline: 0-10% abnormal 
units, mild: 10-25%, moderate: 25-50%, severe: above 50%. 
This is a subjective grading based on visual and auditory 
analysis by co-author JK of the different muscle samples. We 
are developing our methodology with all five classes in mind, 
and preliminary experiments show reasonable classification 
results for the five class problem. However, the currently 
available  data is too scarce to represent the nuanced and 
fuzzy differences of the degrees of myopathy, especially 
across various muscles. We need significantly more data in 
order to present a five-class study with high confidence in the 
results. In this work,  we focus on the methodology itself – 
classification of EMG diagnostic regions of 0.5 - 2.0 second 
durations (as opposed to individual MUAPs), in the fre-
quency domain – and not the classification method. We dem-
onstrate the effectiveness of our methodology using a base-
line classifier (linear SVM) that yields good performance on 
the two classes (i.e., normal vs. myopathy) for which we have 
adequate data coverage. Classifier comparisons will be ap-
propriate at a stage of this work where the main obstacle for 
better results is no longer the scarcity of data.  

Portions of the traces are not diagnostic and/or saturated 
due to insertional activity or instrument tuning effects. To 
eliminate the non-diagnostic portions of each trace, the physi-
cian manually defines the diagnostic regions in each trace, 
which are temporally-contiguous segments of varying length. 
While automated identification and separation of non-
diagnostic regions is important, it is outside the scope of the 
present work.  

3 Methodology 

3.1 Data Preprocessing 

We split the diagnostic regions of each trace into fixed 
slices of ns seconds in duration. We subsequently refer to 
each of these slices as a sample. Each sample is a m-
dimensional vector capturing a temporally-contiguous portion 
of each diagnostic region. We normalize each sample by its 
L2 norm which maps the amplitudes of the samples to a 
common range. This allows us to reconcile, to some degree, 

 
Table 1: Summary of EMG data for each muscle with sample duration ns = 0.5. The total number of seconds of data for each class is provided. 

Values in parenthesis give the number of unique subjects for each muscle with respect to each class. 
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amplitude differences between measurements on different 
muscles and different subjects at varying contraction levels 
while retaining other differences of the waveforms. We then 
map each normalized sample into the frequency domain using 
the Fast Fourier Transform in MATLAB. We discard the 
symmetric portion of the frequency-domain samples, result-
ing in sample vectors of dimensionality m/2. Table 1 gives a 
summary of the samples we consider with sample duration ns 
= 0.5 sec. 

3.2 Classification 

In this study, we consider the problem of classifying the 
frequency-domain samples as Normal or Myopathic. To 
achieve this, we group all of the samples labeled Myo1-Myo4 
into a single superclass Myo*. As table 5 shows, several mus-
cles do not have any representative samples from some 
classes, and the remaining muscles are poorly represented in 
terms of the number of samples – particularly the Normal and 
the borderline myopathy (Myo1) classes, which represent 
only 14.94% and 9.2% of the total samples, respectively. To 
help mitigate this issue, we first balance the sampling distri-
butions of the five (Normal, Myo1-Myo4) classes by aug-
menting the training data with Nresampj = Nmax − Nj sam-
ples, sampled with replacement, from the training samples of 
each class j, where Nmax is the number of samples of the 
class with the maximum number of samples, and Nj is the 
number of samples in class j. This balancing step ensures that 
samples of varying severity are equally represented, but leads 
to a sampling bias between the Normal vs. Myo* superclass. 
Consequently, we perform an additional balancing step by 
adding Nnormal = Nall − NMyo* samples from the normal 
class to the training set, as before, sampling with replacement, 
where Nall is the total number of samples, and NMyo* is the 
number of samples in the Myo* class. After balancing, we 
have a total of 524 samples for the Normal and Myo* classes, 
with the Myo* class consisting of 131 samples of each of the 
Myo1-Myo4 classes, respectively.   

EMG signals may vary between different subjects or on 
different muscles. Consequently, it is crucial to evaluate clas-
sification accuracy when data from different subjects and/or 
muscles is used as training and test data. To achieve this, after 
balancing the samples as described above, we perform ten 
cross-validation splits, where in each split we use data from 
half of the subjects for test data, and divide the remaining 
samples into training (3/8th of the total samples) and valida-
tion (1/8th of the total samples) sets. We ensure by random 
stratified sampling that the training, test and validation sets 
each contain instances from each of the Normal and Myo* 
classes and from each muscle group. The classifier we use is 
a linear Support Vector Machine (SVM). We select the SVM 
regularization parameter C from the set {0.01, 0.1, 1, 10, 100, 
1000} that yields the highest accuracy on the validation set. 
We report the mean and standard deviation of classification 
accuracies produced on the test data in each split. 

4 Classification Results and Evaluation 

4.1  Classification Accuracy vs. Sample Duration 

 
We first evaluate the classification accuracy with respect 

to the sample duration ns. We consider ns values in the set 
{0.05, 0.1, 0.2, 0.5, 1, 2}. Table 2 gives the number of bal-
anced samples and the dimensionality m of each sample for 
each value of ns, and the corresponding mean and standard 
deviation of classification accuracies across the ten cross-
validation splits. We observe that classification accuracy in-
creases with increasing sample duration. The standard devia-
tion also typically decreases, with the exception of ns=2, 
where the high dimensionality and small quantity of samples 
produce slightly less stable results. However, this generally 
suggests that longer sample durations are desirable, despite 
the high dimensionality of the resulting feature space. Addi-
tionally, our results indicate that it is possible to predict the 
presence or absence of myopathies from relatively short por-
tions of a full EMG trace. 

4.2 Per-class, Per-muscle and Per-subject Evaluation 

We now evaluate the performance of our methodology 
on the individual classes, muscles and subjects we consider in 
this work. For this evaluation we fix the sample duration ns to 
0.5, as this duration consists of a reasonable number of sam-
ples (1024) to evaluate, at fairly high dimensionality (16000 
dimensions/sample) and yields very good classification accu-
racies (90.4% average).  

With respect to the Normal vs. Myo* classes, we observe 
considerably higher classification accuracy on the Myo* class 
(mean=0.959, stddev=0.023) than on the normal class 

(mean=0.822, stddev=0.070). This is due to the fact that our 
data includes significantly fewer subjects with normal condi-
tions. When we consider individual muscles (Table 3), we 
observe that the samples from the biceps and deltoid muscles 
tend to be misclassified more often than the triceps and VL 
muscles. A possible reason for this is that the biceps and del-
toid muscles appear similar to one another in terms of EMG 
signals, but appear different from the triceps and VL muscles. 
This is also suggested by the results in Bischoff et al. [1], but 
further investigation on additional data is necessary to con-
firm this hypothesis in our case.  

Table 4 gives the classification accuracies for the indi-
vidual subjects and their respective traces. Most notable are 
the results for subject S10, whose biceps and deltoid traces 
are classified with 28.5 and 16.1% less than their respective 
mean muscle accuracies (as shown in Table 3). Subject S10 
represents a case where some muscles exhibit no observable 
pathology, while other muscles show signs of myopathy. 
While it is difficult to state conclusively without data from 
additional patients with similarly mixed pathologies, accord-

 

ns  # 
samp 

m/2 Accuracy 
(std.dev.) 0.0

5 
10528 1600 0.760 (0.058) 

0.1 5256 3200 0.815 (0.059) 
0.2 2616 8000 0.878 (0.042) 
0.5 1048 16000 0.904 (0.033) 

1 512 32000 0.966 (0.028) 
2 256 64000 0.971 (0.041) 

Table 2: Number of balanced samples and sample dimensional-
ity (N/2) with respect to sample duration ns, and corresponding 

mean and standard deviation of classification accuracies. 
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ing to the physician, this case may be a result of a borderline 
myopathy, and the training labels may need revision once 
sufficient evidence is available. 

5 Discussion and Future Work 

In this work, we evaluated a novel methodology for clas-
sifying contiguous, fixed-duration samples of EMG signals in 
the frequency domain. By considering, as training samples, 
Fourier transforms of normalized, fixed-length segments of 
diagnostic regions of the full signals (as opposed to extracted 
MUAPs)  measured at full contraction, we demonstrated high 
average generalization performance by a linear SVM classi-
fier across individual subjects and different muscles. The av-
erage classification accuracy on test data increases from 80% 
to 97% with the duration of the samples (0.1  to 2 sec, respec-
tively) while the reliability, determined from ten cross-
validation folds, simultaneously increases (standard deviation 
decreases). Our analysis also suggests that detecting the pres-
ence of myopathy can be accomplished with very short dura-
tion samples of a full EMG trace.  

The long-term, primary goal of our work is to develop a 
system that captures the physician’s capability to diagnose a 
variety of neuromuscular disorders from EMG data, as well 
as to distinguish among the severity degrees of diseases such 
as the classes of myopathies listed in Section 2. While our 
classification accuracies are fairly high, this is of course a 
two-class case. Classifying the samples according to their 
severities is a more challenging task, and will require more 
elaborate and sophisticated experiments.  

We also aim to classify EMG signals of patients with 
neurogenic disorders using our methodology. Because our 
methodology yields comparable results to previous analyses 
considering EMG data from myopathic and neurogenic dis-
eases (e.g., 6), and based upon our preliminary experiments 
with 5 classes, we anticipate our method will generalize well 
to such scenarios. 

While the results presented here are encouraging, much 
additional analysis and development is needed in order to 

achieve the above goals and to make our system useful for 
clinicians. This includes systematically designed experiments 
with increasing amounts and complexity of data (increased 
variety of subjects, muscles, diseases), testing increasingly 
sophisticated classification techniques to better align with 
real-life circumstances such as highly imbalanced sample 
sets, and intelligent identification of feature subsets necessary 
for producing high-quality (high-accuracy and high-fidelity) 
classifications. For fully automated processing, developing 
techniques to segment an EMG signal into diagnostic and 
non-diagnostic regions, or to incorporate learning constraints 
to identify various non-disease-related conditions are also 
necessary.  
 

Acknowledgements The authors thank Penny Gregg at the 
EMG Laboratory of the Department of Neurology, Baylor 
College of Medicine, for her assistance with data collection, 
and Rice University graduate students Kai Du and Du 
Nguyen for data preprocessing and software modification 
efforts in the early stages of this work. 

References 

[1] C. Bischoff, E. Stälberg, B. Falck, and K.E. Eeg-Olofsson. 
Reference values of motor unit action potentials obtained with 
multi-MUAP analysis. Muscle & Nerve, vol. 17, no. 8, pp. 
842–851, Aug. 1994. 

[2] A. S. Blum and S. B. Rutkove. The clinical neurophysiology 
primer, vol. 388. Humana Press, 2007. 

[3] F. Buchthal, An introduction to electromyography. Copenha-
gen: Gyldendal, 1957. 

[4] C. I. Christodoulou and C. S. Pattichis. Unsupervised pattern 
recognition for the classification of EMG signals. IEEE Trans-
actions on Biomedical Engineering, vol. 46, no. 2, pp. 169–178, 
Feb. 1999. 

[5] N. F. Güler and S. Koçer, Classification of EMG Signals Using 
PCA and FFT, J Med Syst, vol. 29, no. 3, pp. 241–250, Jun. 
2005. 

[6] N. F. Güler and S. Koçer, Use of Support Vector Machines and 
Neural Network in Diagnosis of Neuromuscular Disorders, J. 
Med Syst, vol. 29, no. 3, pp. 271–284, Jun. 2005. 

[7] R. Merletti and D. Farina. Analysis of intramuscular electro-
myogram signals. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, vol. 
367 no. 1887, pp. 357–368, Jan. 2009. 

[8] C. S. Pattichis, C. N. Schizas, and L. T. Middleton, Neural net-
work models in EMG diagnosis. Biomedical Engineering, IEEE 
Transactions on, vol. 42, no. 5. May 1995. 

[9] C. S. Pattichis and C. N. Schizas, “Genetics-based machine 
learning for the assessment of certain neuromuscular disor-
ders.,” Neural Networks, IEEE Transactions on, vol. 7, no. 2, 
pp. 427–439, Jan. 1996. 

[10] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin. Techniques 
of EMG signal analysis: detection, processing, classification 
and applications. Biological Procedures Online, vol. 8, no. 1, 
pp. 11–35, Dec. 2006

 

Bicep Deltoid Tricep VL  
0.907 (0.087) 0.852 (0.072) 1.000 (0.000) 1.000 (0.000) 

Table 3: Per-muscle accuracies from all subjects for ns=0.5 

Subject Accuracy Trace Class Trace Accuracy 
S02 0.936 

(0.050) 
Biceps Myo* 0.936 (0.050) 

S03 0.958 
(0.037) 

Deltoid Myo* 0.937 (0.055) 
  Triceps Myo* 1.000 (0.000) 

S04 1.000 
(0.000) 

VL Myo* 1.000 (0.000) 
S07 0.986 

(0.022) 
Biceps Myo* 0.972 (0.043) 

  Deltoid Myo* 0.984 (0.025) 
  VL Myo* 1.000 (0.000) 

S08 0.888 
(0.007) 

Deltoid Nor 0.888 (0.007) 
S09 0.975 

(0.035) 
Biceps Myo* 0.951 (0.068) 

  Deltoid Myo* 1.000 (0.000) 
  Triceps Myo* 1.000 (0.000) 

S10 0.789 
(0.128) 

Biceps Myo* 0.622 (0.171) 
  Deltoid Nor 0.691 (0.056) 
  VL Myo* 1.000 (0.000) 

S15 0.852 
(0.028) 

Deltoid Nor 0.852 (0.028) 
Table 4: Per-subject/trace classification accuracies for ns=0.5. 


