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We live in the era of Big Data, or at least our awareness of Big Data’s presence
and impact has sharpened in the past ten years. Compared to data characteris-
tics decades ago, Big Data not only means a deluge of unfiltered bytes, but even
more importantly it represents a dramatic increase in data dimensionality (the
number of variables) and complexity (the relationships among the often inter-
dependent variables, intricacy of cluster structure). Along with the opportunities
for nuanced understanding of processes and for decision making, these data cre-
ated new demands for information extraction methods in terms of the detail that
is expected to be identified in analysis tasks such as clustering, classification, re-
gression, and parameter inference. Many traditionally favored techniques do not
meet these challenges if one’s aim is to fully exploit the rich information cap-
tured by sophisticated sensors and other automated data collection techniques,
to ensure discovery of surprising small anomalies, discriminate important, sub-
tle differences, and more. A flurry of technique developments has been spawned,
many augmenting existing algorithms with increasingly complex features.

Self-Organizing Maps [1] have shown their staying power in the face of these
changes and stood out with their simplicity and elegance in capturing detailed
knowledge of manifold structures. In our research we have not yet encountered
a limit in terms of data complexity. SOMs learn astonishingly well. They are
extremely good “listeners” to what the data has to say. An outstanding challenge
rather seems to be in equally sharp interpretation of what an SOM has learned.

I will present methods and tools we have developed for deciphering SOMs
and for using their knowledge in various ways [2-7]. They are aimed at “precision
mining” of large and high-dimensional, complex data, separating important from
unimportant details of data characteristics in the presence of noise and some
quantifiable degree of topology violation. Components of these tools build on
seminal works by several colleagues in the SOM community (e.g., [8-13]), further
developing or engineering the original ideas.

I will highlight applications and effectiveness through three types of Big Data:
remote sensing hyperspectral imagery for characterizing planetary surface ma-
terials, functional Magnetic Resonance Images for brain mapping, and astro-
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nomical imagery obtained with the world’s most advanced radiointerferometric
array, ALMA (the Atacama Large Millimeter / Submillimeter Array, in Chile)
for answering astrophysical questions ranging from star and planet formation to
the formation of the universe.

In this abstract I briefly describe the challenges associated with these repre-
sentative Big Data and I give a preview of some results we obtained with SOMs
and related knowledge extraction approaches.

Hyperspectral images (spectral signatures acquired in hundreds of narrow,
contiguous band passes on a regular spatial grid over a target area) have long
been utilized for remote geochemical analyses of terrestrial and planetary sur-
faces. Typical hyperspectral imagery spans the visible to near- and thermal-
infrared wavelengths with 5-20 nm band width, sufficient to resolve the discrimi-
nating spectral features of (near-)surface compounds. For example, hyperspectral
imagery affords identification of individual plant species, soil constituents, the
paints of specific cars, and a large variety of roof and building materials, creating
a need to extract as many as a hundred different clusters from a single image.
These clusters can be extremely variable in size, shape, density, proximities and
other properties. Another demand arising from such sophisticated data is to dif-
ferentiate among clusters that have subtle differences, as the ability to do so can
enable important discoveries or increased customization in decision making.

Landslide risk study in
Grand Canyon, Utah

posed layers :
Grand Canyon:

Fig. 1. Mapping clay distribution in soils for landslide risk assessment in Cataract
Canyon, Grand Canyon, Utah, U.S.A. Left: Classification map produced from a re-
mote sensing hyperspectral image. 15 of the 28 classes (each indicated by a differ-
ent color) are exposed soil layers, several of which are indicated by the white arrows.
Right: Photograph of some of the soil layers, in part of the imaged site. Figure adapted
from [14].

For example, landslide risk models can be greatly improved by including (in
addition to the traditional factors of mountain slope and rain fall) the types and
amounts of clay minerals contained in the exposed soil layers of mountains. For
assessment of large areas remote sensing is used, which detects the clay minerals
highly diluted in the soil matrix, resulting in weakened signatures. To distinguish
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Fig. 2. Left: Visible-Near-Infrared hyperspectral signatures of clay-bearing soil classes,
mapped in Fig. 1. Spectra are vertically offset for viewing convenience. The variations
in the spectral window most discriminating for clay species (0.5 — 0.7 and 2.0 — 2.3
microns) are very subtle. Blue and red curves are the means of training and test
samples for the classification experiment in [14], with standard deviations shown by
the vertical bars. Right: Sample emission spectra, from combined C180, 13CO, CS
lines of ALMA receiver band 7, showing differences in composition, Doppler shift,
depth and temperature. 170 channels were stacked from the C180, 13CO, CS lines.
Data credit: JVO, project 2011.0.00318.5.

and map the 15 or so layers of different soils around a landslide area in the Grand
Canyon (Fig. 1) hyperspectral signatures with such slight variations as in Fig. 2
must be discriminated precisely by a classifier and produce maps showing the
spatial distribution of the various soils, as in Fig. 1. An SOM was instrumental
in accomplishing the delicate task [14].

In stellar astronomy, where Angstrém resolution is typical, the data complex-
ity can grow even higher. 21st century observatories such as ALMA achieve, for
the first time, data sets that begin to approach, and in some dimensions exceed,
the richness of data from terrestrial and planetary remote sensing. High spatial
and spectral resolution image cubes with thousands of frequency channels are
extending into new and wider wavelength domains, and at the same time captur-
ing several different physical quantities that characterize 3-dimensional plasma
structures. The “spectra” are no longer vectors of homogeneous variables. Ef-
fects of spatial depth, Doppler shift, temperature and densities are influencing
the signatures in addition to chemical composition. Fig. 2, right, gives an il-
lustrative sample of ALMA data, combined from three different emission lines.
The left image in Fig. 3 shows structural details of a protostar produced (to my
knowledge) by the first SOM clustering of a complex ALMA image cube [15], in
comparison to details extracted from a single doppler line by [16]. This protostar



Fig. 3. Structure found in protostar HD 142527 from ALMA data. Left: SOM clus-
tering from hyperspectral ALMA data cube by the author. Right: From single
doppler line, by [16]. Figure reproduced with permission. Data credit: JVO, project
2011.0.00318.5.

has stirred great interest recently because of a planet formation process that has
been detected deep in its interior.

Functional Magnetic Resonance Imagery (fMRI) poses many similar chal-
lenges as hyperspectral data, with typically higher-dimensional data vectors and
potentially more clusters. The time courses — vectors of measurements of blood-
oxygen-level dependece (BOLD) signals at hundreds of time points recorded dur-
ing the observation of a subject at each of several hundred thousands of voxels in
the brain volume — can be clustered to find brain areas with similar activation
patterns. Correlation analysis of the characteristic time courses of the identified
clusters can further reveal temporal relationships of various sub-networks in the
brain. With SOM tools we can glean detailed maps of the entire brain with more
complete coverage than seen in many published results.

Fig. 4. Clusterings of fMRI images, based on the BOLD time courses. Left pair of
images: SOM clusters obtained with our tools, in two selected brain slices, showing
good coincidence with and coverage of known functional regions such as the thalamus
(dark blue), insula (mauve symmetrically placed spots on either side of the thalamus in
the left image), visual cortex (light blue, dark green and orange), and superior frontal
gyrus (light yellow, at top of the left image, at front left in the right image) [17]. Data
credit: The Methodist Research Institute, Houston, Texas. Center: Clusters generated
by statistical hypothesis testing, from [18]. Right: Clusters found in the motor cortex
(top) and visual cortex (bottom) by [19] using SOMs. Figures from [18] and [19]
reproduced with permission.



Fig. 4, left, shows a pair of representative brain slices with our recent SOM
clustering [17], for which all available voxels were used from the entire brain vol-
ume. The clusters coincide well with several known functional areas throughout
all slices (not shown here). In comparison, clustering with statistical methods
in [18] (center) was applied only to two selected slices, and the clusters identified
are highly segmented, with very sparse coverage. The brain maps on the right,
from [19] were obtained by SOM clustering, and have good coverage of selected
functional areas. An important property in the face of Big Data, SOMs are not
nearly as limited by large data volumes as many other methods (for example,
graph-based clustering, where the number of vertices grows quadratically with
the number of data vectors). The ability of learning well from large volumes of
data allows precise identification of a large variety of functional regions, which in
turn enables more nuanced investigation of such fundamental questions as — in
our study — the generation of the conscious movement in healthy and impaired
brains.

SOMs arguably provide a key to accurate learning of diverse types of highly
structured data. However, with this power come new puzzles. While sharpening
knowledge extraction methods to match the richness of the data, we must also
recognize that interpretation of the increasing detail emerging from data like
these may be the next challenge in the Big Data picture. Sophisticated tools that
allow penetration of previously unidentified relationships in the data may return
“distilled” results that look complicated, hard-to-digest, and not straighforward
to interpret or verify.

ALMA, for example, represents such advanced observational capability that
fully exploiting the information content will require — as much as anything else
— new capabilities to synthetize, visualize, and interpret the extracted knowl-
edge, the already summarized information! The cluster map on the left in Fig. 3,
for example, can only show part of the protostar structure detected by the SOM.
We yet have to devise a visualization to layer on and meaningfully convey the full
information. In closing, I will illustrate some cases of this interesting problem.
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