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Abstract—Finding critical information in large and complex
data volumes is a challenge increasingly posed by real systems
such as NASA’s space and Earth science missions. Many of these
real systems are also desired to operate highly autonomously,
using extracted information directly, for decisions, or for collabo-
rations among missions. One example of this would be spacecraft
or rover navigation based on scientific findings from continuously
collected data, through on-board computation. This underlines
the importance of the quality of information extraction: it must be
intelligent enough to produce critical details; reliable; robust; and
fast. The most interesting and powerful data, collected in space
and Earth science missions as well as in many other areas are
characterized by high dimension, high volume, and complicated
internal relationships among the variables that are recorded for
the purpose of capturing the structure of the data. However,
while precise extraction of the data sructure facilitates the best
possible knowledge discovery, few methods exist that measure
up to the complexity of such data. We focus on three of the
quality aspects of information extraction listed above: intelligent
data understanding, reliability, and robustness, through precision
manifold learning, and point out the benefits for autonomous
oprations.

Index Terms—Intelligent data understanding; Data mining;
On-board decision support; Manifold learning; Self-Organizing
Maps; High-dimensional data.

I. BACKGROUND AND MOTIVATION

Extraction of critical information from continuously col-
lected data such as in mission scenarios, is imperative for a
system’s decision making and subsequent response. The most
interesting and powerful data, collected in space and Earth
science missions as well as in other areas such as biomedical
and clinical research, security and fraud monitoring, are char-
acterized by high dimension, high volume, and complicated
internal relationships among the variables that are recorded for
the purpose of capturing meaningful information that can be

transformed to knowledge. Hyperspectral imagery from Earth
and space science projects; combination of measurements from
multiple sensors; stacked time series of genetic microarrays;
and homeland scurity data bases are examples.

Many real systems needing identification of key infor-
mation in large and complicated data sets are also desired
to operate in a highly autonomous fashion, using extracted
information and discovered, distilled knowledge directly for
decision making, for collaborations among missions including
ground components, or for alerts. Some example scenarios
are a) unmanned spacecraft operations or rover navigation,
seeking to return data of high scientific value from planetary
missions; b) on-ground large remote sensing archives that
must be processed for discoveries or for finding particular
known phenomena; c) (near-)real time oprations of spacecraft
or reconaissance vehicles in battlefields, or high-throughput
medical and security screening.

The quality of the information extraction is extremely
important for the full exploitation of such data for effective
decision support. The need for advanced data exploitation
capablities is further stressed by the interest in autonomous
and/or (near-)real time operations. However, few existing
methods have the power to deal with the class of data described
above.

At the same time when many aspects of on-board com-
putation for autonomous navigation, including hazard avoid-
ance, pointing precision, high performance, reliability, fault
tolerance, etc., are already a reality [1], as stated by [2], “...
the most exciting mission opportunities will not be realized
without on-board intelligence ...”, “... robotic explorers may
pass by innumerable scientifically interesting sites, but without



the requisite intelligence to recognize them as such, they are
simply bypassed and never seen by planetary scientists.” The
MER rovers, for example, did not have on-board processing
of science data with sufficient intelligent understanding to
recognize a rare mineralogy or other scientifically relevant
surface features, thus could not have made an autonomous
decision to stop and examine it. Today’s orbiters do not
have this capability either, or even just the capability to alert
to an interesting event and send the related data (or data
product) to Earth with high priority, for preferential human
evaluation and intervention. Since we already live in the era
of high-performance, reliable, miniaturized and radiation hard-
ened computing facilities, suitable for autonomous on-board
operations [2], the withholding factor is primarily the lack
of sufficiently intelligent and sophisicated data understanding
methods with demonstrated reliability and robustness.

The interest to improve this situation is expressed by exist-
ing projects to develop automated analysis systems for scien-
tific data, within NASA sponsored research. Recent examples
include ADaM (Algorithm Development and Mining system,
http://datamining.itsc.uah.edu/adam/index.html) and EVE (En-
VironMent for on-board processing, http://eve.itsc.uah.edu)
[3], [4] and spectral pattern recognition algorithms for min-
eral detection by Gilmore et al. [5], Gazis and Roush [6],
and Ramsey et al. [7]. While these works make significant
contributions toward on-board processing of scientific data
(see a summary in [8]) they also illustrate that the difficulties
of the pattern recognition tasks involved are great and can
force limited applications. Systems developed to recognize one
specific surface feature from a selected subset of the available
data (for lack of capabilities to deal with multiple features
from all available data), will not recognize other important
species. Systems using conventional algorithms may not be
able to extract detailed enough knowledge from complex, high-
dimensional data, and may miss important events.

II. INTELLIGENT DATA UNDERSTANDING WITH HYPEREYE

The above underline the extreme importance of the capa-
bility to fully exploit a given data set, and the quality of
the extracted information. To enable the best possible data
exploitation and knowledge generation, an autonomous data
understanding subsystem (envisioned as part of a spacecraft,
rover, or ground-based archival system) must have the follow-
ing properties:

1) It must be intelligent enough to deliver high quality
information / knowledge, characterized by

a) high level and precision of useful detail;
b) repeatability and reliability;
c) self-assessment of quality, and feedback to the

knowledge extraction engines to improve perfor-
mance.

This requires precise learning of the structure of the
acquired, often very high-dimensional, data manifold,
finding all (often a large number of) natural clusters
including rare ones, and categorizing them into known

and unknown classes. It is desirable that the system can
perform both unsupervised clustering for novelty de-
tection, and supervised classification for known classes
of interest, simultaneously. For clustering, the ability
of faithful delineation of all clusters, regardless of the
distribution of their size, density, shape, etc., capturing
of fine intricate structure in the data, is critical. For
supervised classification, precise discrimination among
many classes with potentially subtle differences between
their feature vectors, is imperative.

2) A data understanding subsystem must also be capable
of continuous learning and adaptation to new situations,
since in a space exploration scenario (as well as in many
others) data are acquired continuously;

3) It must be fast (real or near-real time).

These concepts are represented in HyperEye, our manifold
learning environment.

A. HyperEye as a manifold learning subsystem

HyperEye is a collection of neural and other related al-
gorithms for coordinated “precision” mining of complicated
and high-dimensional data spaces, envisioned to support au-
tonomous decision making or alerting as outlined in Figure 1.
It is designed for both the discovery of all clusters, including
rare or novel, surprising features in multi- and hyperspectral
images, as well as for general surface cover mapping of all
relevant spectral species. This focus is highly motivated since
virtually every planetary mission and Earth-orbiting satellite
carries spectral imagers now, in recognition of the fact that
the extremely rich data imaging spectrometers provide enable
discrimination among almost all surface materials. HyperEye
algorithms, however, are equally applicable to many other
types of “stacked vector” data, including fused disparate data.

In this paper we concentrate on the detail and quality of the
extracted information, as stipulated in points 1) and 2) above.

In Figure 1, left, the HyperEye Intelligent Data Understand-
ing (IDU) subsytem is envisioned embedded in a spacecraft or
rover system, processing data acquired by sensor subsystem(s)
from the environment. In this example scenario, the sensor
subsystem is a hyperspectral imager, and the environment is a
planetary surface. HyperEye has simultaneous unsupervised
clustering and supervised classification capabilities at the
heart of which are sophisticated non-standard neural learning
processes, discussed in the next Section. On this level of
operation, the important point is that the IDU subsystem can
generate alerts from both unsupervised clustering (upon de-
tection of novel signatures) and from supervised classification
(upon finding known interesting species). How the alerts are
used and handled should be defined within the embedding
system (navigation control, for example).

The top level details of the HyperEye IDU subsystem
are shown in Figure 1, right: the Artificial Neural Network
(ANN) algorithmic core, the main types of data products, and
communication of extracted knowledge, in various forms and
on various levels of detail, to on-board decision making and/or



Fig. 1. Left: The HyperEye Inteligent Data Understanding (IUD) susbsystem embedded in a spacecraft environment, generating scientific information for
decision making (in this example for navigation control) through precision manifold learning. Knowledge can be extracted using all available data, for maximum
discovery potential. Both unsupervised and supervised learning and prediction can be performed simultaneously and continuously. Alerts can be generated by
either modality, and passed on to the decision and control system. Right: The algorithmic components of HyperEye, data products, and their relationship to
on-board and ground-based decision making and control, as well as to feedback and control for the learning and information extraction processes.

to humans on the ground for feedback. All acquired data can
be digested for continuous unsupervised learning of the data
manifold structure. This is done by Self-Organizing Maps
(SOMs) and related cluster extractor modules, which have
non-standard features, and which are central to the sophis-
tication we achieve with HyperEye. These features have been
developed, or adapted from recent theories and engineered
to practical use, by us. Key details will be discussed in
Section II.B. The learned structure of the data, seen up to
the present, can be summarized and passed on to a supervised
classifier, which utilizes the knowledge of the natural cluster
structure of the data for its own learning of labeled data. For
example, the underlying known cluster structure helps avoid
learning of inconsistent labels, and also helps learning of class
boundaries with greater precision than from a small amount
of labeled data alone. We call this classifier an SOM-hybrid
ANN because the SOM is essentially used as a hidden layer
in it. Another advantage of the support by the unsupervised
clustering is that the supervised classifier can be trained with
a much smaller number of labeled training samples than
some other supervised classifiers, including the popular and
powerful Back Propagation (BP) neural network, and it is
much easier to train (does not get easily trapped in local
minima as do classifiers with gradient descent learning). This
help from using unlabeled data is very different from the
approach taken by Langrebe et al. (see, e.g., [9]), where
unlabeled data are gradually folded into the training set of the
supervised classifier by labeling them according to the class
predictions of the same supervised classifier. While this idea
is interesting and has some (idealized) statistical justification

it has not been demonstrated for high-dimensional data, nor
for data containing many classes with subtle differences.

The advantage of this combination of unsupervised and
supervised learning is that discoveries can be made contin-
uously, and information can be drawn out from the SOM
(in which case we are doing pure unsupervised clustering),
or from the categorization (supervised) layer which is trained
with labeled data “on top” of the implicit cluster knowledge
passed on from the SOM. The SOM is not affected by the
training of the categorization layer, thus its pristine and current
knowledge of the data structure is always available for revision
and augmentation of the existing class labels.

Labeled data can be provided in advance or during space-
craft operation from known libraries, or generated through
on-ground human evaluation of cluster summaries returned
by HyperEye. New classes can be added to the supervised
classifier as deemed useful. Retraining for new classes does
not need to be done from scratch, and it is a much lighter load
than with a BP network. The neural classifiers in HyperEye,
similarly to a BP network, learn a model of the data from
training samples, which provides for more flexible predictions
than a fixed rule based AI system can implement and, in
general, results in a better success rate. This is especially true
for high-dimensional data.

In the rest of this report we discuss some of the custom
features of the SOM(s) we developed, as these are the main
enablers of the sophistication of HyperEye. We give examples
of data analysis capabilities, and some comparison to other
methods. The referenced works by the present authors, con-
taining more technical details, are easily accessible on-line at



http://www.ece.rice.edu/∼erzsebet/publist-Merenyi.pdf .

B. Custom features of HyperEye manifold learning

The foundation of HyperEye precision data mining is self-
organized manifold learning. Self-Organizing Maps (SOMs)
are intended to mimic the information processing of the
cerebral cortex, where stimuli percieved from the environment
are organized in a 2-dimensional surface, for very fast and very
precise pattern retrieval and recognition. The basic version of
the heuristic SOM algorithm, as invented by Kohonen [10],
is the following. Let V denote the dV -dimensional input data
manifold, and A be the rigid, dA-dimensional, SOM grid of
Processing Elements (PEs, or neurons), where dA is usually 1
or 2. PEs are indexed by their dA-dimensional grid locations r.
Each PE r ∈ A has a weight vector wr attached to it, which is
a quantization prototype, initially with random elements. The
SOM learning performs an adaptive vector quantization (VQ)
by cycling through these steps many times: for any v ∈ V
input a winner PE s is selected by

s = argmin
r

||v − wr|| (1)

and then the weights are adapted according to

∆wr = εhrs(v − wr) (2)

The neighborhood function hrs defines the extent to which
weights are updated, as a function of the grid distance of PE
r from s. hrs is often a Gaussian function centered over the
winner, but the neighborhood can be defined many different
ways [10]. In equation (2) the learning rate ε is globally
defined, i.e., it is the same for all PEs for a given time step
and its value is independent of any local properties of the map.

This quantization differs from other VQ algorithms in two
ways. It produces an optimal placement of the prototypes in
data space for best approximation of the density distribution
of the data. In addition, the prototypes become ordered on the
SOM grid in a topology preserving fashion: prototypes that
represent data points close to one another in data space will be
close to each other in the SOM grid, and conversely, prototypes
close in the SOM grid will represent similar data vectors. (This
assumes that no topology violations occur during learning. We
will briefly discuss below some research related to the recogni-
tion and remediation of topology violations in SOM learning.)
This is a very powerful feature, allowing the detection of
contiguous groups of similar prototypes in the SOM grid,
which collectively represent clusters of similar data. Cluster
boundaries can be identified based on the (dis)similarities
(typically Euclidean distances) of the prototypes vectors (not
the distances of their SOM grid locations!). SOM clustering
does not require an initial guess of the number of clusters
(unlike many clustering algorithms), nor does it require any
particular initial definition of the quantization prototypes.

Many successful applications of SOMs have been reported
in the last 20 years. The original Kohonen SOM (KSOM),
however, was found suboptimal for high-dimensional data

with complicated structures. We mention two interesting issues
here.

Given an SOM with a fixed size, and K natural clusters
in the data (where K is unknown prior to SOM learning),
the “real estate” (the number of SOM prototypes) that can be
dedicated to the representation of each data cluster is limited.
In principle, if the SOM places the prototypes optimally,
the pdf of the data should be reproduced most faithfully
and all clusters (small or large) should have an areal rep-
resentation proportional to their size. Theoretical analyses
revealed, however, that the KSOM inherently “warps” the grid
representation: instead of a linear relationship between the pdf
of the data, P , and the distribution of the SOM prototypes in
data space, Q, which is expressed by

Q(w) = cP (w)α (3)

where α = 1, it realizes a functional relationship where
α = 2/3 in eq (3) [11]. The effect of this can be the loss
of some clusters when the real estate is tight. For high-
volume, complicated data this is always a concern, since the
computational cost increases nonlinearly with the size of a
2- (or higher-)dimensional SOM grid. We use a newer SOM
variant called conscience algorithm [12], which effects α = 1
by a heuristics [13]. An additional benefit of the “conscience”
is that one needs only to use an SOM grid neighborhood of a
radius of 1 for weight updates in eq (2). This results in lighter
computational load and faster learning. We also adapted a new
theory to effect a magnification of SOM representation areas
for rare events, without having to know whether rare clusters
exist in a data set. This is done by forcing an α < 0 value
in eq (3), and it enhances the detectability of low-frequency
data. This theory was originally proven for a rather restricted
class of data. We demonstrated an extended applicability
through carefully designed simulations [13]. An example of
this capability is the detection of very rare materials at the
Mars Pathfinder landing site, as explained in Figure 2. Full
details can be found in [14] and in [15].

The Pathfinder images have 8 bands, representing a mod-
erate dimensional input space. HyperEye can effectively han-
dle data of much higher dimensionality. Figure 3 highlights
several very small spatial clusters that were discovered from
an AVIRIS hyperspectral image of an urban area, using
all, ∼200 spectral channels. All extracted surface features
(clusters) were verified from aerial photographs or by other
inquiry. Additional details are given in [16]. This study also
contrasts the power of our SOM processing with ISODATA
clustering. ISODATA confuses cluster assignments in many
cases where the SOM cleanly delineates homogeneous surface
areas (buildings, golf course, different types of roofs, roads).
The mean spectra of all the 35 clusters the SOM discovered,
and of the 21 clusters ISODATA produced (shown in [16])
underline significant difference between the two methods.
ISODATA not only finds a smaller number of clusters, it does
not discover the clusters with the most interesting and unique
signatures! This is especially noteworthy in light of the fact



Fig. 2. Left: Rare surface materials on Mars mapped with HyperEye precision manifold learning from SuperPan octant S0184 (left eye) collected by the
Imager for Mars Pathfinder. In this (unsupervised) cluster map, the indicated tiny areas contain a relatively pristine, undifferentiated material termed “black
rock” by scientists. This material has a deep 1-µm absorption (olivine or pyroxene) and has been found in very low abundance at the Pathfinder landing site.
Our clustering not only found black rock, but split it into the two subspecies shown in the insets by pale green and hot pink colors. (Please note that both of
these colors are unique but to see that among 28 different colors clearly one needs to display the original cluster maps on a high-quality computer screen.)
This distinction is justified by the mean spectral shapes of these subclusters (shown in [14]): one has a deeper band centered at 1 µm, the other seems to
have its band center beyond 1 µm thus indicating different (undifferentiated) mineralogies. Details can be found in [14]. Note also that a large number of
other surface materials have simultaneously been delineated (28 species). Such comprehensive mapping from the Mars Pathfinder data was not done before
our work because of the challenges posed by the data. Right: Linear mixture model of the same S0184 SuperPan octant. Both black rock occurrences are
outlined in the same green color, with no further distinction. The variety of surface materials is also much less pronounced that in the SOM cluster map.

that in a lower-dimensional (8-band) image of the same urban
environment ISODATA produced a cluster map remarkably
similar to that produced by an SOM [16]. (The ISODATA map
was not quite as detailed as the SOM map but the clusters
either matched or were superclusters of those in the SOM
clustering, without confusion.) It is an indication of our general
experience with SOMs, that the advantages of SOM-based
methods over conventional ones become more pronounced
with increasing data dimensionality and complexity.

Another important issue we discuss is the extraction of
clusters from a learned SOM. By computing the (data space)
distances between prototype vectors that are adjacent in the
SOM grid and visualizing these distances over the grid cells
(U-matrix representation [17]), it seems fairly straightforward
to delineate cluster boundaries, and in many cases it is so. For
high-dimensional data with many natural clusters, especially
with widely varying cluster statistics (variable size, density,
shapes) and non-linear separability, the detection of cluster
boundaries becomes more complicated (e.g., [18]). The repre-
sentation of cluster (dis)similarities based solely on the weight
(prototype) distances in data space (such as in e.g., [17], [19])
is no longer sufficient for detailed and confident detection
of clusters. This problem generated considerable research in
recent years, partly because the challenge is intriguing from
a manifold learning point of view, but just as importantly
because full automation of cluster extraction from SOMs can
only be done (in general, for data of high complexity) by

overcoming this problem. The problem is worth the effort
because the SOM, as shown in the above examples (where
we used semi-automated, visualization based approaches to
extract clusters) does acquire detailed and accurate knowledge
about a complicated manifold, in contrast to many other
clustering methods including ISODATA. Our challenge is to
decipher the SOM’s knowledge, and to automate the cluster
extraction for autonomous applications.

The structure of a manifold, once quantization prototypes
are determined and Voronoi tessellation performed with the
given prototypes, can be described (on the prototype level)
by the so-called Delaunay triangulation, which is a graph
obtained by connecting the centroids of neighboring Voronoi
cells [20]. (This underlines the importance of the optimal
placement of the prototypes.) The binary Delaunay graph
can thus help discover connected and unconnected parts of a
manifold (i.e., clusters). With simple data structures this works
well. With increased data complexity and noise it becomes
very important to portray how strongly various parts of the data
space are connected. Because of its binary nature the Delaunay
graph will indicate connections caused by a few outliers or
by noise between otherwise well separated clusters! Some
research started to target this issue recently, to represent the
connectivity relations in a manifold in order to more precisely
delineate clusters. These works, however, are either limited
to situations where the SOM prototypes outnumber the data
vectors [21], or to data spaces with low dimensions [22], [23].



Fig. 3. Details of cluster maps, for a subsection of Ocean City, Maryland, produced from an AVIRIS image using all remaining, ∼190, bands after removal
of irrecoverably corrupted bands due to atmospheric attenuation. The spatial resolution is approximately 4 m/pixel. Left color panel: 35 SOM clusters, with
corresponding color codes at the top. The label ”bg” indicates unclustered pixels. The image contains part of Ocean City, surrounded by sea water (light grey,
S) with board walks extending into the water, small harbors, roads and paved plazas (dark blue and dark grey hues I, J, Z), a large open parking lot at the
right (dark grey and mauve colors, i and h), beach sand (ocher, e), vegetation (green colors), and buildings with various roof materials (red (A), hot pink
(D), light blue (E), yellow-green (a), T, U, and more). Right color panel: ISODATA clusters, with labels and color codes shown at the bottom. ISODATA
leaves no pixels unclustered. Clusters and their colors are different from the SOM map. (ISODATA produced a maximum of 21 clusters even when it was
allowed a considerably larger number of clusters.) In both figures, arrows point to the exact same locations. The labels in the white circles in each figure are
given according to the label scheme of the respective clustering and indicate the cluster(s) assigned to the spatial feature the arrow points at in the SOM map.
The full clustering can be seen in [16]. Here we make a few selected comparisons. ISODATA confuses clusters in spatial entities where the SOM assigns
homogeneous labels. An example of this is the class D in the SOM map, pointing to a building (shown in the aerial photo inset at the top left), with a roof
that has prominent iron oxide absorptions. ISODATA assigns this building into three different clusters, none of which have signatures with resemblance to
iron oxides. (Signatures are not shown here but the full sets are displayed in [16].) Another example is a semi-U shaped building (also seen in the top right
inset) with the label “a” in the SOM map, which has a very distinct spectral signature. Yet ISODATA fails to delineate it, confusing four different clusters
in the footprint of this building. None of the signatures of those four clusters (I,S,J,H in the ISODATA map) has any similarity to the true spectra at this
location. Finally, we point out two tiny spatial clusters: “j” (cherry color), and U (lilac) in the SOM map. “j” is a 6-pixel feature, only occurring here and
at one location within the other image segment we analyzed (not shown here). In both cases, this turned out to be a water tower, as identified from aerial
photographs (inset at top right). U points to a sharply delineated 3-pixel feature, with spectral signatures very different from surrounding pixels. This feature
was identified as a coast guard lookout tower from a local map. ISODATA did not discover any of these, or other interesting rare spatial features in spite of
their distinctive spectral signatures. These and other interesting cases are discussed in detail in [16].

Clearly, neither approach is sufficient for our goals. We are
developing a novel knowledge representation that expresses
the manifold connectivity strengths, for any data dimension,
by showing local data densities overlain on the SOM grid, as
illustrated in Figure 4 [24]. The connectivity strength between
any pair of prototypes is defined as the number of times one
of them is the closest matching prototype to a data point and
the other is the second closest matching prototype. The use of
this concept has shown advantages over existing schemes for
moderate-dimensional data sets, and is under further testing
and development for high-dimensional data. This knowledge

representation will lend itself to automation in contrast to the
“modified U-matrix” we currently use for extracting clusters
semi-automatically from visualizations of prototype distances.
While the latter — as the examples show — is successful
in producing sophisticated details, it would be very hard to
automate the human interaction involved.

We stipulated reliability and self-assessment of information
extraction quality as essential characteristics of an Intelligent
Data Understanding system. While it is fairly straighforward to
set quality measures for supervised classifications, such mea-



Fig. 4. Left: Delineation of clusters in a learned SOM grid by U-matrix representation. The SOM in this case has a hexagonal grid, and the data set learned
is in the shape of a 2-dimensional “clown”, artificially created to contain clusters of various sizes, shapes and densities (eyes, nose, mouth, body, with three
subclusters in the left eye). Along with the hexagonal SOM of the learned prototypes it was provided to us by [18]. A U-matrix computed and overlain on
this SOM outlines the main cluster structure by the high (dark) fences, as seen from the various segments annotated with the names of the respective parts
of the “clown”. This analysis is shown in detail in [18]. Right: Connectivity graph (a Delaunay graph with weighted edges instead of binary connections),
explained in the text, computed from the same SOM prototypes as the ones on the left, and draped over the same SOM grid. Each line segment connecting two
prototypes is drawn with a width proportional to the “connectivity strength” (local data density) between those prototypes. This representation thus provides
a better resolved picture of the relative connectedness of various parts of the manifold. For example, the nose and the right eye obviously form submanifolds
strongly connected inside but clearly disconnected from each other (white gaps). Dramatic improvement over the U-matrix is shown in the left eye, where
the three known subclusters are easily detected. In contrast, the U-matrix representation on the right hides these substructures.

sures are harder to define, but just as important, for unsuper-
vised clustering. To assess the goodness of a clustering without
external knowledge (ground truth) is especially important in
autonomous environments. The quality of a clustering can be
measured, in principle, by assessing how well it matches the
natural partitions of a data set. This can provide feedback
for an iterative clustering method, to keep improving the
clustering until the quality indicator no longer increases. For
this purpose, many cluster validity indices have been proposed
(see, e.g., [25], [26] and references therein). They measure to
what extent it is true that all data vectors within any cluster are
closer to each other than to any data vector in any other cluster.
In our experience, however, existing indices often misjudge
complicated clusterings. This is caused by the metrics they use
for within-cluster scatter and for between-clusters separation,
which are the main components commonly combined in all
validity indices. For example, the popular Davies-Bouldin
index [25] employs centroid distances for separation measure,
which results in favoring spherical clusters. Some indices [27]
use data densities, alone or in addition to distances, to better
assess clusters of various sizes and shapes. We found a number
of widely accepted indices inadequate for assessing our cluster
maps, and we are developing new indices designed to provide
more faithful measures by taking into account the connectivity
relations (as expressed by our connectivity graph) among high-
dimensional clusters of widely variable statistics [26].

Cluster identification from an SOM only works well if
the SOM learning was truly topology preserving: that pro-
totypes that are neighbors in data space (centroids of adjacent
Voronoi cells) end up at adjacent grid locations in the SOM.

(For exact definitions of neighboring protoypes and topology
preservation, see [20], [31].) Topology violating mapping can
cause “twisted” SOMs, in which clusters will not be detected
correctly. It is therefore important (especially for expensive
runs with large data sets and in automated regime) to monitor
the topology violations during learning and apply a remedy.
There are many interesting aspects of such monitoring and re-
mediation, involving the development of appropriate measures
for topology violations. These are based on the expectation
that in a topology preserving map a prototype is neighbor
only to those prototypes (Voronoi centroids) in data space,
which are in adjacent grid cells in the SOM, and vica versa.
Depending on dimensionality mismatch between data space
and SOM and noisiness of the data, this expectation will be
violated to various degrees. For example, in a 2-dimensional
rectangular SOM grid each prototype has eight grid neighbors,
whereas a prototype can have more than eight neighbors in
a high-dimensional or very noisy data space. The extent of
a topology violation manifests in the grid distance (folding
length) of two prototypes that are Voronoi neighbors, and in
the strength of their connectivity. For example, in Figure 4, the
prototype labeled O1 is connected to the “body” with a blue
line through almost the entire SOM grid. (From the figure it
is not obvious that this is not a sequence of connecting short
line segments but we know it from the connectivity data.)
However, this connection is caused by a single outlier data
point (hence the thin line), therefore we can dismiss it as a non-
important violation. A strong connection (thick line segment)
with a large folding length would, in contrast, indicate an
important violation. One way to examine violations (beside



Fig. 5. Computation and representation of topology violations, for monitoring the correctness of SOM learning. Left: Top: Violations in an 15 x 15 SOM
that learned a low-noise synthetic data set containing eight known clusters. The cluster labels known to us (but not known to the SOM) are superimposed as
color coded regions. The black “gaps” contain prototypes whose Voronoi cells are empty, indicating discontinuities in the data space. Violating connections
between any two prototypes are indicated by a black line segment with circles at the ends. Here, only the extent (the folding length) is shown for the violating
connections, the severity of the violation (the connectivity strength) is not visualized, to avoid obscuring the structural details. Bottom: A summary measure,
the Differential Topographic Function [28] reveals the distribution of violations as a function of the folding length. In this case, the longest extent of any
violation is eight, which coincides with the diameter of the largest cluster. So if clusters are extracted at this stage of the learning and it is seen that all
violations remain within the clusters one can conclude that for clustering purposes the SOM learning is sufficiently mature. Even though the violations within
clusters can disappear with more learning, that will not change the cluster boundaries, and therefore computational power would be wasted. If our goal is
pdf matching, then this level of topology violation is not acceptable, and learning should be contnued until all violations have a folding legth of one. Right:
Top: Violating connections of strength greater than a threshold of 15 (mean plus 1 std of all connection strengths), in a 40 x 40 SOM that was learned with a
194-band AVIRIS image comprising approximately 250,000 data vectors. This data set is more noisy than the synthetic data used in the example at left. The
high dimensionality and noise produce many violations, at every folding length (bottom plot). The number of violations decreases with increasing folding
length, and this trend should continue with more learning. The violations with strengths exceeding the threshold, seen here, are not overwhelming considering
the size of the data set, and in relation to the clusters extracted at this stage (after 300,000 learning steps). Many violating connections “profile” the onion
skin structure of the clusters at the bottom part of the SOM, and some others, at the upper right clusters (pale colors), mostly extend to neighboring clusters
only as these clusters are members of a slowly varying series of spectral species. In spite of obvious flaws, which indicate that more learning should be done,
this clustering is already in a remarkable agreement with the known spatial distribution of materials in the input image (shown in [29], [30].

what is illustrated through Figure 4, and is further elaborated
on in [24]), is the Differential Topographic Function [28],
developed from the Topographic Function [31]. While we
illustrate it through visualization in Figure 5, visualization
is not needed for effective utilization and therefore this can
be applied in automatic monitoring. For example, quantitative
summaries of the inter- and within-cluster violations (shown
in Figure 5) report on the state of the SOM and a temporal
development of these summaries (improving or worsening
trend) provide feedback on the learning. Depending on the
extent, severity and history of the violations, the learning may
need to be restarted with different parameters; or a change
in learning parameters is necessary to accelerate a slowly
improving trend; or the learning may need a new start with
a larger SOM. There are other, more sophisticated (and more

expensive) remediations that can be applied if warranted [32].

After these details that show how much effort goes into the
precision engineering of SOMs and what capabilities result, we
give an example of a many-class supervised classification from
∼200-band AVIRIS imagery. The geologic area is Cataract
Canyon (in the Grand Canyon), where a landslide hazard study
was undertaken as part of a NASA Solid Earth and Natural
Hazards Program grant project (PI Victor Baker, U Arizona).
The primary purpose of our classification was to map layers
in canyon walls with various clay mineralogies as it had been
hypothesized that different clays contribute differently to the
debris-flooding potential of hill slopes. We show, in Figure 6,
the resulting class map, and spectral signatures of 15 of the 28
surface cover classes that were mapped. (Readers interested in
more specifics including relevant geologic details are referred



to [33].) The fine discrimination and sharp delineation of
these classes, characterized by rather subtle differences in their
spectral signatures, were possible because of the predeter-
mined cluster structure by the SOM in the hidden layer of
the supervised classifier.

Lastly, we want to briefly mention one important related as-
pect: feature extraction or dimensionality reduction. Methods
that can take up the challenges we demonstrated above are
scarce. Dimensionality is frequently reduced before clustering
or classification to accomodate very rich data to algorithms
that cannot handle high dimensionality and complexity. This,
however, often results in losing discovery or discrimination
potential ([29], [34], [16]). For this reason we advocate the
use of full dimensionality for retention of discovery potential,
and for the establishment of benchmarks for classification.
However, in situations such as supervised classification, where
we know excatly what we are looking for, intelligent feature
extraction that takes into account the classification goals, can
be extremely beneficial. For this purpose HyperEye has a
recently developed neural relevance learning module, which
performs non-linear feature extraction coupled with the train-
ing of a classifier, and they are jointly optimized through
a feedback loop. It has shown significant performance for
high-dimensional and highly structured data spaces such as
hyperspetral imagery [35], [36]. We are in the process of
maturing this method through further applications.

III. DISCUSSION AND FUTURE WORK

We presented a concept of on-board decision support with
HyperEye as an Intelligent Data Understanding subsytem that
extracts critical scientific information from data collected by
scientific instruments. By communicating distilled relevant
knowledge it is envisioned to contribute to science driven
decisions or alerts such as needed for on-board navigation
control, or automated search in large archives. In such sit-
uations the scope and the quality of the extracted information
is of paramount importance. We demonstrated some of the
current capabilities of HyperEye that we believe can provide
smart novelty detection as well as precise detection of a wide
variety of known targets of interest, from high-dimensional
and complicated data.

While the core functionalities (clustering and classification)
of HyperEye produce demonstratedly high quality results,
there are outstanding issues to be addressed in order to
minimize the need for humans in the processing loop. We
discussed two important components of this envisioned au-
tonomous IDU subsystem that are incomplete at present: the
full automation of cluster extraction from a learned SOM,
and the self-assessment of the quality of clustering. With the
current readiness, SOM knowledge (including the prototypes
and data density counts for each prototype, which is a small
amount of data) would be sent to Earth (to a human operator)
from time to time (or on demand), cluster boundaries extracted
semi-automatically by a human analyst, and cluster statistics
computed from the clustered prototypes. This allows novelty

detection (since the prototypes of a cluster of data are very
similar to the actual data), and decision about appropriate
actions. We have an automated SOM clustering module that
works well for simple cases such as shown in Figure 5, left,
but its performance has to be improved for more complex
data [37]. Self-assessment of clustering quality is easy to do at
present in an algorithmic sense, but the judgement of available
cluster validity indices is unsatisfactory. We are working on
remedying this situation [26].

Interpretation and labeling of newly discovered clusters will
need human interaction even when cluster extraction will be
fully automated. In the long term, it would also be desirable
to automate this as much as possible, since labeling can
be an extremely time consuming task given the increasing
amount of data and knowledge obtained from Earth and space
science missions. One approach would be to create semantic
models for planetary data, populate with available data (such
as spectral libraries, instrument characteristics, previous anal-
ysis results) and capture their known relationships. This can
help identify a material represented by a “novel” cluster, or
ascertain true novelty of it. While a system like this does not
exist at present, there are at least partial examples to build on.

Neural network processing is very slow with sequential
computers. Implementation in massively parallel hardware (on
the level of natural granularity of ANN computation), is key
to the acceleration of this processing by several orders of
magnitude. This is essential for on-board operations, but it is
also important for processing large data sets on Earth such as
terrestrial archives. It would, in addition, speed up algorithm
development considerably by enabling faster turnaround and
testing. High quality clustering of a hyperspectral AVIRIS
image can take a couple of days on a regular Sun/Spark
workstation. The same could be done under one minute with
a massively parallel designated board with currently existing
technology [38]. Near-future chips using newer nanotechnol-
ogy will be even faster, truly enabling real-time application.
This, however, is a non-trivial and expensive task for the types
and sizes of neural networks we use, outside the scope and
beyond the current resources of the work involving HyperEye.
We expect that further advances in nanotechnology and interest
in real-time neural processing can change this in the not too
distant future.

In closing, we add that the methods presented here can be
applied directly to similar data such as stacked time series
of gene microarrays or spectral images of biological tissues.
They can also be applied to other data (such as fused disparate
data as in security data bases) with appropriate modifications
to ingestion, summarization and housekeeping functions.
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Fig. 6. Left: Supervised class map of 28 surface cover types in Cataract Canyon (part of Grand Canyon), Utah, from a 196-band AVIRIS hyperspectral
image, using all bands remaining after removing bands with irrecoverable signals due to atmospheric attenuation. Of special interest are a series of layered
geologic formations of the Grand Canyon, shown in various colors (blue, turqoise, yellow, yellow-green, orange, and others to the right of the blue classes),
running down verticaly in the middle of the class map, and then continuing with displacements. Bottom: Some of the corresponding physical layers in the
Grand Canyon. Right: Mean spectra of training sets (blue), and of the predicted classes (red) for 15 of the classes seen on the map at left. The graphs are
vertically offset for viewing convenience. The standard deviation of the training classes are shown by vertical bars for each spectral channel. The red mean
spectra of the predicted classes are, in most cases, virtually indistinguishable from the training means, indicating tight classification. These spectra represent a
situation where precise discrimination of many species was needed, with subtle but meaningful differences in their signatures. Details of this geologic mapping
(including the names of the layers, illegible here) are described in [33].
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and Lily Zhang (Rice University) and by former graduate
students Abha Jain and Major Michael Mendenhall, as well as
software development by former staff member Philip Tracadas
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[16] E. Merényi, B. Csató, and K. Taşdemir, “Knowledge discovery in urban
environments from fused multi-dimensional imagery,” in Proc. IEEE
GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over
Urban Areas (URBAN 2007)., P. Gamba and M. Crawford, Eds., Paris,
France, 11–13 April 2007, IEEE Catalog number 07EX1577.

[17] A. Ultsch, “Self-organizing neural networks for visualization and
classification.,” in Information and Classification — Concepts, Methods
and Applications, R. Klar O. Opitz, B. Lausen, Ed., pp. 307–313.
Springer Verlag, Berlin, 1993.

[18] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 586–600,
May 2000.

[19] M.A. Kraaijveld, J. Mao, and A.K. Jain, “A nonlinear projection method
based on Kohonen’s topology preserving maps,” IEEE Trans. on Neural
Networks, vol. 6, no. 3, pp. 548–559, 1995.

[20] Th. Martinetz and K. Schulten, “Topology representing networks,”
Neural Networks, vol. 7(3), pp. 507–522, 1994.

[21] G. Polzlbauer, A. Rauber, and M. Dittenbach, “Advanced visualization
techniques for self-organizing maps with graph-based methods,” in Proc.
Intl. Symp. on Neural Networks (ISSN05), 2005, pp. 75–80.

[22] M. Aupetit, “Visualizing the trustworthiness of a projection,” in
Proc. 14th European Symposium on Artificial Neural Networks,
ESANN’2006, Bruges, Belgium, Bruges, Belgium, 26-28 April 2006,
pp. 271–276.

[23] M. Aupetit and T. Catz, “High-dimensional labeled data analysis with
topology representing graphs,” Neurocomputing, vol. 63, pp. 139–169,
2005.
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