
Learning Highly Structured Manifolds:

Harnessing the Power of SOMs
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Abstract. In this paper we elaborate on the challenges of learning man-
ifolds that have many relevant clusters, and where the clusters can have
widely varying statistics. We call such data manifolds highly structured.
We describe approaches to structure identification through self-organized
learning, in the context of such data. We present some of our recently
developed methods to show that self-organizing neural maps contain a
great deal of information that can be unleashed and put to use to achieve
detailed and accurate learning of highly structured manifolds, and we also
offer some comparisons with existing clustering methods on real data.

1 The Challenges of Learning Highly Structured
Manifolds

Data collected today are often high-dimensional due to the vast number of at-
tributes that are of interest for a given problem, and which advanced instrumen-
tation and computerized systems are capable of acquiring and managing. Owing
to the large number of attributes that are designed to provide sophisticated char-
acterization of the problem, the data acquired are not only high-dimensional but
also highly structured, i.e., the data have many clusters that are meaningful for
the given application. Examples are hyperspectral imagery of planetary surfaces
or biological tissues, DNA and protein microarrays, data bases for business op-
erations and for security screening. These types of data created new demands
for information extraction methods in regard to the detail that is expected to
be identified. For example, hyperspectral imagery affords discrimination among
many materials such as individual plant species, soil constituents, the paints of
specific makes of cars, or a large variety of roof and building materials, creat-
ing a demand to extract as many as a hundred different clusters from a single
remote sensing image of an urban scene. These clusters can be extremely vari-
able in size, shape, density and other properties as we illustrate below. Another
demand arising from such sophisticated data is to differentiate among clusters
that have subtle differences, as the ability to do so can enable important dis-
coveries. These examples highlight challenges for which many existing clustering
and classification methods are not well prepared.

There has been much research on manifold learning motivated by the idea that
the data samples, even if they are high-dimensional, can be represented by a low-
dimensional submanifold. Representing the data in low-dimensional (2-d or 3-d)
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spaces can also help visualize the data structure to guide the user for capturing
the clusters interactively. A classical technique for dimensionality reduction is
principal component analysis (PCA) which works well when the data points lie
on a linear submanifold. However, real data often lie on nonlinear spaces. To
find the nonlinear subspaces (manifolds), many methods have been introduced
(see [1,2] for recent reviews), among them a number of manifold learning algo-
rithms: multidimensional scaling (MDS) [3], Isomap [4], locally linear embedding
(LLE) [5], Hessian LLE (hLLE) [6] are some. These methods may successfully
be applied to data sets that are characterized by only a few parameters (such
as the angle of rotation in a number of similar video and image data sets) [7].
However, the same are often suboptimal for clustering applications as shown
in various papers [8,9,10], since they are developed for reconstruction of one
underlying submanifold rather than for identification of different groups in the
data. In order to make manifold learning algorithms effective for classification,
various works extend them with the help of the class statistics. [8] uses Fisher
linear discriminant analysis (LDA) with Isomap for face recognition. Similarly,
[11] uses LDA with manifold learning algorithms for face and character recogni-
tion. [10] modifies Isomap and LLE so that both local and global distances are
considered for better visualization and classification. However, the performance
of the modified Isomap or the modified LLE is not very promising due to the
same reconstruction objective (the reconstruction of one underlying manifold)
as for Isomap and LLE. In clustering applications, the aim is to learn the cluster
structure — where the clusters may lie in different submanifolds — rather than
to find one underlying submanifold for the data. Therefore representation of the
separation between clusters is of great interest but not so much the precise to-
pography of the underlying manifold. This makes adaptive vector quantization
algorithms – which show the data topography on the prototype level and aim
to faithfully represent the local similarities of the quantization prototypes – well
suited for clustering [12,13,14,15,16].

Adaptive vector quantization algorithms are either inspired by nature as in the
case of self-organizing maps (SOMs) [12], derived as stochastic gradient descent
from a cost function as in Neural Gas [13] and its batch version [14], or derived
through expectation-maximization [15,16]. Variants of SOM, Neural Gas and
batch Neural Gas, which use a magnification factor in quantization, were also
introduced and analyzed to control the areal representation of clusters (e.g., the
enhancement of small clusters), in the learning process [17,18,19,20].

Among adaptive vector quantization methods we focus on SOMs. Our mo-
tivation is that not only can SOMs demonstratedly find optimal placement of
prototypes in a high-dimensional manifold (and through that convey knowledge
of the manifold structure) but the ordered prototypes also allow interesting and
in-depth knowledge representation, regardless of the input dimensionality, which
in turn helps resolve a large variety of clusters in great detail. After a brief back-
ground on SOM learning in Sect. 2, we discuss aspects of SOM learning as
related to large high-dimensional manifolds with many clusters: quantification
of the quality of learning (topology preservation) in Sect. 3.1; representation of
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the SOM knowledge, and extraction of clusters under these circumstances in
Sect. 3.2, and we describe methods we developed in recent years. In Sect. 4 we
present real data analyses, and offer conclusions in Sect. 5.

2 Learning Manifolds with Self-Organizing Maps

Self-Organizing Maps (SOMs) occupy a special place in manifold learning. They
perform two acts simultaneously, during an iterative learning process. One is an
adaptive vector quantization, which — assuming correct learning — spreads the
quantization prototypes throughout the manifold such that they best represent
the data distribution, within the constraints of the given SOM variant. (For
example, the Conscience SOM produces an optimum placement of the prototypes
in an information theoretical sense [21,18].) The other act is the organization
(indexing) of the prototypes on a rigid low-dimensional grid, according to the
similarities among the prototypes as measured by the metric of the data space.
This duality makes SOMs unique among vector quantizers, and unique among
manifold learning methods, because the density distribution — and therefore
the structure — of a high-dimensional manifold can be mapped (and visualized)
on a 1-, 2- or 3-dimensional grid without reducing the dimensionality of the
data vectors. This, in principle, allows capture of clusters in high-dimensional
space, which in turn facilitates identification of potentially complicated cluster
structure that is often an attribute of high-dimensional data.

However, “the devil is in the details”. The aim of this paper is to illuminate
and quantify some of the details that are different for simple data and for compli-
cated (highly structured) data, and to describe our contributions that alleviate
certain limitations in existing SOM approaches (including the interpretation of
the learned map) for highly structured manifolds.

For a comprehensive review of the SOM algorithm, see [12]. To briefly summa-
rize, it is an unsupervised neural learning paradigm that maps a data manifold
M ⊂ R

d to prototype (weight) vectors attached to neural units and indexed in
a lower dimensional fixed lattice A of N neural units. The weight vector wi of
each neural unit i is adapted iteratively as originally defined by Kohonen [12]:
Find the best matching unit i for a given data vector v ∈ M , such that

‖v − wi‖ ≤ ‖v − wj‖ ∀j ∈ A (1)

and update the weight vector wi and its neighbors according to

wj(t + 1) = wj(t) + α(t)hi,j(t)(v − wj(t)) (2)

where t is time, α(t) is a learning parameter and hi,j(t) is a neighborhood func-
tion, often defined by a Gaussian kernel around the best matching unit wi.
Through repeated application of the above steps, the weight vectors become the
vector quantization prototypes of the input space M .

This is an enigmatic paradigm: it has been studied extensively
(e.g., [12,22,23,24,25]), yet theoretical results are lacking for proof of conver-
gence and ordering for the general case. In principle, the SOM is a topology
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preserving mapping, i.e., the prototypes which are neighbors in A should also
be neighbors (centroids of neighboring Voronoi polyhedra as defined in [26]) in
M , and vice versa. When centroids of neighboring Voronoi polyhedra in M are
not neighbored in the SOM lattice we speak of forward topology violation with a
folding length k where k is the lattice distance between the prototypes in ques-
tion. When two SOM neighbors are not centroids of adjacent Voronoi polyhedra
in M a backward topology violation occurs [27]. Both conditions can be (and are
usually) present at various stages of SOM learning, to various extent depending
on the characteristics of the data and the SOM lattice. This is so even if the
learning “goes well” (no twists develop in the map), and topology violations may
not vanish with any amount of learning. One is therefore motivated to construct
empirical and heuristic measures to quantify the quality of learning: the degree
of faithfulness and maturity of the mapping, as it is meaningful for a given ap-
plication. Measures of topology preservation, such as the Topographic Product,
Topographic Error, and Topographic Function, have been proposed [28,29,27],
which define perfect mapping in exact numerical terms. The Topographic Func-
tion [27] also shows topology violations as a function of the folding length, which
gives a sense of how global or local the violations are on average. What these
existing measures do not provide, however, is a clear sense of what the numbers
mean for less than perfect learning: how far the score of an already usefully
organized state of the SOM could be from perfect (zero for the Topographic
Product and the Topographic Error); whether a numerical value closer to the
perfect score necessarily means better organization; or which of two Topographic
Functions express better organization.

The quality of learning can be viewed in relation to the goal of the learning.
Two levels are easily distinguished: a) the learning of the topography (the density
distribution); and b) the learning of the cluster structure, of a manifold for which
the acceptable degree of topographic faithfulness can be quite different. Learn-
ing cluster structure does not require a very precise learning of the topography.
Certain level of local topology violations in the SOM is tolerable and will not
hinder the accurate extraction of clusters. To illustrate the point, consider the
SOM learned with a relatively simple data set, in Fig. 1. The data set contains 8
classes, in a 6-dimensional feature space. The classes are apportioned such that
four of them comprise 1024 data vectors each, two of them have 2048, and two
have 4096 data vectors. Gaussian noise, about 10% on average, was added to
the data vetors to create variations within the classes. The clusters detected by
the SOM are delineated by the white “fences” we call the mU-matrix, and by the
empty (black) prototypes, as explained in the figure caption. (We will elaborate
on this particular knowledge representation more in Sect. 3.2.) Comparison with
the known class labels (colors) superimposed in Fig. 1, right, makes it obvious
that the SOM already learned the cluster structure perfectly. At the same time,
one can examine the topology violations and conclude that the topography is far
from having been learned perfectly. To show this we connected with black lines
those prototypes which are not neighbors in the SOM grid but have adjacent
Voronoi cells in data space. These lines express the forward topology violations,
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Fig. 1. Left: 15 x 15 SOM of an 8-class 6-dimensional synthetic data set. The clus-
ter boundaries emerge through the mU-matrix, the visualization of the distances of
adjacent prototypes as fences between the grid cells in all eight directions. White is
high fence (large dissimilarity), black is low fence (great similarity). Each grid cell is
shaded by an intensity of red proportional to the number of data points mapped to
the prototype in that grid cell. Black grid cells indicate empty receptive fields of the
corresponding prototypes. The fences clearly outline 8 clusters. Right: The SOM of
the 8-class synthetic data with known class labels (colors) superimposed. The cluster-
ing learned by the SOM is perfect in spite that many topology violations still exist at
this stage of the learning, even at folding length 8 (i.e., nearly half the width of the
SOM lattice). The (567) existing violations, shown by black lines in the cluster map,
all occur locally within clusters.

and we call them violating connections. All violating connections are residing
locally inside clusters, without confusing the cluster boundaries. Apparently, a
coarser organization has taken place, separating the clusters, and finer ordering
of the protoypes would continue within the already established clusters. One
might conclude that, for the purpose of cluster capture, this level of topology
violation is tolerable and inconsequential [30]. We elaborate on aspects of mea-
suring topology violations, and present new measures, in Sect. 3.1 and 3.2.

3 Learning the Clusters in Highly Structured Manifolds

As stated in Sect. 1 high-dimensional data are often complicated, highly struc-
tured, as a result of the application task for which the data were collected.
Complicated means the presence of many clusters which may not be linearly
separable, and which can be widely varying in various aspects of their statistics,
such as size, shape (non-symmetric, irregular), density (some are very sparse,
others are dense in feature space), and their proximities. Fig. 2 gives an illustra-
tion of these conditions.

To give a real example of a situation similar to that in Fig. 2 we show statistics
of a remote sensing spectral image of Ocean City, Maryland [31]. This data set
is described in detail in Sect. 4.1. In previous analyses more than twenty clusters
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Fig. 2. Illustration of complicated cluster structure. The eleven clusters depicted here
are in different proximity relations, and have different statistics. Their shapes vary from
spherical (F, G, K) through ellipsoidal (C, D) and ellipsoid-like (H, I, J) to rectangular
(E) and irregular (A, B). Some (B, C, D, F and G) are denser than others (A, E, J and
K), and some (H and I) have inhomogeneous data distribution. Several (C, F, G) are
very small, and two (J and K) are overlapping. Such variations produce a challenging
structure that may not be effectively dealt with by methods which, by design, best
handle clusters of given characteristics (such as spherical clusters by K-means).

were identified in this image and associated with meaningful physical entities
such as roof materials, vegetation, roads, etc. [18]. A selected subset of those
clusters is listed in Table 1, for the eight spectral bands (feature space dimen-
sions) which were used in the earlier clustering. First, the number of data points
varies extremely, from a few hundred to nearly 50,000, across clusters. Secondly,
the standard deviation for each of the clusters varies across the spectral bands,
and varies differently for each cluster (anywhere from 2- to 5-fold), indicating
all kinds of shapes except hyperspherical. To compare the volumes of the clus-
ters, we assume that clusters are hyperrectangles with a size proportional to the
standard deviation in the corresponding dimensions (bands). While this does not
give the correct volume of the clusters it still provides an insight to the magni-
tude of the variation. By this rough comparison, the largest cluster (L), is about
2000 times larger than the smallest cluster (G). We also compute the density
of the clusters by dividing the number of data points by the calculated volume.
The densest cluster (G) is about 3500 times more dense than the sparsest cluster
(L). For example, G has about 28,000 data points, a volume of 4 × 1015 and a
density of 7463 × 10−15 whereas I, which has a similar number of data points
(about 25,000), has a volume of 211 × 1015 and a density of 117 × 10−15 (1/70
of the density of G). In Sect. 3.2 we will also show envelopes of these clusters
(i.e., plots of extreme values in each feature dimension), from which it can be
seen that many of the clusters are overlapping. The widely varying numbers of
data points, volumes and densities, as well as overlaps of the clusters make this
Ocean City data set complicated, highly structured.
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Table 1. Statistics indicating complicated cluster structure in a remote sensing spectral
image of Ocean City, Maryland. From over twenty identified clusters, corresponding to
real physical entities in this image, nine selected clusters are listed here.

No. standard deviation

Cluster data band band band band band band band band volume density

Labels points 1 2 3 4 5 6 7 8 (1015) (10−15)

A 8089 145 88 171 101 136 102 175 181 96 84

B 5496 186 141 118 90 122 92 145 146 65 84

E 14684 186 109 76 102 126 81 179 229 65 225

G 28468 122 73 84 65 85 60 107 145 4 7463

H 480 176 109 118 112 115 81 156 214 78 6

I 24719 271 107 174 189 157 86 119 138 211 117

L 13592 339 268 207 207 233 148 238 269 8589 2

O 20082 341 221 157 159 213 148 283 275 4610 4

R 48307 179 119 163 106 107 109 235 269 271 178

V 998 177 229 112 79 92 81 180 217 106 9

a 239 354 286 205 175 168 144 201 177 3132 0.1

Extraction of such complicated clusters, and rather precisely, is important in
many of today’s real problems. For example (as we show in Sect. 4.2) some of
the smallest clusters in this image represent unique roofing materials, and many
of the clusters with considerable overlap in their signatures map distinct man-
made materials. All of these are important to detect and map accurately in an
urban development survey (for which this kind of data may be acquired). We
want to point out that this Ocean City image is not as complicated as some of
the hyperspectral images we have been working with. One such image will also
be analyzed in Sect. 4.3. In the rest of this paper we discuss our contributions
to the learning and extraction of clusters from highly structured manifolds.

3.1 Measuring the Correctness of SOM Learning for Complicated
High-Dimensional Manifolds

A prerequisite of faithful cluster identification from an SOM is an appropri-
ate representation of the topology of the data space M by the ordering of the
prototypes in the SOM lattice A. Ideally, the SOM should be free of topology
violations, at least in the forward direction since the “twists” caused by forward
violations can lead to incorrect clustering. Backward topology violations are not
detrimental for cluster extraction because they manifest in disconnects (strong
dissimilarities — high fences — and/or prototypes with empty receptive fields,
as in Fig. 1) in the SOM, which helps locate clusters. Ideal topology preservation
usually does not occur for real data. For noisy, complicated manifolds topology
violations are common at all stages of the learning. Adding to the difficulty is
the fact that one does not know when the learning is mature enough, or how
much further a seemingly static map may still improve. The key is to quantify
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the extent of various violations and be able to separate important ones from the
inconsequential.

The Topographic Product [28] (TP) was the first measure that quantified the
quality of topology preservation. A prototype based measure, the TP is com-
putationally economical, but it penalizes (falsely detected) violations caused by
nonlinearities in the manifold, due to improper interpretation of neighborhood by
Euclidean metric. This drawback is remedied in the Topographic Function [27]
(TF), where the Euclidean metric is replaced by the graph metric of the induced
Delaunay triangulation. Assuming a high enough density of prototypes in the
manifold, the induced Delaunay graph can be constructed, after [26], by finding
the best matching unit (BMU) and the second best matching unit (second BMU)
for each data vector, and expressing these “connections” in a binary adjacency
matrix of the SOM prototypes. Two prototypes that are a pair of BMU and sec-
ond BMU for any data vector are adjacent or connected in the induced Delaunay
graph. (Equivalently, they are centroids of adjacent Voronoi cells). The lattice
(maximum norm) distance of two prototypes in the SOM is their connection
length or folding length [27]. The TF not only uses a better distance metric, but
also shows the scope of forward violations, by computing the average number of
connections that exist at folding lengths larger than k:

TF (k) =
1
N

∑

i∈A

{# of connections of unit i with length > k}, (3)

where i is the index of the neural unit in A, N is the total number of units.
A large k indicates a global (long range, more serious) violation while a small
k corresponds to a local disorder. Eq. (3) is also applicable to backward viola-
tions, where k is negative and represents the induced Delaunay graph distance,
in the data space, between prototypes that are adjacent in the SOM. There are
also measures that only utilize information on the data distribution. For ex-
ample, [32] introduced a cumulative histogram to express the stability of the
neighborhood relations in an SOM. It captures a statistical view of the neigh-
borhood status of the system and compares it with an unordered map. The more
dissimilar they are, the more reliable the mapping. Another measure, the Topo-
graphic Error [29], expresses the extent of topology violation as a percentage of
data points that contribute to violating connections. Extending these previous
works, we enriched and further resolved the TF in the Weighted Differential
Topographic Function (WDTF) [30].

WDTF (k) =
1
D
{# of data vectors inducing connections of length= k} (4)

where D is the total number of data samples. The WDTF is a differential view
of the violations at different folding lengths, in contrast to the integral view of
the TF. It also adds new information by using the number of data samples that
induce a given connection, as an importance weighting. By this weighting, the
WDTF distinguishes the severity of violating connections: a long range but weak
violating connection caused by a few noisy data vectors may be unimportant
and safely ignored in the overall assessment of topological health, while a heavy
violating connection warrants attention as a potential twist in the map.
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Monitoring Violating Connections: TopoView and WDTF. Besides the
topographic measure WDTF discussed above, we present another useful, inter-
active tool, TopoView, which allows to show violating connections on the SOM.
This is more general than displaying SOM neighbors connected in data space,
which is limited to 2- or 3-dimensional data. Different subsets of connections can
also be selected by thresholding the connection strength and/or the connection
length, which helps filter out noise, outliers and unimportant (weak) violations,
and thereby more clearly see the relevant characteristics of the topology. For
complex and high-dimensional data, it is especially effective to use both tools
together. The WDTF provides a summary of the severity of violations at each
folding length while TopoView provides localization of the violations in the SOM,
for selected severity levels.

We illustrate the use of TopoView and the WDTF on a synthetic 4-class Gaus-
sian data set, in Fig. 3. The data set was generated by using four Gaussian dis-
tributions with mean=0, standard deviation=1, at four centers in 2-dimensional
space. At 1K (1000) steps (Fig. 3, top row), the SOM appears twisted in the
data space, especially in the upper right cluster, where a chain of SOM pro-
toypes is arranged in the shape of a horseshoe. TopoView reflects this twisting
by a set of connections along the right side of the SOM. From the WDTF, which
shows violations up to length 6, we can see what is known from the connec-
tion statistics: the end units of this chain, and also some of the non-neighbored
units in between, must be connected. However, the long range violations are rel-
atively weak. The rest of the violating connections are more local, but stronger,
with a connection length of 2 or 3. As the SOM evolves, the set of long range
connections in the SOM disappear at 3K steps (middle row), which means the
“horseshoe” took up a shape that better approximates the spherical cluster.
Finally, TopoView shows the SOM free of violating connections at 100K steps
(bottom row): the prototypes are well placed in the data space, and the WDTF
vanishes.

We give a real demonstration of the use of these measures through a hy-
perspectral urban image, which represents complicated, highly structured data.
This image, which we will call “RIT image”, was synthetically generated, there-
fore it has ground truth for every pixel, allowing objective evaluation of analysis
results on the 1-pixel scale. The image pixels are 210-dimensional feature vectors
(reflectance spectra), which are the data vectors input to the SOM. The scene
contains over 70 different material classes. Fig. 4 and 5 give an illustration, and
Sect. 4.1 a detailed description, of this data set.

To monitor topology preservation we compare two snapshots taken during the
learning of the RIT image, at 500K and 3M (3000000) steps, respectively.
Fig. 6 shows that the quality of the topology preservation improves from 500K
to 3M steps. The number of short-range violations considerably decreases, and
a decrease is generally showing at larger folding lengths, with some exceptions
(such as at k = 8 and k = 13). From the TopoView representation in Fig. 7 one
can follow which violations disappear between the two snapshots. Since TopoView
shows the individual violating connections the thick cloud of connections can be
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Fig. 3. The evolution of the SOM as it learns the synthetic 2-dimensional 4-class Gaus-
sian data. Three snapshots are shown at 1K, 3K and 100K steps, from top to bottom.
Left: The SOM prototypes (black dots) in the data space space, with SOM neighbors
connected. Data samples are color coded according to their class memberships. Cen-
ter: All violating connections shown as black lines, over the SOM, with the class labels
(colors) and the mU-matrix also superimposed. Right: The TFs (blue lines) and the
WDTFs (green bars).

obscuring. However, even with all connections shown (in the top row of Fig. 7),
one can see that, for example, the lower left corner of the SOM became completely
violation free at 3M steps. To give an “importance-weighted” view of the same
we can apply tresholding by connection strength (the weighting used by WDTF).
This eliminates unimportant connections and clears the view for analysis of those
violations that may significantly contribute to cluster confusion. Two examples
for possible thresholdings are given in Fig. 7. In both cases a decrease in confu-
sion (relative to the mU-matrix fences) can be seen. Thresholding by connection
length can make the cut between global and local range violations. This threshold
depends on the data statistics and is automatically computed, based on the follow-
ing argument, from [34]: if a prototype wi has m Voronoi neighbors in data space
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Fig. 4. Top: A color composite of 3 selected spectral bands of the 400 x 400 pixel,
210-band synthetic hyperspectral RIT image. Bottom: Partial cluster map, extracted
from the self-organizing map in Fig. 5, using the modified U-matrix visualization [33].
It shows 39 cover types with unique colors keyed in the color wedge. Some additional
unique materials (such as roofs of houses, showing in black) have no labels assigned for
reasons of color limitations. Besides the obvious vegetation (trees and grasses, clusters
I, J, K, Z, g, Y), the approximately 70 different surface cover types in this image include
mixed dirt/grass (T), a large number of roof materials (A, B, C, F, M, N, Q, R, U,
X, a, b, d, h, i, j, k, l, m), pavings (V, roads and parking lots), tennis courts (O, P),
several types of car paints (W, c, M, f, e), and glass (windshield of cars and roof, E).



Learning Highly Structured Manifolds: Harnessing the Power of SOMs 149

Fig. 5. Top: The SOM with discovered clusters color-coded and the mU-matrix su-
perimposed. Interpretation of these clusters is given in Fig. 4. Medium grey cells (the
color of the background, “bg”), appearing mostly along cluster boundaries are SOM
prototypes with no data points mapped to them. Some prototypes — shown as black
cells, which have data mapped to them — were left unclustered, because of color limi-
tation. Bottom: The same cluster map as in Fig. 4, bottom, with the large background
clusters (grass, paved roads and lots) removed to provide better contrast for the many
different roof materials, and other small unique spectral clusters such as tennis courts.
About twenty of these clusters are roof types. Spectral plots showing excellent match
of the spectral characteristics of the extracted clusters with true classes are in [33].
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Fig. 6. Comparison of TFs (left) and WDTFs (right) after 500K and 3M SOM learn-
ing steps on the RIT hyperspectral image. While the integral measure TF shows a
general decrease of violations at shorter folding lengths, the WDTF also indicates the
fluctuations of violations across folding lengths.

then a topology preserving arrangement in the SOM lattice for these m neighbors
is a placement into the “tightest” SOM neighborhood. This means that the 8 clos-
est Voronoi neighbors should occupy the 8 immediate lattice neighbors of wi in a
square SOM neighborhood, Voronoi neighbors 9 – 24 wrap around this first tier
of immediate SOM neighborhood, and so on. The radius of the SOM neighbor-
hood that accomodates all Voronoi neighbors in this tightest fashion yields the
folding length k within which the violations can be considered local. In the case of
the RIT data, the maximum number of connected neighbors is 21 at 500K steps
and 19 at 3M steps. These can fit into a 2-tier (8+16) square SOM neighborhood.
Therefore, global violations are those with k ≥ 3, shown in Fig. 7, bottom row.
TopoView can also show inter-cluster or intra-cluster connections separately if a
clustering is provided, and thus aid in the verification of clustering. This will be
shown in Sect. 4.3.

3.2 Cluster Extraction

Cluster extraction from SOMs is accomplished through the clustering of the
learned prototypes. Various approaches can be used, either based solely on the
similarities of the prototypes or by taking into account both the prototype simi-
larities and their neighborhood relations in the SOM grid. The latter is typically
done interactively from visualization of the SOM and is generally more successful
in extracting relevant detail than automated clustering of the prototypes with
currently available methods.

SOM knowledge representations — what information is quantified and how
— are key to the quality of cluster capture from visualizations. The widely used
U-matrix [35] displays the weight distances of the SOM neighbor prototypes,
averaged over the neighbors and coloring the grid cell of the current prototype
to a grey level proportional to this average distance. The U-matrix and its vari-
ants (e.g., [36], [37], [38]) are most effective when relatively large SOM grid
accomodates small data sets with a low number of clusters because the aver-
aging can obscure very small clusters and sharp boundaries in a tightly packed
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Fig. 7. TopoView visualization of violating connections (yellow lines) with different
thresholdings, on the SOM of the RIT data at 500K steps (left column) and at 3M steps
(right column). In the underlying SOM, the mU-matrix is superimposed (white fences).
Medium grey cells indicate empty prototypes. Top: all violating connections are drawn.
Center: violating connections with strength greater than the mean strength of all
violating connections. Bottom: global violating connections (k ≥ 3) with connection
strength greater than the mean strength of the fourth strongest connections of all
prototypes. This choice of threshold, proposed in [34], is described in Sect. 3.1.



152 E. Merényi, K. Tasdemir, and L. Zhang

SOM grid. Approaches such as [39] and gravitational methods (e.g., Adaptive
Coordinates [37]) visualize distances between the weights in innovative ways
that greatly help manual cluster extraction. Automated color assignments also
help qualitative exploration of the cluster structure [40], [41], [42]. We point
the reader to [37], [43], [34] for review. Visualization of the size of the proto-
type receptive fields (e.g., [38], [44]) is among the earliest tools. Visualization
of samples that are adjacent in data space but map to different SOM proto-
types [45] is a richer representation than the previous ones since it makes use of
the data topology. However, in case of a large number of data points, adjacent
samples mapped to different prototypes are only the ones at the boundaries of
the Voronoi polyhedra, thus this visualization still leaves a lot of the topological
information untapped. More of the data topology is utilized by [46] and [47],
however, the visualization is in the data space and therefore limited to up to
3 dimensions.

We added to this arsenal the modified U-matrix (mU-matrix), and the con-
nectivity matrix, CONN, and their visualizations. They are especially useful for
large, highly structured data sets mapped to not very large SOMs. (The size of
the SOM is a sensitive issue with high-dimensional data as the computational
burden increases non-linearly with input dimension. One wants to use a large
enough SOM to allow resolution of the many clusters potentially present in the
data set, but not exceedingly larger than that.) The mU-matrix is a higher res-
olution version of the U-matrix in that it displays the weight distances to all
neighbors separately, on the border of the grid cells including the diagonals, as
shown in Fig. 1. Combined with the representation of the receptive field sizes
(red intesities of the grid cells in Fig. 1, left), it conveys the same knowledge
as in [39]. While the sense of distance in the mU-matrix is not as expressive as
the “carved away” grid cells in [39] the mU-matrix leaves room for additional
information to be layered. Examples of that are [48] and [49] where known labels
of individual data objects were displayed in the grid cells thereby showing, in
addition to the density, the distribution of the known classes within receptive
fields. The mU-matrix is advantageous for the detection of very small clusters,
as for example, in Fig. 5, where many small clusters are represented by just a
few (even single) protoypes in the upper and lower left corners.

The CONN knowledge representation was first proposed in [50], developed
for visualization in [51], and is presented in detail in [34]. It is an extension of
the induced Delaunay triangulation, by assignment of weights to the edges of
the graph. An edge connecting two prototypes is weighted by the number of
data samples for which these prototypes are a BMU and second BMU pair. This
weighting is motivated by the unisotropic distribution of the data points within
the Voroni cells, as explained in Fig. 8 on the “Clown” data created by [52].

The edges of the weighted Delaunay graph can be described by

CONN(i, j) = |RFij | + |RFji| (5)

where RFij is that section of the receptive field of wi where wj is the second
BMU, and |RFij | is the number of data vectors in RFij . Obviously, |RFi| =
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Fig. 8. Left: Delaunay triangulation (thin lines) and induced Delaunay triangulation
(thick lines) for the 2-d “Clown” data set, using the SOM prototypes created by [52].
The “Clown” is indicated by the annotations in Fig. 9. We omit annotations here so
as not to obscure details. The small dots represent data points. Prototypes with non-
empty receptive fields are denoted by circles, prototypes with empty receptive fields are
shown by ‘x’. The induced Delaunay triangulation exposes discontinuities in the data
manifold, for example, the separations between the eyes, the nose and the mouth, while
the Delaunay triangulation does not highlight them. Right: Magnified detail from the
lower left part of the “Clown”. Data points in the Voronoi cells, superimposed in
pink, exhibit an unisotropic distribution, indicating variable local data densities in the
directions of the Voronoi neighbors.

∑N
j=1 |RFij | because RFi = ∪N

j=1RFij . CONN thus shows how the data is dis-
tributed within the receptive fields with respect to neighbor prototypes. This
provides a finer density distribution than other existing density representations
which show the distribution only on the receptive field level. CONN(i, j), the
connectivity strength, defines a similarity measure of two prototypes wi and wj .

Visualization of this weighted graph, CONNvis, is produced by connecting
prototypes with edges whose widths are proportional to their weights. The line
width gives a sense of the global importance of each connection because it allows
to see its strength in comparison to all other connections. A ranking of the
connectivity strengths of wi reveals the most-to-least dense regions local to wi

in data space. This is coded by line colors, red, blue, green, yellow and dark to
light gray levels, in descending order. The ranking gives the relative contribution
of each neighbor independent of the size of wi’s receptive field, thus the line colors
express the local importance of the connections. The line width and the line color
together produce a view of the connectedness of the manifold, on both global
and local scales. This is shown in Fig. 9 for the “Clown” data. We use this 2-
dimensional data set because it has an interesting cluster structure, and because
we are able to show the information represented by CONN both in data space
and on the SOM, thus we can illustrate how CONNvis shows data structure
on the SOM regardless of the data dimension. Compared to Fig. 8, left, all
connections remain, but now the connection strengths emphasize strongly and
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Fig. 9. Left: The connectivity matrix CONN (weighted Delaunay triangulation) shown
on the 2-d “Clown” data set, using the SOM prototypes created by [52]. Parts of the
“Clown” are explained by the annotations. O1 and O2 are outliers. The lack of a circle
symbol indicates an empty prototype. Line widths are proportional to the weight of
the edge, CONN(i, j), expressing its global importance among all connections. Colors
show the ranking, the local importance of the connections to the Voronoi neighbors.
This is redundant with the line widths but because we bin the line widths to help the
human eye distinguish grades of connection strengths, color coding the ranking restores
some of the information lost through the binning. The ranking is not symmetric, i.e.,
if the rank of wj for wi is r, and the rank of wi for wj is s, r is not necessarily equal to
s. The connections are drawn in the order of lowest to highest rank so a higher-ranking
connection will overlay a lower-ranking one. Details of subcluster structures are visibly
improved compared to Fig. 8. Right: The same CONN matrix draped over the SOM.

poorly connected (high and low density) regions. Clusters not obvious in Fig. 8
and not visible in the U-matrix of the Clown in [52] such as the three subclusters
in the left eye, clearly emerge here.

One significant merit of CONNvis is that it shows forward topology violations
in a weighted manner, giving a strong visual impression of the densest textures in
the data. CONNvis is somewhat limited in resolving many connections because
the weighting (line width) can obscure finer lines in a busy CONNvis. Com-
plementarily, TopoView can show many connections simultaneously, in selected
ranges of the connection strength. Alternative use of these two visualizations,
which render the same knowledge, can be quite powerful. Both CONNvis and
TopoView also show backward violations through unconnected SOM neighbors.
These indicate discontinuities in the manifold and thus immediately outline ma-
jor partitions in the data. The mU-matrix has capacity to indicate backward
topology violations through corridors of prototypes with empty receptive fields,
such as in Fig. 1, and through high fences but not as clearly as CONNvis or
TopoView, and it cannot show forward violations.

Cluster Extraction with CONNvis. Interactive clustering with the help of
CONNvis can be done by evaluation and pruning of the connections. Unconnected
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Fig. 10. Left: Illustration of interactive clustering with CONNvis. Strongly connected
groups of prototypes (coarse clusters) visually emerge through the lack of connections or
weak connections across some prototypes (annotated by black dots), easily recognized
by a human analyst. The connections of these straddling prototypes present one of
three situations for which the following rules are applied: 1: If a prototype has different
number of connections to each coarse cluster, cut the smaller set of connections; 2:
If a prototype has the same number of connections to each cluster but with different
connectivity strengths, cut the weaker set of connections; 3: If a prototype has the same
number of connections to each cluster, with the same strengths but different rankings,
cut the lower ranking ones. Right: The identified clusters.

or weakly connected prototypes in the unpruned CONN often already outline
“coarse” clusters, i.e., densely connected areas in the SOM which have consider-
ably fewer connections to one another. The weakly connected prototypes at the
boundaries of the coarse clusters are easily recognized by the human operator
(black dots in Fig. 10). The corresponding weak connections are then evaluated
as described in Fig. 10, to find and severe the “weakest link” for proper cluster
separation.

For complicated cases, where the number of data points is huge, and the
data are noisy, prototypes can have a large number of connections (neighbors
in data space), and also a relatively large number of connections across coarse
clusters. This creates a busy CONNvis, and requires considerable work when the
number of clusters in the data is large, but the procedure is exactly the same
as in simple cases. It has been used to produce some of the results shown here,
and elsewhere [33]. At this time of writing we are collecting experiences from
interactive clustering with CONNvis, which we expect to turn into an automatic
procedure ultimately.

4 Case Studies with Higly Structured Real Data Sets

4.1 Real Data Sets

The Ocean City Multispectral Image. was obtained by a Daedalus AADS-
1260 multispectral scanner. The image comprises 512 × 512 pixels with an
average spatial resolution of 1.5 m/pixel [31]. Each pixel is an 8-dimensional
feature vector (spectrum) of measured radiance values at the set of wavelengths
in the 0.38–1.1μm and 11–14 μm windows that remained after preprocessing [53].
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Ocean City, along the Maryland coast, consists of rows of closely spaced build-
ings separated by parallel roads and water canals. The spatial layout of different
surface units is shown in Fig. 11, left, through an earlier supervised class map
[53], which we consider a benchmark since it was verified through aerial pho-
tographs and field knowledge [31,54]. Ocean (blue, I) surrounds the city, ending
in small bays (medium blue, J, at the top center and bottom center of the scene)
which are surrounded by coastal marshlands (brown, P; ocher, Q). Shallow water
canals (turquoise, R) separate the double rows of houses, trending in roughly N-
S direction in the left of the scene and E-W direction in the right. Many houses
have private docks for boats (flesh-colored pink, T) and as a consequence, dirty
water at such locations (black, H). Paved roads (magenta, G) with reflective
paint in the center (light blue, E) and houses with various roof materials (A, B,
C, D, E, V) show as different classes. Typical vegetation types around buildings
are healthy lawn, trees and bushes (K, L), yellowish lawn (split-pea green, O)
and dry grass (orange, N).

The RIT Hyperspectral Image. briefly introduced in Sect. 3.1 and in Fig. 4
and 5, was synthetically generated through rigorous radiative transfer modelling
called the DIRSIG procedure at the Rochester Institute of Technology [55,56]

Fig. 11. Left: Supervised classification of the Ocean City image, mapping 24 known
cover types. Red, white and blue ovals show unclassified shapes of buildings and a
circle at the end of a road (the color of the background, bg). Right: Clusters iden-
tified interactively from CONNvis visualization of a SOM of the Ocean City image.
The agreement between the cluster map and supervised class map is very good. The
unclassified gray spots (in red, white and blue ovals on the left) are now filled exactly,
and with colors (a, c, j) different from the 24 colors of the supervised classes. These new
clusters only occur at the locations shown, indicating the discovery of rare roof types
and road materials, which were not used for the training of the supervised classifier.
The spectral signatures of the newly discovered clusters, as well as those of two new
subclusters (e, m) are distinct from the rest.
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(hence the name RIT). Owing to its simulated nature, this image has ground
truth for every pixel, allowing objective evaluation of analysis results on the
1-pixel scale. The realism of the RIT image is quite amazing, in both spec-
tral and spatial respect. Its characteristics are close to that of an AVIRIS im-
age. (AVIRIS is the Airborne Visible Near-Infrared Imaging Spectrometer of
NASA/JPL [57,58], to date the most established, extremely well calibrated and
understood airborne hyperspectral imager.) The scene comprises 400 x 400 pixels
in 210 image bands in the 0.38 to 2.4 μm visible-near-infrared spectral window.
The spatial resolution is 2 m/pixel. Realistic noise and illumination geometry
is part of the simulation. The visual appearance of a natural color composite
made from three selected image bands in the red, green, and blue wavelength
regions, Fig. 4, top, is virtually indistinguishable from an image of a real scene.
It contains over 70 different classes of surface materials, widely varying in their
statistical properties in 210-dimensional data space. The materials include veg-
etation (tree and grass species), about two dozens of various roof shingles, a
similar number of sidings and various paving and building materials (bricks of
different brands and colors, stained woods, vinyl and several types of painted
metals), and car paints. Many of these materials are pointed out in Fig. 4. This
image was clustered from mU-matrix visualization in [33], as shown in Fig. 4
and 5.

4.2 Clustering of the Ocean City Multispectral Image

We show clustering with CONNvis on an image of Ocean City, described in
Sect. 4.1. Fig. 11 compares an earlier benchmark supervised classification
(24 classes, [18]) with an SOM clustering obtained through CONNvis as de-
scribed in Fig. 10. Fig. 12 shows the extracted 27 clusters on the SOM and an
enlarged part of the CONNvis for details of cluster separations including sev-
eral small clusters. The two thematic maps in Fig. 11 have a strong similarity,
which suggests that the clustering found all supervised classes. In addition, it
discovered several new ones (a, c, j), which were not known at the time of the
supervised classification. From comparison with aerial photographs these appear
to be roofs (clusters “a” and “c” in red and blue ovals), and a different surface
paving (cluster “j”, in white oval) at the end of one road. These and other new
units (e, m, subclusters of supervised class M) are distinct enough spectrally to
justify separate clusters, as seen in Fig. 13. Another important improvement in
the CONNvis clustering is that it assigned labels to many more pixels than the
earlier supervised classification, which manifests in more green (vegetation) and
turquoise (ocean water) pixels. This is not only because of the discovery of new
material units (which are very small) but mostly because the CONNvis view
helps quite precise delineation of the cluster boundaries (as shown in Fig. 12).

Comparison with the popular ISODATA clustering is interesting. ISODATA
clustering, done in ENVI (ITT Industries, Inc., http://www.ittvis.com/index.
asp), was graciously provided by Prof. Bea Csathó of the University of Buf-
falo [54]. The ISODATA is a refined k-means clustering [59] that has the flex-
ibility to iteratively come up with an optimum number of clusters capped at
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a user specified maximum. Using the default parameters values in ENVI for a
maximum of five iterations, 10 clusters, shown in Fig. 14, left, were produced
when up to 10 cluster centers were allowed. The 18 clusters in Fig. 14, right,
resulted for a maximum of 20 (and also for 30) clusters. Experiments allowing
more iterations and more clusters to be merged produced no visible change. To
help visual comparison with the SOM maps, we tried to recolor the randomly
assigned ISODATA colors to those in the cluster map in Fig. 11, by assigning
to each ISODATA cluster the color of that SOM cluster which is most frequent
in the given ISODATA cluster. (This obviously has limits since clusters formed
by two different algorithms are not necessarily the same. For the same reason
the color wedges and labels of each cluster map are different.) For example, the
ISODATA cluster G was assigned the color of SOM cluster G (road, concrete)
since the road surfaces dominate that ISODATA cluster. This recoloring imme-
diately shows that in the 10-cluster case (Fig 14, left) this ISODATA cluster also
comprises several roof types (SOM clusters B, C, D, E, F, U and V) that are
spectrally distinct and resolved in the SOM map. ISODATA formed superclus-
ters of the 27 clusters in the SOM map. Similar supergroups can be seen for the
vegetation.

The 18-cluster case (Fig 14, right) is more complicated, but ISODATA still
formed recognizable superclusters. The correspondence between water bodies is
obvious. SOM clusters G (road) and B now have one-to-one match with the
same labels in the ISODATA map, but there is also confusion among clusters.
For example, B (orchid color, concrete roof), in the ISODATA map also includes
SOM clusters E (the divider paint and a roof type, light blue) and M, a bare lot
(yellow, at the top row of houses), in spite that E and M are distinct spectrally.

Fig. 12. Cluster extraction for the Ocean City data from CONNvis. Left: The ex-
tracted clusters in the SOM shown with the same color codes as in Fig. 11, right.
Right: CONNvis of the bottom left quarter of the SOM to illuminate the representa-
tion of cluster boundaries. The small clusters C, g, V and a are clearly separated.
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Fig. 13. Spectral statistics of the 27 SOM / CONNvis clusters of the Ocean City image
(Fig. 11, right). Mean spectra with standard deviations (vertical bars) and the envelope
of each cluster (shaded area) are displayed, vertically offset for viewing convenience.
The number at left of each curve indicates the DN value in the first channel. Most of
the large clusters (A, B, E, G, I, J, L, N, O, P, Q, R, S, T, j) are tight, suggesting clean
delineation of boundaries.

The spectral plots in Fig. 13 and 15 also give partial indication of this confu-
sion, relative to SOM clustering. It is obvious that in both cases the spectral
clusters have overlaps (as expected). There is, however, sufficient discriminating
information in the non-overlapping bands that the SOM / CONNvis clustering
was able to utilize. Most of the 27 CONNvis clusters are reasonably tight (their
envelope follows the mean, and standard deviations are small). 6–8 (about one
fourth) of the clusters appear to have outliers indicated by loose envelopes but
still small standard deviations. In comparison, half of the 18 ISODATA clusters
have loose envelopes. More interestingly, most of the large clusters (see listing
in the caption of Fig. 13) are tight in the CONNvis plots whereas most of the
large clusters (listed in the caption of Fig. 15) are loose in the ISODATA case.
This suggests that the boundary delineations by CONNvis, which are in agree-
ment with the benchmark classification, are cleaner. ISODATA forces spheri-
cal clusters, whose boundaries may significantly differ from the natural cluster
boundaries.

As shown in [53] for a 196-band hyperspectral image of another part of Ocean
City containing 30 verified clusters, with increased complexity of the data (when
also a larger number of clusters were allowed for ISODATA) ISODATA’s confu-
sion of the true clusters greatly increased compared to what we show here for
the multispectral case.
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Fig. 14. ISODATA clusterings of the Ocean City image. Left: 10 clusters resulting from
allowing 5 to 10 clusters. Examination of details reveals that the ISODATA clustering
represents quite clean cut superclusters of the SOM clusters, as discussed in the text.
Right: 18 clusters resulting from allowing 10 to 20 clusters. The ISODATA clusters still
form supergroups of the SOM clusters, but some confusion also occurs. The spectral
plots in Fig. 13 and 15 provide an insight to, and comparison of cluster separations.

4.3 Clusterings of the RIT Synthetic Hyperspectral Image

The 210-band RIT image, described in Sect. 4.1 and in Fig. 4, presents a case of
extreme variations among a large number of clusters. This diversity is reflected
in Fig. 5 where 39 extracted clusters are overlain on the SOM of this data set,
and the spatial distribution of the clusters in the image is also shown. The
number of data points in a cluster varies from 1 to nearly 40,000. Many clusters
(twenty some different roof types of single houses) have only 200–400 pixels,
and several makes of cars (clusters c, f, W, e, noticable mostly in the parking
lot in the center of the scene) are represented by less than 10 image pixels.
These very small clusters each occupy 1–2 prototypes at the upper and lower
left corners of the SOM, along with a few groups of 4–6 prototypes (for example
U (lilac), B (orchid), k (medium purple), or E (light blue)), which map larger
buildings, very apparent in the scene. The spectra of these cover types exhibit a
wide range of similarities. For example, the paving (cluster V, light green), and
the grass (K, pure green) are very different, indicated by the strong mU-matrix
fences; while a subset of the asphalt shingle roofs have quite subtle yet consistent
differences [33]. (As explained in Sect. 3.1 color limitations restricted us to show
only about half of the more than 70 clusters. We also used a common color code
for several vegetation types, dark blue clusters in the lower right of the SOM, to
make color variations more effective for the small clusters which are of greater
interest.)
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Fig. 15. Spectral statistics of the 18 ISODATA clusters of the Ocean City image
(Fig. 14, right). Mean spectra with standard deviations (vertical bars) and the envelope
of each cluster (shaded area) are displayed, vertically offset for viewing convenience.
The number at left of each curve indicates the DN value in the first channel. Most of
the large clusters (B, G, I, J, K, L, M, N, O. Q, R) appear loose.

The details of this clustering from a mU-matrix representation, including
descriptions of the surface materials (cover types), spectral characterization
showing similarities and differences, matches with the known true classes, and
demonstration of discovery of various cars (tiny clusters), are published in [33].
Since we can capture more details with either mU-matrix or CONNvis than
with ISODATA (as shown in Sect. 4.2 and in [53]), here we want to examine
the relative merits of mU-matrix and CONNvis representations for extraction of
clusters from this complicated data set.

We show two clusterings from two SOMs in Fig. 16, which were learned sepa-
rately but with the same parameters and both to 3M steps. Consequently they
are very similar with some minor differences, thus we can make comparative ob-
servations between these two clusterings. The top row of Fig. 16 presents the one
from mU-matrix visualization in [33], the bottom row shows one that resulted
from CONNvis clustering. (Owing to random assignments the same clusters have
different colors in the two maps, but the very similar layout helps relate them
visually. The cluster labels we use in this section refer to the key in the color
wedge in Fig. 5.) The mU-matrix fences are also superimposed. In addition,
empty prototypes are shown as medium grey cells (mostly at the boundaries
of major clusters). Empty prototypes can be overlain by cluster labels (colors)
to produce a homogeneous look of a cluster such as in the case of most of the
large clusters here. We removed the color label of cluster V (light green in the top
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577 Violating Connections 1 Inter-cluster Violating Connection

600 Violating Connections 25 Inter-cluster Violating Connections

Fig. 16. Comparison of two clusterings of the RIT data. Top row: clusters extracted
from mU-matrix knowledge, and color coded as in Fig. 5. Bottom row: clusters cap-
tured from CONNvis. Color coding of clusters is different from the top row because of
random label assignments. The mU-matrix fences are superimposed on both. Medium
grey cells are empty prototypes, whereas black cells are prototypes left unclustered for
reasons of color limitation. Left: TopoView visualization (yellow lines) of all violating
connections are overlain. Right: inter-cluster violating connections are shown.

row) and from the lower part of the large cluster K (pure green) in the CONNvis
clustering (bottom row) to show the underlying scattered empty prototypes. We
overlaid, on top of the extracted clusters, the TopoView showing all violating
connections as yellow lines on the left, and inter-cluster violating connections
on the right (i.e., violating connections which have two ends in the same clus-
ter, or either end is an empty or unlabelled prototype were omitted). TopoView
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confirms that the two SOMs are very similarly organized. One significant detail
is that in both maps there are few inter-cluster violating connections going into
or out of the small clusters in the upper and lower left corners.

The first impression is that the two clusterings are very similar. The most
striking difference involves the large clusters K (pure green, grass) and T (flesh
color, grass/dirt mix) at the center and right of the SOM at top, which were
extracted as one cluster (largest, rust color area) in the SOM at the bottom.
At top, a corridor of empty protoypes is clearly visible between the clusters
K and T. In the mU-matrix representation, this corridor is accompanied by a
double fence of consistent height, indicating a uniform difference between K and
T along this corridor. (The absolute height of this fence is lower than that of the
other, more prominent ones in this figure, but it can be seen unmistakably by
interactive setting of the visualization range for fence values.) Similar corridor
exists under the large rust color cluster in the bottom. However, many other
empty prototypes are also present in both SOMs under these clusters, mostly in
the checkered layout as seen at the unclustered part of the bottom SOM (or in
Fig. 7). In the CONNvis these are all unconnected (no connection goes outside
of the manifold, not shown here), therefore the empty cells could outline cluster
boundaries the same way as the unconnected prototypes do in Fig. 12 for the
Ocean City data. The difference is that in the case of Ocean City a corridor was
cut by severing similarly weak connections in a contiguous area of non-empty
prototypes, whereas here there are no connections to evaluate, the discontinuities
have equal importance and therefore the same corridor does not emerge from the
checkered pattern. As a result CONNvis sees these two units as a field of many
small clusters. Since CONNvis lacks the distance information from which to
notice that some of the discontinuities caused by these small clusters are “more
discontinuous” than others, one cannot infer that there are two groups of small
clusters in this field between which the (distance based) spectral dissimilarity
is much greater than the dissimilarities within each of these two groups. The
same scattered empty prototypes may be the cause of some small clusters not
being apparent in the CONNvis, for example the tennis court, which is mapped
to one prototype in the upper SOM (O, split pea color), between the light green
cluster V and cluster K; or the running paths of the baseball field (cluster Y,
rust color, wedged into cluster T in the top SOM). Under these circumstances
CONNvis may not have the tool to distinguish those single-prototype clusters
that are usually obvious from their “fenced off” appearence in a mU-matrix.

It is interesting to note that the relatively large cluster “g” (purple, at center
left of the top SOM) is the most disorganized according to TopoView: it has the
most violating connections. The reason is that this cluster is extremely noisy. In
contrast, the largest clusters seem well organized with only spurious topology
violations. However, the boundaries of all clusters including “g” were cleanly
extracted, which is indicated by the lack of inter-cluster violations at top right.
These connections were not thresholded by strength, the few showing in the
bottom right SOM are mostly weak and unimportant.
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TopoView reveals another important difference between the two clusterings:
the splitting of the large cluster “g” into two (turqoise and red) by CONNvis.
These two clusters are much more similar to one another in their spectral statis-
tics (mean, standard deviation, not shown here), i.e., by distance based similar-
ity, than the clusters K and T discussed above. Yet, CONNvis separates them
by connectivity measure. In contrast to the clusters K and L, here the SOM
has a contiguous field of non-empty prototypes, thus the relative connectivity
strengths can be evaluated and cuts made as prescribed for CONNvis cluster
extraction (Fig. 10). These two subclusters were not visible from the distance
based (mU-matrix) representation, where the entire parent clsuter “g” appears
to have a fairly uniform mesh of high fences.

Concluding from these discussions, the mU-matrix can be difficult to interpret
where prototype distances may be very similar but relatively large within clus-
ters with large variance. In contrast, CONNvis can be blind to distance based
similarities. This susggests that alternating or using these two representations
together would further increase the effectiveness of cluster extraction.

5 Conclusions and Outlook

We concentrate on issues related to cluster identification in complicated data
structures with SOMs, including the assessment and monitoring of the topology
preservation of the mapping. We distinguish a level of order in the SOM that is
acceptable for cluster extraction. This can be achieved much earlier in the learn-
ing than finely tuned topography matching, but not as early as a sorted state. A
sorted state, the mapping of known true classes in the SOM without scrambling
does not guarantee successful detection of the same entities, because the pro-
totypes may still not be molded sufficiently for a mU-matrix or other distance
based similarity representations to align with the natural cluster boundaries.
(Fig. 3, top center, is an example.) Our tool TopoView, presented in Sect. 3.1
can serve for the assessment of topology preservation on this level in relation
to mU-matrix knowledge, as well as a verification tool for extracted clusters.
The CONNvis SOM visualization, also a recent development, and our long time
tool, the modified U-matrix, help achieve very detailed extraction of many rele-
vant clusters, as shown in Sect. 4.2 and 4.3, representing dramatic improvement
over some existing popular clustering capabilities such as ISODATA, for highly
structured manifolds.

However, we point out that our tools could be further improved by combining
the distance based knowledge of the mU-matrix and the topology based knowl-
edge of the CONNvis. A natural extension will be to combine these two into one
similarity measure, based on our experiences.

We do not discuss some aspects which could significantly contribute to SOM
clustering but have not been much researched. Map magnification is one. This
interesting subject is explored in [18] for highly structured data. Methods for
verification of clusters (extracted by any algorithm) against the natural parti-
tions in the data, are generally lacking for complicated data. Existing cluster



Learning Highly Structured Manifolds: Harnessing the Power of SOMs 165

validity indices, which tend to favor particular types of data distributions (such
as spherical clusters) fail to give accurate evaluation of the clustering quality for
highly structured data. This is discussed in [60] and a new validity index, based
on the same connectivity (CONN) matrix as used in CONNvis, is offered.

A valuable aspect of CONNvis SOM clustering is that it seems amenable to
automation. Since the binning of connectivity stregths (line widths) in Fig. 9 is
generated with thresholds derived automatically from the data characteristics
as defined in [34], these thresholds can provide meaningful guidance for finding
thinly textured parts of the manifold and cutting connections to achieve cluster
separation. For this to work, however, the designation of coarse clusters by the
human operator (as in Fig. 10) will need to be replaced by an automated con-
sideration of the relationships between local and global connectedness at each
prototype. While this is non-trivial we think it is doable and we are gather-
ing insights from interactive CONNvis clustering for how to best implement
this. Successful automation, with the same level of sophistication as shown here
for interactive clustering, would significantly contribute to the solution of large
problems such as on-board autonomous science, detection of small targets from
unmanned vehicles in war zones, or precise mining of large security data bases.

Acknowledgments

We thank Drs. Juha Vesanto and Esa Alhoniemi for sharing their “Clown” data
set and the SOM weights from their processing in [52]; Prof. John Kerekes,
Rochester Intstitute of Technology, for providing the synthetic hyperspectral
image used for this work, and Prof. Maj. Michael Mendenhall of the Air Force
Institute of Technology, United States Air Force, for his help with preprocessing
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