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Abstract—Evaluation of how well the extracted clusters fit the4
true partitions of a data set is one of the fundamental chal-5
lenges in unsupervised clustering because the data structure and6
the number of clusters are unknown a priori. Cluster validity7
indices are commonly used to select the best partitioning from8
different clustering results; however, they are often inadequate9
unless clusters are well separated or have parametrical shapes.10
Prototype-based clustering (finding of clusters by grouping the11
prototypes obtained by vector quantization of the data), which12
is becoming increasingly important for its effectiveness in the13
analysis of large high-dimensional data sets, adds another dimen-14
sion to this challenge. For validity assessment of prototype-based15
clusterings, previously proposed indexes—mostly devised for the16
evaluation of point-based clusterings—usually perform poorly.17
The poor performance is made worse when the validity indexes18
are applied to large data sets with complicated cluster structure.19
In this paper, we propose a new index, Conn_Index, which can20
be applied to data sets with a wide variety of clusters of different21
shapes, sizes, densities, or overlaps. We construct Conn_Index22
based on inter- and intra-cluster connectivities of prototypes.23
Connectivities are defined through a “connectivity matrix”, which24
is a weighted Delaunay graph where the weights indicate the local25
data distribution. Experiments on synthetic and real data indicate26
that Conn_Index outperforms existing validity indices, used in27
this paper, for the evaluation of prototype-based clustering results.28

Index Terms—Cluster validity index, complex data structure,29
connectivity, Conn_Index, prototype-based clustering.30

I. INTRODUCTION31

UNSUPERVISED clustering aims to extract the natural32

partitions in a data set without a priori class information.33

It groups the data samples into subsets so that samples within a34

subset are more similar to each other than to samples in other35

subsets. Any given clustering method can produce a different36

partitioning depending on its parameters and criteria. This leads37

to one of the main challenges in clustering—to determine,38

without auxiliary information, how well the obtained clusters fit39

the natural partitions of the data set. The common approach for40

this evaluation is to use validity indices. A meaningful validity41
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index is of great importance; however, an index that accurately 42

evaluates clusterings of complicated data sets (data sets with 43

many clusters of varying statistics) has not been developed yet. 44

The objective of this paper is to propose such an index for 45

prototype-based clustering of large data sets. 46

Existing cluster validity indices, discussed in Section II, 47

work well for data with simple structures or for scenarios 48

where the user is seeking well-behaved superclusters that can 49

be readily derived from a simple and scalable algorithm, such 50

as k-means, instead of extracting detailed structure of complex 51

clusters. Two reasons for seeking satisfactory performance on 52

this level are difficulty to search for more complex structures 53

due to many attributes and noise and the difficulty to interpret 54

those complex structures even if they are extracted. However, 55

many real-world applications are increasingly dependent on 56

finding complex structures even if interpretation may be, at 57

least initially, challenging. Prototype-based clusterings, among 58

them self-organizing maps (SOM) in particular, are successful 59

for finding detailed structure, and are gaining importance for 60

large data sets that are collected to characterize many real- 61

world problems and to enable the discovery of new knowledge. 62

Currently, evaluation of complex clusterings can be done only 63

through expert knowledge and ground truth. This necessitates 64

sophisticated indexes for validity assessment of complex cluster 65

structures, and motivates the exploitation of specific aspects of 66

prototype-based clustering. 67

We introduce a validity index Conn_Index that can evaluate 68

prototype-based clusterings of data sets with a wide variety of 69

cluster types. Conn_Index takes advantage of the knowledge 70

encapsulated in the prototypes of a quantized data set and uses 71

new measures for separation between clusters and scatter within 72

clusters based on data topology on the prototype level. The data 73

topology is represented by the “connectivity matrix” CONN 74

introduced in [1] as a weighted version of the Delaunay graph of 75

the prototypes. The weights (the elements of CONN ) express 76

the data density local to the prototypes. This will be further 77

explained in Section III. 78

To evaluate the effectiveness of Conn_Index, we use two 79

synthetic data sets with clusters of different shapes, sizes, 80

dimensionalities, and densities. We also use four real data sets, 81

the Breast Cancer Wisconsin (9-D), Iris (4-D), Wine (13-D) 82

data from the UCI repository [2], and Ocean City, a remote 83

sensing spectral image. We obtain prototypes with SOMs and 84

cluster these prototypes with various methods—k-means and 85

two interactive clusterings. We compare the performance of 86

Conn_Index to the performances of commonly used indices 87

by evaluation of which clustering results are favored as the best 88

by each of the indices used in this paper. The outline of the 89

paper is as follows: Section II gives a background information 90

on cluster validity indices and common approaches for index 91
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construction, Section III briefly reviews the prototype-based92

clustering, describes the “connectivity matrix”, and introduces93

Conn_Index. Sections IV and V give examples for the per-94

formance of Conn_Index on synthetic data sets and on the95

real data sets, respectively. In addition, Section V shows that96

Conn_Index can also provide a meaningful measure when97

different prototypes may be left unclustered in different clus-98

terings. Section VI concludes the paper. An Appendix pro-99

vides estimates on computational complexities of the indexes100

compared.101

II. BACKGROUND ON CLUSTER VALIDITY INDICES102

A cluster validity index can be constructed by using one103

of the following three criteria: 1) external crtieria; internal104

criteria; and 3) relative criteria [3]. External criteria are used to105

compare clustering results to a pre-specified structure. Internal106

criteria are for comparison to a proximity matrix of the data107

samples. The common approach is to use relative criteria,108

which is to compare the validity of several clustering results109

based on a combined measure of between-cluster separation110

and within-cluster scatter. There are many different methods111

to determine the validity of crisp clustering (where each data112

sample belongs to only one cluster) [4]–[11] or that of fuzzy113

clustering (where each data sample has a degree of membership114

in several clusters) [12]–[16]. Some validity indices are specific115

to the clustering method. For example, the indices in [17], [18]116

are proposed for support vector clustering whereas the indices117

proposed in [16] are for generalized fuzzy c-means clustering.118

In this paper, we focus on crisp clustering algorithms and we119

refer to Kim et al.[14] for a detailed analysis of the cluster120

validity indices for fuzzy clustering, where an index (based on121

the data distribution at overlapping regions) is also proposed.122

For crisp clustering, the Davies–Bouldin index (DBI) [4]123

and the generalized Dunn Index (GDI) [5] are two commonly124

used indices. Two other indices are the Silhouette width cri-125

terion [19] (selected best in a recent study [20]), and the126

Calinski–Harabasz variance ratio criterion (CH-VRC) [21] (se-127

lected best among 30 indices in [9]). A recent index shown to128

be useful is PBM [10]. All these indices provide meaningful129

measures for well-separated or parametrical clusters but they130

may fail for complicated data structures with clusters of differ-131

ent shapes or sizes or with overlaps. This is because available132

distance measures for separation between clusters and scatter133

within clusters may be ineffective for complicated data sets due134

to the fact that the cluster boundaries are usually defined not135

only by the distances between the data samples but also by how136

the samples are distributed within the clusters. Several indices137

proposed in recent years integrate the data distribution and the138

distance metrics [6], [14], [22]. One of these, CDbw (com-139

posite density between and within clusters) [6] is promising140

for clusters of different shapes and with homogeneous density141

distribution. Brief explanations of these indices are given below142

along with the discussion on their constructions.143

A. Construction of Cluster Validity Indices144

The separation and scatter measures, used in the index con-145

struction, are often computed from various distances, some146

of which are illustrated in Fig. 1. A general approach is to147

Fig. 1. Several metrics for within-cluster (dw_cent, dw_max, dw_nn_max)
and between-cluster (db_cent, db_comp, db_slink) distances. dw_cent is the
average distance to the cluster centroid, dw_max is the maximum distance
between the points within the cluster, dw_nn_max is the maximum of the near-
est neighbor distances. db_cent is the distance between the cluster centroids,
db_comp(db_slink) is the maximum (minimum) distance between the points
across the clusters. Among them, db_cent and dw_cent are the commonly used
metrics.

use centroid-based distance metrics (db_cent and dw_cent) for 148

separation and scatter [4], [9], [10], [12], [13], [15], which 149

favor (hyper)spherical or (hyper)ellipsoidal clusters. The most 150

reliable results for validity indices are obtained when all data 151

samples in the clusters are considered in the computation of the 152

distances for index construction [5]. In the following, N will 153

denote the number of data vectors in a data set, K will denote 154

the number of clusters in the clustering, and, where applicable, 155

P will denote the number of prototypes that result from a vector 156

quantization (SOM or other) of a data set. 157

In addition to the choice of distance metrics for separation 158

and scatter measures, how the index is constructed from these 159

measures is also important. One way to construct the index is to 160

calculate the ratio between the total or maximum within-cluster 161

scatter and minimum separation between clusters such as in the 162

Dunn index [7], or in the GDI [5]. For example, the GDI is 163

calculated as follows: 164

GDI = min
m

{
min

n

{
db_i(Cm, Cn)

maxk {dw_j(Ck)}

}}
(1)

where Cm, Cn, and Ck are clusters; db_i is a between-cluster 165

separation measure and dw_j is a within-cluster scatter measure 166

with i, j indicating choices of distances. The choices for db_i 167

and dw_j can be metrics from Fig. 1 or any other that the user 168

selects. The index constructed this way heavily depends on the 169

cluster with the maximum scatter and on the pair of clusters 170

with the minimum separation. If there is a large cluster or there 171

are two small clusters which are very close to each other, the 172

index will be dominated by their scatter or separation and will 173

be insensitive to the separation or scatter of other clusters, thus 174

producing an incorrect measure. 175

Another way to construct the index is to consider the scatter 176

and separation measures of all clusters. A good example is the 177

DBI, which is computed by averaging the ratio of the within- 178

cluster scatter to the between-cluster separation over all clus- 179

ters. This type of construction is useful when the separation and 180

the scatter measures together provide a meaningful geometric 181

interpretation of the cluster structure. The DBI is calculated 182

with the distances between cluster centroids (db_cent) and aver- 183

age distances of data samples to their cluster centroid (dw_cent) 184
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(from Fig. 1) as follows:185

DBI =
1
K

K∑
k=1

max
m

(
dw_cent(Ck) + dw_cent(Cm)

db_cent(Ck, Cm)

)
. (2)

With this construction, the DBI provides correct interpretation186

for data sets with hyperspherical clusters or with hyperellip-187

soidal clusters if Mahalanobis distance is chosen instead of188

Euclidean. A similar approach has been used in the Silhouette189

width criterion [19] where the average distance of a data sample190

i to the samples within its own cluster (davg_i) is considered191

along with the minimum distance of i to samples in other192

clusters (db_i). The criterion is obtained by averaging over all193

N samples as follows:194

Silhouette =
1
N

N∑
i=1

db_i − davg_i

max(db_i, davg_i)
. (3)

Another example for this type of index construction is the195

variance ratio criterion of Calinski and Harabasz [21] (CH-196

VRC). This criterion is constructed as197

CHV RC =
BGSS/(K − 1)

WGSS/(N − K)
(4)

where BGSS is between-group sum of squares [sum of squared198

distances of cluster centroids to the geometric center (or cen-199

troid) of all data samples], WGSS is within-group sum of200

squares (sum of squared distances between each data sample201

and its respective cluster centroid). A recent index PBM [10]202

also uses a similar approach and is constructed by using three203

components204

PBM =
(

1
K

E1

EK
DK

)2

. (5)

E1 is the average distance to the geometric center of all sam-205

ples; EK is the sum of within-cluster distances (distances of206

data samples to their respective cluster centroid); and DK is the207

maximum distance between the centers of the K clusters.208

Instead of using cluster centroids, the CDbw index [6] de-209

fines the separation and the scatter based on distances between210

multiple cluster prototypes and data distribution around them,211

as follows:212

CDbw = Intra_dens × Sep (6)

where Intra_dens, the scatter, is the density within one stan-213

dard deviation around the prototypes, averaged over all clusters;214

and Sep, the separation, is the sum of the distances (db_slink)215

between all pairs of clusters divided by the sum of densities216

at the cluster boundaries (number of data samples around the217

midpoints of the prototypes that form single linkage between218

clusters). CDbw correctly evaluates clusterings where clusters219

have homogeneous distribution. However, CDbw fails to repre-220

sent true inter- and intra-cluster densities when the clusters have221

inhomogeneous density distribution which is often the case for222

real data.223

Considering the scatter and the separation of all samples224

or clusters (as in the case of Silhouette, CH-VRC, DBI and225

CDbw) can provide more reliable results than using the scatter226

and the separation of selected clusters, because the delineation 227

of cluster boundaries is more dependent on the relationship 228

between neighbor clusters than on the relationship between, for 229

example, the closest pair of clusters. Therefore, the index we 230

propose below utilizes the scatter and separation of all clusters, 231

with new definitions of the scatter and separation based on the 232

local data distribution. 233

III. Conn_Index: A VALIDITY INDEX BASED ON 234

PROTOTYPE LEVEL DATA TOPOLOGY 235

The proposed Conn_Index is tailored to exploit the in- 236

formation produced by prototype-based clustering methods, 237

which makes Conn_Index suitable only for those methods. 238

Therefore, we first explain prototype-based clustering, discuss 239

how the data topology on the prototype level can help validity 240

assessment, and then define the new index. 241

A. Prototype-Based Clustering for Large Data Sets 242

Prototype-based clustering aims to find a number of repre- 243

sentative data vectors or prototypes in the data space which 244

faithfully represent the large number of data samples. This 245

is usually done through an iterative minimization of a cost 246

function based on the deviation of the data samples from their 247

closest prototypes, i.e., their best matching units (BMUs). For 248

clustering of large data sets with complex cluster structures, 249

prototype-based clustering is often preferred. Compared to 250

clustering data samples, prototype-based clustering has the 251

advantage that it is easier to deal with a smaller number of 252

prototypes than with a large number of data samples (for 253

reasons of lower computational complexity and less memory 254

demand), and it is robust to noise and outliers. The use of 255

single prototypes to represent a cluster, such as in k-means and 256

fuzzy c-means, is often inadequate to describe complex cluster 257

structures with arbitrary shapes and sizes. Therefore, multiple 258

prototypes per cluster are employed in recent studies based on 259

SOMs [23], [24], neural gas [25], and CURE [26]. In these 260

methods, the number of prototypes is often much larger than 261

the number of expected clusters, yet still much smaller than 262

the number of the data samples. After obtaining the prototypes, 263

they are grouped according to their similarities and data clusters 264

are extracted by assigning each data point to the cluster of 265

its prototype. In particular, SOMs have been successful for 266

extraction of detailed structure [1], [27] because SOMs distrib- 267

ute prototypes in the data space through a topology-preserving 268

mapping in an iterative learning process, which results in as 269

faithful representation of the data distribution as possible with 270

the given number of prototypes. The SOM neural units are, at 271

the same time, indexed in a (usually 2-D) rigid lattice according 272

to their similarity relations; therefore, similar prototypes map 273

close to one another in the lattice and vice versa, and prototypes 274

(weight vectors) of neural units that are neighbors in the SOM 275

lattice represent similar data vectors. Therefore, the visualiza- 276

tion and examination of the prototype relationships in the SOM 277

lattice facilitates the extraction of clusters. 278

We briefly summarize here the SOM learning rule for com- 279

pleteness, details can be found in many text books. Let M be 280

a data set, and S be the fixed SOM lattice with P neural units. 281
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For a given data sample v ∈ M , the BMU wi is found by282

‖v − wi‖ ≤ ‖v − wj‖ ∀ j ∈ S (7)

and then the BMU wi and its lattice neighbors (determined283

by a (often Gaussian) neighborhood function hi,j(t), centered284

around the BMU wi) are updated according to285

wj(t + 1) = wj(t) + α(t)hi,j(t) (v − wj(t)) (8)

where α(t) is a learning parameter. Both α(t) and hi,j(t)286

should decrease with time t. The weight vectors of the neural287

units become the vector quantization prototypes of the data set,288

ordered on a rigid lattice.289

The data space can be partitioned with respect to the pro-290

totypes (obtained by any vector quantization method, SOM291

included), resulting in a Voronoi tessellation where each pro-292

totype is the geometric center or centroid of its Voronoi polyhe-293

dron. The Voronoi polyhedron contains the data samples which294

are closest to its centroid, thus it corresponds to the receptive295

field (RF ) of the respective prototype. A Voronoi polyhedron296

containing no data samples indicates a discontinuity in the data297

space (possible separation between clusters).298

B. Topology Representation of Quantized Data by299

Connectivity Matrix (CONN)300

Each quantization prototype is the BMU for the samples301

in its receptive field (RF , Voronoi polyhedron). In general,302

topology can be expressed by the Delaunay graph (the dual of303

the Voronoi tessellation) which is obtained by connecting the304

centers of the neighboring Voronoi polyhedra (polyhedra that305

share an edge). In order to better characterize and summarize306

the data topology on the prototype level, we introduced the307

cumulative adjacency matrix, CADJ , and the connectivity308

matrix, CONN , in [1]. CADJ and CONN describe, as309

we formally explain below, the topology of the quantization310

prototypes but not only their adjacency relations but also their311

“attractions” to one another, as defined by the local densities312

of the manifold. They are obtained by assigning weights to313

edges of the induced Delaunay graph (which is the intersection314

of the Delaunay graph with the data manifold) that provides315

the binary adjacency relations of the prototypes. As proposed316

by Martinetz and Schulten [25], when prototypes are dense317

enough in the data set, the induced Delaunay graph can be318

produced by connecting two prototypes pi and pj if at least319

one data sample selects them as a BMU and second BMU pair,320

i.e., if they are the two closest prototypes to a data sample.321

(When a data sample is equidistant from multiple prototypes,322

which is a very rare case, it is assigned to the one with the323

lowest index i among them.) Analogously, a weighted induced324

Delaunay graph can be produced by assigning the number of325

data samples for which pi and pj are the BMU and the second326

BMU pair, as the weight to the edge in the Delaunay graph327

that connects pi and pj . These weights are the elements of the328

CONN matrix. The weight of the edge between pi and pj is329

CONN(i, j). Obviously, CONN is a symmetric matrix. The330

cumulative adjacency CADJ is nonsymmetric. CADJ(i, j) is331

the number of data samples for which pi is the BMU and pj is332

the second BMU. CADJ(i, j) therefore describes the density333

distribution within the receptive field RFi of pi with respect334

to its neighbors indexed by j. CONN(i, j), which is the sum 335

of CADJ(i, j) and CADJ(j, i), is a similarity measure for 336

prototypes based on local densities. Both CADJ and CONN are 337

P × P matrices indicating similarities between P prototypes. 338

Fig. 2 shows a visualized example of the CONN matrix 339

for a 2-D data set called “Clown”, created by Vesanto and 340

Alhoniemi [28] by using different parametric models for each 341

cluster and adding noise. This data set has clusters of various 342

shapes and sizes: spherical (right eye), elliptical (nose), U- 343

shaped (mouth), three subclusters in the left eye, a sparse 344

body, and outliers. The prototypes were obtained by a 19 × 345

17 SOM, also by [28]. CONN makes high-density regions 346

and no-data regions (disconnected parts of the data set) visible. 347

As explained in Fig. 2(b), when CONN is visualized by 348

indicating the connection weights with proportional line width 349

for edges in the Delaunay graph, separations between clusters 350

may become apparent. This outlines the boundaries of some 351

clusters even though the distances between the prototypes at the 352

cluster boundaries may be smaller than the distances between 353

the prototypes within clusters. The illustration in Fig. 2(b) 354

further suggests that CONN can help determine the validity of 355

clustering for prototype based clustering algorithms. We show 356

this in the next sections. 357

C. Definition of Conn_Index 358

We define Conn_Index with the help of two quantities: the 359

intra-cluster connectivity (Intra_Conn) as the within-cluster 360

scatter and the complement of the inter-cluster connectivity 361

(1 − Inter_Conn) as the between-cluster separation measure. 362

First, we introduce these quantities and then we define our 363

new index. Assume K clusters and P prototypes pi (i = 364

1, 2, . . . , P ) in a data set (N > P > K), and let Ck and Cl 365

refer to two different clusters (1 ≤ k, l ≤ K). 366

Definition 1: The intra-cluster connectivity Intra_Conn is 367

the average of intra-cluster connectivities Intra_Conn(Ck) 368

over all clusters 369

Intra_Conn =
K∑
k

Intra_Conn(Ck)/K (9)

where Intra_Conn(Ck) is the ratio of the number of those 370

data samples in Ck which have both their BMU and second 371

BMU in Ck to the total number of data samples in Ck 372

Intra_Conn(Ck) =

∑P
i,j {CADJ(i, j) : pi, pj ∈ Ck}∑P

i,j {CADJ(i, j) : pi ∈ Ck}
.

(10)

The denominator of (10) can be replaced by the sum of 373

receptive field sizes of prototypes pi ∈ Ck because, obviously, 374

the receptive field size of pi is RFi =
∑P

j {CADJ(i, j)}. 375

Intra_Conn is computed from all data samples in Ck. By 376

definition, Intra_Conn(Ck) ∈ [0, 1] where a greater value 377

means more connectivity within the cluster, i.e., Ck is more 378

self-contained. If the second BMUs of all data samples in Ck 379

are also in Ck (there is no connection to any other cluster) 380

Intra_Conn(Ck) = 1. 381

To define the inter-cluster connectivity 382

Inter_Conn(Ck, Cl) between clusters Ck and Cl, we 383
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Fig. 2. (a) 2-D data set “Clown” (a mixture of several parametrical distributions) and the SOM prototypes created by [28]. Small gray diamonds indicate data
samples. Notice that there are several outliers at the far upper left which are somewhat hard to see. The black dots are prototypes with non-empty receptive fields,
while × are prototypes with empty receptive fields. The data set has different types of clusters, such as spherical (right eye), elliptical (nose), U-shaped (mouth),
sparse (body), three small elliptical subclusters (left eye). Variances within clusters and inter-cluster distances are different but the clusters are well separated
except for the mouth and nose. (b) Topology representation by connectivity matrix CONN . An edge between two prototypes indicates adjacency of their Voronoi
cells. The width of a line is proportional to the number of data samples for which the prototypes connected by this line are a BMU and the second BMU pair. The
separations between clusters are indicated by unconnected prototypes.

consider the prototypes at the cluster boundaries since those384

prototypes are the ones which often facilitate the separation385

between clusters. A prototype at a cluster boundary is the one386

which may have connections to clusters other than its own.387

Definition 2: The inter-cluster connectivity of clusters Ck388

and Cl Inter_Conn(Ck, Cl) is the ratio of the sum of the389

connectivity strengths between Ck and ClConn(Ck, Cl) to the390

sum of the connectivity strengths of those prototypes in Ck391

which have at least one connection to a prototype in Cl392

Inter_Conn(Ck, Cl)

=

{
0, if Pk,l = ∅

Conn(Ck,Cl)∑P

i,j
{CONN(i,j):pi∈Pk,l}

, if Pk,l �= ∅

with Conn(Ck, Cl)

=
P∑
i,j

{CONN(i, j) : pi ∈ Ck, pj ∈ Cl}

and Pk,l

= {pi : pi ∈ Ck,∃ pj ∈ Cl : CADJ(i, j) > 0} . (11)

Inter_Conn(Ck, Cl) shows how similar the prototypes at393

the boundary of Ck are to the ones at the boundary of Cl in394

comparison to the similarity of the prototypes within Ck. If395

Ck and Cl are completely separated in the sense that there396

are no cross-connections Inter_Conn(Ck, Cl) = 0. A greater397

Inter_Conn(Ck, Cl) is an indication of a greater degree of398

similarity between Ck and Cl. Inter_Conn(Ck, Cl) > 0.5399

indicates that those prototypes in Ck which have connections400

to Cl are more similar to the prototypes in Cl than to the401

prototypes in Ck. This means they should either be in Cl or402

Ck and Cl should be combined. The cluster most similar to 403

Ck is the one for which Inter_Conn(Ck, Cl) is maximum 404

(l �= k, 1 ≤ l ≤ K). 405

Definition 3: The inter-cluster connectivity (average similar- 406

ity) Inter_Conn is the average of the inter-cluster connectivi- 407

ties of all clusters Inter_Conn(Ck) 408

Inter_Conn =
K∑
k

Inter_Conn(Ck)/K (12)

where 409

Inter_Conn(Ck) = max
l,l≤K

Inter_Conn(Ck, Cl). (13)

Similarly to Intra_Conn, Inter_Conn ∈ [0, 1] by de- 410

finition. Since Inter_Conn is average similarity, 1 − 411

Inter_Conn becomes a dissimilarity (separation) measure. We 412

define our new validity index, the Conn_Index, as 413

Conn_Index = Intra_Conn × (1 − Inter_Conn). (14)

Conn_Index ∈ [0, 1] increases with better clustering and 414

has a maximum of one when the clusters are separated. De- 415

tails of the calculation of Conn_Index and its components 416

Intra_Conn and Inter_Conn were shown through an exam- 417

ple in [29]. 418

Intra_Conn heavily depends on the sizes of the clusters. 419

When clusters have many data samples, the total strength of 420

within-cluster connections will be relatively strong compared 421

to the total strength of between-cluster connections, resulting in 422

a high Intra_Conn value. As a result, Intra_Conn will de- 423

crease with increasing number of clusters unless the clusters are 424

split along natural cluster boundaries. Contrarily, Inter_Conn 425
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depends only on the connections of prototypes at the cluster426

boundaries, hence it is independent of the sizes of clusters.427

IV. PERFORMANCE OF Conn_Index ON SYNTHETIC DATA428

When comparing indices, we want to see whether they favor429

the true clusters as the best partitioning. True (or natural)430

clusters are those which satisfy the criterion “points in a cluster431

are closer to a point in the same cluster than to any point in432

other clusters”. Accordingly, “true labels” describe known true433

clusters in this discussion. We compare the indices computed434

for the clusterings obtained by different clustering methods to435

the indices computed for the known true labeling (true clusters).436

Since different indices have different ranges, some are bounded,437

some are not, and their nonlinearities are also different, it is438

not quite straightforward to compare their performance. For439

example, a better cluster quality is indicated by a smaller DBI440

while it is indicated by a greater value for other indices in this441

study. Theoretically, DBI, GDI, CH-VRC, PBM, and CDbw442

may have values in [0,∞) while Silhouette is in [−1, 1] and443

Conn_Index ∈ [0, 1]. However, DBI and GDI usually have a444

small range of values (in our experience with different data sets445

and different distance metrics, their maximum value did not446

exceed 10), whereas PBM and CDbw span a much larger range447

of values depending on the number of data samples and their448

distribution within clusters (for example, CDbw can be more449

than 100). Therefore, one meaningful approach is to compare450

the values of the same index obtained for different partitionings451

of the same data and determine the validity rank of clusterings452

according to this index and then to compare the validity ranks453

across different indices.454

For performance evaluation, we compare Conn_Index to455

the indices mentioned above. We use GDI with centroid linkage456

(db_cent in Fig. 1) and average distance of points to cluster457

centroids (dw_cent) as the inter- and intra-cluster distance458

metrics, respectively. We also considered other distance metrics459

(shown in Fig. 1) for GDI but did not include here due to the460

fact that the GDI with those metrics either performed the same461

or poorer than the GDI with dw_cent and db_cent for the data462

sets in this paper. We also computed the non-prototype-based463

indices (DBI, GDI, CH-VRC, PBM, and Silhoutte) based on464

individual data points as well as based on prototypes, in order to465

observe whether they provide different rankings of clusterings.466

Due to the fact that the ranking by the various indices came467

out often the same by both ways of computing the indices, we468

provide the index values based on prototypes in this paper.469

Some specific index values convey important properties.470

For example, Conn_Index = 1 means that the clusters are471

completely separated whereas any other Conn_Index value472

indicates an overlapping case. As Conn_Index goes to zero,473

the degree of overlap increases. For DBI, an index value474

greater than one means either there are overlapping clusters475

or the natural partitions are not hyperspherical. However, if476

DBI is less than one, it does not necessarily indicate well-477

separated clusters. A positive value (close to one) for Silhoutte478

width criterion may indicate non-overlapping clusters whereas479

a negative value surely indicates overlapping clusters. Due to480

the fact that GDI considers the maximum scatter and minimum481

separation but not the relative dissimilarity for each cluster, a482

well-separated case can be represented by any GDI value.483

We analyze the performance of Conn_Index on the clus- 484

terings of two synthetic data sets: the 2-D Clown data [28] 485

with nine clusters of varying statistics, and a 6-D data set with 486

11 known classes [30]. These data sets—although far from 487

the complexities real data can produce—represent some of the 488

characteristics that make data complicated. We also show the 489

performance of Conn_Index for real data sets: three simple 490

data sets (Breast cancer Wisconsin, Iris, Wine) from the UCI 491

machine learning repository [2], and an 8-D remote sensing 492

spectral image [30]. In addition, we compare Conn_Index to 493

DBI, GDI, CDbw, silhouette, CH-VRC, and PBM indices. 494

Since Conn_Index does not depend on the dimensionality of 495

the data sets, we do not include data sets with hundreds of 496

features. In our experiments, we select the number of prototypes 497

(P ) to be larger than the number of expected clusters (K) in 498

the data sets but much smaller than the large number of data 499

samples (N). 500

A. 2-D Clown Data 501

The Clown data set, shown in Fig. 2 and described in 502

Section III-B, has 2220 data samples in nine clusters which 503

are presented in Fig. 3(a). These nine clusters can be naturally 504

grouped into two superclusters: the face and the body. 505

For performance comparison of the indices, we show a 506

hierarchical clustering produced by [28] in Fig. 3(b). This 507

clustering extracts eight clusters with a few incorrectly labeled 508

prototypes as shown. In Fig. 3(c), we combined two subclusters 509

(� and ×) in the left eye in Fig. 3(b) to measure the effect 510

of small changes in the clustering on the validity indices. 511

Fig. 3(d)–(f) provide the results of the k-means clustering for 512

k = 2, 4, 5. The k-means clustering is only successful for k = 2 513

where the two clusters are the face and body which have nearly 514

spherical structures. As k becomes larger, the partitioning is less 515

similar to the natural partitions [Fig. 3(e)–(f)]. 516

Table I and Fig. 4 give the indices for the different partition- 517

ings of the Clown data in Fig. 3. When we compare the indices 518

for the clusterings in Fig. 3(b) and (c), there is a large increase 519

in GDI in favor of the clustering in Fig. 3(c) over the true 520

labels. This is because GDI depends on the minimum separation 521

(which has increased by merging the two subclusters) rather 522

than on the relative comparison of separations as in DBI, CDbw, 523

and Conn_Index. As we stated in Section II, other indices 524

in Table I are less sensitive to this change because of their 525

averaging property. 526

Conn_Index values are similar for k-means clustering with 527

k2 and to those for the true labels. It slightly favors k-means 528

clustering with k2 due to the supercluster structure (face and 529

body) in the data set. This is because face and body are 530

two large clusters connected with a thin connection, whereas 531

known clusters (nose and mouth) are more strongly connected 532

[Fig. 2(b)]. The index value drops slowly up to k4 and signifi- 533

cantly for larger k due to more incorrectly labeled prototypes. 534

GDI, Silhouette, and CH-VRC also favor k-means clustering 535

with k2 while DBI and PBM choose k-means clustering with 536

k4 where there are four superclusters with several incorrectly 537

labeled prototypes. Surprisingly, CDbw favors k-means clus- 538

tering with k5 where the partitioning is quite different from the 539

true labels. One reason can be the incorrect density estimation 540

due to varying statistics of clusters. In summary, as shown in 541
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Fig. 3. Clusterings of the Clown data set by clustering of SOM prototypes. The data points are shown with dots and the prototypes are labeled by symbols. Top:
(a) Known labels. Seven clusters constitute the Clown: one cluster for the body (David stars), and six clusters for the face: nose (�), mouth (�), right eye (�),
and three clusters in the left eye (�, �, open star); the remaining two, + and ∗, are singletons, outliers due to noise. (b) Clustering by a hierarchical algorithm by
Vesanto and Alhoniemi [28]. The two singletons are merged to the closest cluster. The true cluster in the middle of the left eye is extracted as two subclusters �
and ×. There are eight clusters with a few incorrect labels. (c) A clustering similar to (b) except the two subclusters � and × in the middle of left eye are merged
and labeled as �, in order to analyze how the indices respond to this change. Bottom: k-means clustering with (d) k2, (e) k4, (f) k5. The index values of these
clusterings are shown in Table 1.

TABLE I
VALIDITY INDICES FOR THE CLUSTERINGS OF THE CLOWN DATA.
INDICES FOR THE FAVORED PARTITIONINGS ARE IN BOLD FACE

Table I, DBI, GDI, CH-VRC, PBM, and CDbw favor incorrect 542

partitionings of k-means [for example k5, in Fig. 3(f)] over 543

the true labels due to inaccurate density estimation of CDbw 544

and the centroid-based approach of the rest, while Silhouette 545

and Conn_Index favor the true labels and the supercluster 546

structure determined by the face and the body. We point out, 547

however, that the relative difference of Conn_Index values 548

for the true labels (0.89) and for the superclusters (0.88) are 549

much closer than the respective Silhoutte index values, i.e., 550

that Silhoutte ranks the true labels lower (on its scale) than 551

Conn_Index. 552

B. 11-Class Data Set 553

This data set is from a family of 6-D synthetic data cubes 554

used in [30] and described in detail at http://terra.ece.rice.edu. 555

It has 128 × 128 6-D data samples in a square “image” 556

grouped into 11 classes, three of which are relatively small. 557

Each data sample is a 6-D feature vector (signature) specifying 558

its characteristics. The mean signatures of eight classes are 559

quite similar to each other and the small classes have different 560

signatures (Fig. 5). Because the dimensionality of this data 561
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Fig. 4. Validity indices for k-means clusterings of the Clown data. (a) Comparison of DBI, GDI, CDbw, and Conn_Index. CDbw is normalized by its
maximum value 9.18. (b) Comparison with CH-VRC, Silhoutte, and PBM (CH-VRC is normalized to one by its maximum value, 236). (c) Conn_Index and
its subcomponents, Intra_Conn and Inter_Conn. Intra_Conn monotonically decreases with increasing k (except for k = 13,15) since greater k does not
produce a better partitioning but reduces the size of the extracted clusters. Inter_Conn is maximum for k = 5 where some strongly connected prototypes are
incorrectly labeled [Fig. 3(f)].

Fig. 5. (a) 6-D synthetic data set with 11 classes, three of which are relatively
small. The top left image shows the spatial distribution of the data classes in
the 128 × 128 pixel image. The signatures of the 11 classes are shown on the
right, offset for clarity. The signatures of the small classes are very different
from the rest. The bottom left image represents the known labels of the SOM
prototypes. (b) The CONN visualization on the SOM. The classes are well
separated except for two small ones, Y and R, each of which are represented
by one prototype.

set is greater than three, we cannot visualize it in the data562

space. Therefore, we show the classes (Fig. 5) through CONN563

visualization (CONNvis) of the prototypes on the SOM lattice.564

CONNvis is a recent SOM visualization scheme that represents565

data topology [1] and has the advantage of visualizing higher566

dimensional data spaces on the SOM lattice regardless of567

the data dimensionality. CONNvis is obtained by connecting568

prototypes pi, pj whose Voronoi cells are adjacent, with lines569

of various widths and colors. The width of the connection is570

proportional to CONN(i, j) whereas the color indicates the571

ranking of the connections to i.572

Fig. 5 shows that the classes are well separated (no connec-573

tions between the classes) except for two small ones, R and574

Y . We cluster the 20 × 20 SOM prototypes with k-means.575

The cluster labels for k2, 7, 11 and the true labels are given in576

Fig. 6. All k values up to seven produce superclusters of the577

existing 11 classes. Fig. 7 shows the index values for these k-578

means clusterings with different k values. All indices except579

Conn_Index and PBM favor k2 [Fig. 6(a)] as the best k-means580

partitioning even though the two connected small classes R581

and Y are grouped into different superclusters. This is because,582

owing to their small sizes, clusters R and Y have very little583

Fig. 6. k-means clustering of the (20 × 20) SOM prototypes of the 11-class
data set and the true labels. (a) k2 (favored by DBI, GDI, and CDbw) (b) k7
(for which the Conn_Index is maximum). (c) k11 (true number of clusters)
(d) true labels of the 11 classes.

effect on those indices. In contrast, Conn_Index indicates 584

the similarity at the cluster boundaries of these two extracted 585

clusters in Fig. 6(a) by producing a large Inter_Conn value 586

since the prototype representing cluster R is more similar to the 587

prototype of Y than to any other prototype within its own group 588

[open stars in Fig. 6(a)]. The best k-means clustering according 589

to Conn_Index is the one with k7 [Fig. 6(b)] which is the 590

second best according to DBI and CDbw. For k7, the two small 591

classes R and Y are grouped into one cluster [× in Fig. 6(b)] 592

and disconnected from the other six clusters. Inter_Conn, 593

shown in Fig. 7(a), indicates that for k4, k6 and k7, there 594

are no cross-connections between the extracted clusters (the 595

clusters are well separated superclusters of the 11 true 596

classes). However, since in those cases, nonspherical clusters 597

are likely formed, other indices may not indicate the clear 598
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Fig. 7. Validity indices for k-means clustering of the 11-class data set. (a) Conn_Index and its subcomponents, Intra_Conn and Inter_Conn.
Inter_Conn = 0 at k4, 6, 6 indicates that the extracted clusters are well-separated. (b) Comparison with DBI, GDI, CDbw, and Conn_Index for k-means
clusterings. (c) Comparison with Silhoutte, CH-VRC, and PBM indices. For this data set, the indices for true labels are Conn_Index = 1.0, DBI = 0.16,
GDI = 8.5, CDbw = 4000, Silhouette = 0.89, CH-VRC = 0.83, and PBM = 3.58.

separation of these superclusters. In comparison, as long as599

the clusters are separated, it will be reflected by Conn_Index600

even if the clusters have different shapes or sizes or uneven data601

distribution.602

When the index values for the true labels are compared to603

the indices of k-means clusterings in Fig. 7, indices except CH-604

VRC and PBM strongly favor the true labels over any k-means605

clustering due to the fact that these 11 clusters are spherical and606

well-separated. Surprisingly, PBM favors an incorrect partition-607

ing of k-means with ten clusters while CH-VRC favors k-means608

with k2 or k3 (super clusters) over the 11 known well-separated609

clusters.610

V. PERFORMANCE OF Conn_Index ON REAL DATA611

A. Conn_Index for Data Sets With Small Number of Data612

Samples and Few Clusters613

We use three of the benchmark data sets in the UCI Machine614

Learning Repository [2]: Breast Cancer Wisconsin, Iris, and615

Wine. These have small numbers of data samples and at most616

three classes. The analyses of the index performance on these617

data sets provide a necessary step before moving on to compli-618

cated data because if the index does not perform well on these619

data, it may not perform well on more complicated ones. We620

obtain the quantization prototypes of the data sets with a SOM621

and cluster the (4 × 4) SOM prototypes by k-means clustering.622

The validity indices values are listed in Table II.623

1) Breast Cancer Wisconsin: This data set consists of 699624

samples with ten features grouped into two linearly inseparable625

classes (benign and malignant). Conn_Index and Silhouette626

(Table II) favor the true labels as the best partitioning of627

the data set and k-means clustering with k2 as the second628

best. Contrarily, DBI, GDI, and CH-VRC indicate k-means629

clustering with k2 as the best and the true labels as the second630

best. This is mainly because the true clusters are nonspherical631

and these three indices are dependent on centroid distances.632

Surprisingly, CDbw favors any k-means clustering over the true633

labels. One reason for this can be the highly connected nature634

of the SOM where prototypes may exist close to the boundaries635

of the clusters, which in turn results in incorrect estimation of636

intra-cluster density by CDbw.637

2) Iris: The Iris data set has 150 samples across three638

species, Setosa, Versicolor, and Virginica. (50 samples per639

species) The input features are sepal length, sepal width, petal640

TABLE II
VALIDITY INDICES FOR k-MEANS CLUSTERING OF THREE REAL DATA

SETS: BREAST CANCER WISCONSIN, IRIS AND WINE. INDICES FOR THE

FAVORED PARTITIONINGS ARE IN BOLD FACE

length, and petal width. All indices, listed in Table II, except 641

CH-VRC and PBM, select k-means clustering with k2 as the 642

best fit. This is expected in this case [5] due to the inseparability 643

of Versicolor and Virginica and their clean separation from 644

Setosa. PBM is the only index that (slightly) favors the true 645

clusters. The runner-up is the true partitioning according to 646

GDI, CDbw, and Conn_Index. CH-VRC provides different 647
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rankings for Iris data depending on whether it is calculated648

based on data points or based on prototypes. It strongly favors649

k-means clustering with k2 over any other ones including650

the true labels for the former, whereas it strongly favors k-651

means clustering with k4 (CH-VRC = 34.3) and (true labels,652

CH-VRC = 33.7) over any other partitioning for the latter.653

Conn_Index is as far from selecting the true clusters as any of654

the other indices due to the well-known separated cluster from655

two other overlapping clusters.656

Conn_Index = 1 for k-means with k2 reflects the clean657

separation of the two extracted clusters. The Conn_Index658

value of less than 1.0 for the true labels (0.67) and for the659

k-means with k3 (0.62) indicate overlap among the clusters.660

The same information can be learned, to some extent, from the661

GDI and DBI values, which strongly favor k-means clustering662

with k2 and have a similar percentage change (about 40%) in663

the index value in response to increasing k to 3. For example,664

the GDI value is 3.61 for k-means with k2 whereas it is 2.62665

for k-means with k3 and 2.75 for true labels. However, we666

cannot directly learn from the GDI and DBI values whether667

the extracted clusters are clearly separated. This is because the668

GDI is not necessarily constructed from the separation and the669

scatter of the same cluster (numerator and denominator in (1)670

may be from different clusters), and the DBI and Silhouette671

consider the average distance to cluster centroid but not the672

maximum distance to cluster centroid [(2)].673

3) Wine: This data set has 178 13-D samples with674

three classes. The groups are nonspherical but separable.675

Conn_Index is the only index which selects the known labels676

as the best partitioning. It also produces values less than 0.5677

for k-means clusterings with k2, 4, 5as an indication of poor678

partitioning. The other indices choose k-means with different679

k values while the number of clusters in the Wine data set is 3.680

B. Conn_Index Performance for a Real Remote Sensing681

Image: Ocean City682

For performance evaluation of Conn_Index on complicated683

data, we use a remote sensing spectral image of Ocean City,684

Maryland, comprising 512 × 512 pixels. Each pixel has an685

8-D feature vector called spectrum, associated with it. 28686

meaningful physical clusters have been identified in this scene687

and verified by a domain expert, with field observations and688

with aerial photographs [24], [30]. Fig. 8(a) shows the spatial689

layout of different surface cover types in this image through an690

earlier cluster map [1] which indicates the spectrally different691

materials by different colors. Some clusters are ocean (blue,692

I), small bays (medium blue, J), water canals (turquoise, R),693

lawn, trees and bushes (green, L; and split-pea green, O), dry694

grass (orange, N), marshlands (brown, P; and ocher, Q), soil695

(gray, S), road (magenta, G) with a reflective paint (E). The696

small rows of rectangles are houses with different types of roof697

materials (A, B, C, D, V, a, c). A detailed discussion on these698

28 clusters is given in [1], [24]. Here, we point out that these699

28 clusters have widely varying statistical properties and they700

exhibit a large range of sizes, shapes, and densities [27].701

We use the 1600 SOM prototypes created for this data set in702

[30] and compare clusterings of these prototypes obtained by703

k-means and by two interactive clusterings produced in earlier704

works from different SOM visualizations: modified U-matrix705

(mU-matrix) [30] and CONN visualization (CONNvis) [1]. 706

The mU-matrix is a SOM visualization that shows Euclidean 707

distances between prototypes neighboring in the SOM lattice 708

as well as the number of data samples in their receptive 709

fields, as explained in Fig. 9. CONNvis is the visualization 710

of CONN graph on the SOM lattice. The first interactive 711

clustering [Fig. 9(a)] was obtained from mU-matrix [30]; the 712

second one, shown in Fig. 9(b), was obtained from CONNvis 713

[1]. The clustered image, obtained through CONNvis, is shown 714

in Fig. 8(a). The clustered image produced from the mU-matrix 715

can be seen in [1]. In both cases, the extracted clusters look 716

very similar except the clustering from mU-matrix leaves more 717

prototypes unclustered as seen in Fig. 9(a). Table III gives the 718

index values for the interactive clusterings and for k-means with 719

selected k values whereas Fig. 10 shows the index values for k- 720

means with k values up to 40. For k-means, k4 is favored as 721

the best partitioning by Conn_Index, PBM, and CDbw. These 722

four clusters, shown in Fig. 8(b), appear to be superclusters of 723

the known 28 ones. One supercluster (dark green) comprises 724

the known vegetation classes (lawn, trees, bushes, etc.), one 725

(blue) includes the water classes (ocean, canals, pool, etc.), one 726

(brown) represents soil (marshlands, bare soil, etc.) and one 727

(purple) comprises roads, concrete, and different roof materials. 728

The partitioning of k-means clustering with k2 which is favored 729

by DBI, GDI, and Silhouette combines vegetation and soil into 730

one group and everything else into another group. For larger 731

k values, k-means produces smaller spherical clusters which 732

do not correspond to the true partitioning. This is indicated 733

by increasing DBI and decreasing GDI values as k increases. 734

CDbw and Conn_Index do not have monotonic relation with 735

increasing k, and they favor the cases where the clusters are 736

relatively more self-contained (a larger number of connected 737

pairs of prototypes reside within clusters). Contrarily, CH-VRC 738

produces greater index values for greater k values (from k = 10 739

to k = 30) since BGSS increases and WGSS decreases due to 740

smaller clusters for large k and this cannot be balanced by the 741

K − 1 factor in the index formula given in (4) (Fig. 11). 742

When the indices of k-means clusterings are compared to the 743

indices of the interactive clusterings, we expect them to favor 744

the latter ones because we know from expert evaluation that 745

those correspond better to the true material groups. Another rea- 746

son for this expectation is that the separation between clusters 747

is increased by the omission of prototypes at the boundaries 748

[black cells in Fig. 9(a) and (b)]. Conn_Index favors the 749

interactive clusterings over k-means clustering for k > 4 since 750

the resulting partitions obtained by k-means with k > 4 do not 751

fit the natural ones. For k-means clustering with k = 2 or k = 4, 752

the clusters become large and they correspond to the superclus- 753

ters we described above [the k = 4 case is shown in Fig. 9(c)]. 754

In these cases, Intra_Conn is high (0.98 as shown in Table IV) 755

since most of the connected prototypes remain within these 756

large clusters. The high Intra_Conn value produces a large 757

Conn_Index [(14)]. Therefore, Conn_Index favors k = 2 or 758

k = 4 over the interactive clusterings. DBI, CDbw, Silhouette, 759

and PBM favor any of the k-means clusterings over the interac- 760

tive ones in spite that k-means clustering for k > 4 are not su- 761

perclusters anymore (do not fit true partitions). GDI, however, 762

indicates the interactive partitioning as better than k-means for 763

k > 10 due to the fact that all clusters become smaller in k- 764

means clustering with increasing k. The smaller clusters have 765
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Fig. 8. Cluster map of Ocean City, an 8-band 512 × 512 pixel remote sensing image. 28 clusters were identified, and color coded according to the color wedge
(not all colors were used from the color wedge). (a) Cluster map obtained by interactive clustering based on CONN visualization [1]. The cluster labels of the
SOM prototypes are shown in Fig. 9(b). (b) Cluster map by k-means clustering, k4.

Fig. 9. Clusterings of the 40 × 40 SOM prototypes of Ocean City data. Each cell is a prototype, color coded with a cluster label consistent with Fig. 8. The
intensities of the white fences around the cells are proportional to the distances between neighbor prototypes (mU-matrix). Black cells are unclustered prototypes.
(a) Clustering obtained from a modified U-matrix visualization [30], (b) Clustering from CONN visualization [1] (c) k-means clustering, k4 (k2 produces two
clusters where one is the union of the purple and blue clusters and the other is the union of the brown and green clusters).

TABLE III
VALIDITY INDICES FOR THE CLUSTERINGS OF OCEAN CITY. INDICES FOR THE FAVORED PARTITIONINGS ARE IN BOLD FACE

relatively smaller within-cluster distances which reduces GDI.766

Similarly to Conn_Index, GDI favors k-means clusterings767

with k2 and k4 over the interactive ones, but the GDI values for768

these k-means clusterings are at least four times higher than the 769

index values for the interactive ones (2.75 and 2.25 versus 0.55 770

and 0.41 in Table III), whereas the Conn_Index values are 771
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Fig. 10. Validity indices for k-means clustering of the Ocean City data
set. (a) Comparison with DBI, GDI, CDbw, and Conn_Index for k-means
clusterings. (c) Comparison with Silhoutte, CH-VRC, and PBM indices. CH-
VRC is normalized to 1 by its maximum value 906 (k-means with k = 30,
Table 3).

Fig. 11. Analysis of CH-VRC for k-means clustering with different k values
up to 40. WGSS/(N − k) in (4) is normalized to one for comparison
since N is large. For k > 10, it can be seen that average between-cluster
distance (BGSS/(k − 1)) is almost constant whereas within-cluster distances
WGSS/(N − k) decreases due to smaller cluster size by increasing k values.
This provides large CH-VRC values even if the partitioning is bad.

much similar (0.70 and 0.72 versus 0.66 and 0.63 in Table IV).772

CH-VRC strongly favors k-means clustering with k = 30 as the773

best even though that is a bad partitioning of the data set. CH-774

VRC also strongly favors the interactive clusterings [Fig. 9(a)775

and (b)] as second and third; however, this is mainly due to776

the large number of clusters which results in decreasing within-777

cluster distances while keeping the average between-cluster778

TABLE IV
Conn_IndexAND ITS COMPONENTS Intra_ConnAND Inter_ConnFOR

THE CLUSTERINGS OF OCEAN CITY. INDICES FOR THE FAVORED

PARTITIONINGS ARE IN BOLD FACE

distance constant with increasing number of clusters (Fig. 11). 779

To further support this claim, we refer to Table I which shows 780

that for a smaller number of clusters in the Clown data, CH- 781

VRC ranks the true partitioning very low. 782

To summarize, for the relatively large number of clusters 783

with different shapes and sizes in this data set, DBI, GDI, 784

CDbw, Silhouette, CH-VRC, and PBM may not be helpful in 785

evaluation of cluster validity. Conn_Index appears to provide 786

more faithful evaluation for this case. 787

C. Evaluation of Partial Clusterings 788

SOM visualizations provide tools to extract cluster bound- 789

aries and find the cluster structure. However, due to different vi- 790

sualization schemes, knowledge representations, or processing 791

by different users, different prototypes may be left unclustered 792

in various clusterings of the same SOM. Yet, comparison of the 793

quality of such different clusterings can be of great importance. 794

We can argue that for these situations, Conn_Index and its 795

components provide useful measures. 796

Conn_Index, Intra_Conn, and Inter_Conn express the 797

relation of the unclustered prototypes to the clustered ones. 798

Since Intra_Conn measures how self-contained the clusters 799

are based on the connections among prototypes, it reflects how 800

important the prototypes are for the clusters. For example, 801

assume that pm is a prototype in cluster Ck, and a and b 802

are the numerator and the denominator of Intra_Conn(Ck) 803

[(10)], respectively. Let us remove pm from Ck and recalculate 804

the intra-connectivity of Ck after this removal, denoted by 805

Intra_Conn(Ck)− 806

Intra_Conn(Ck)− =
a −

∑P
j {CADJ(m, j) : pj ∈ Ck}
b −

∑P
j CADJ(m, j)

.

(15)
Since a ≤ b, Intra_Conn(Ck)− will be smaller than a/b, i.e., 807

Intra_Conn(Ck), if 808

P∑
j

{CONN(m, j) : pj ∈ Ck} >
a

b

P∑
j

CADJ(m, j).

(16)
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If pm has all its connections to prototypes within809

its own cluster Ck, then Intra_Conn(Ck)− becomes810

smaller than Intra_Conn(Ck) since
∑P

j {CADJ(m, j) :811

pj ∈ Ck} =
∑P

j CADJ(m, j) = RFm. In this case, the de-812

crease in Intra_Conn(Ck) depends on the RFm and on the813

size of Ck. The Inter_Conn(Ck) remains unchanged after814

this removal since pm is not at the cluster boundary [hence not815

used in either the numerator or the denominator of (13)]. If pm816

has connections to the prototypes in Ck and also to prototypes817

in another cluster, then pm is at a cluster boundary. If within-818

cluster connections of pm and its connections to other clusters819

have similar strengths, then pm is in an overlapping region820

of the clusters. For this case, removal of pm may not reduce821

Intra_Conn because
∑P

j {CADJ(m, j) : pj ∈ Ck} is about822

half of the
∑P

j CADJ(m, j). Contrarily, this removal de-823

creases Inter_Conn(Ck) [(13)] since the connections across824

clusters are reduced, which in turn increases Conn_Index825

(a better clustering). If within-cluster connections of pm are826

much stronger than its connections to other clusters, removal827

of pm reduces both Intra_Conn(Ck) and Inter_Conn(Ck).828

However, since in this case, Ck − {pm} becomes less self-829

contained due to strong connections with pm (now outside of830

Ck), the decrease in Intra_Conn value will be more sig-831

nificant than in the previous case of overlapping clusters. At832

the same time, the separation (1 − Inter_Conn) only slightly833

increases because the connections of pm to other clusters are834

much weaker than its within-cluster connections. This produces835

a lower Conn_Index value, indicating decreased clustering836

quality due to the removal of pm.837

Based on the above discussion, if prototypes at the overlap-838

ping regions are left unclustered, Conn_Index is expected to839

be higher than in the case they are assigned to a cluster. How-840

ever, if prototypes are left unclustered at the true boundaries841

of a cluster, the remaining prototypes in that cluster will have842

strong connections to these unclustered ones near the edges of843

the “trimmed” cluster. Hence, in this case, the Intra_Conn844

value will be smaller than when the prototypes are included in845

the right cluster, indicating that the omitted prototypes should846

be assigned to the respective cluster. Intra_Conn can also be847

small for random partitioning. Fortunately, in such cases a high848

Inter_Conn value will indicate the incorrect grouping.849

The interactive clusterings of the 40 × 40 SOM for Ocean850

City are shown in Fig. 9. The first one [Fig. 9(a)], obtained851

from a modified U-matrix [30], has many unclustered pro-852

totypes (black cells) due to the user’s conservative judgment853

given the uncertainty about the boundaries in the SOM visu-854

alization. The second one [Fig. 9(b)], obtained from CONN855

visualization [1], has very few omitted prototypes. Table IV856

shows the Conn_Index and its components for these cluster857

maps. Omitting a large number of prototypes in Fig. 9(a)858

produces smaller Intra_Conn and Inter_Conn. This is to859

say, the clusters are more separated in this case but many860

unclustered prototypes are strongly connected to some clusters,861

which makes those clusters less self-contained. Table IV shows862

that the difference between the Intra_Conn values of the863

clusterings from the CONN visualization and from the mU-864

matrix is 0.09 whereas the difference of their Inter_Conn865

values is 0.04. In this case, the decrease in Intra_Conn is more866

significant than the decrease in Inter_Conn, which results in867

a decreased Conn_Index value according to (14). Therefore, 868

Conn_Index favors the more complete clustering based on 869

CONN visualization over the clustering based on the modified 870

U-matrix. 871

VI. SUMMARY, DISCUSSION, AND CONCLUSION 872

Conn_Index is a new validity index for prototype-based 873

clustering algorithms. Prototype-based clustering is increas- 874

ingly important in the light of the data volume explosion 875

we experience in real applications and because of the need 876

for extraction of complex structure from data. Conn_Index 877

utilizes the data topology on the prototype level as its scatter 878

and separation measures. Its within-cluster scatter measure, 879

the intra-cluster connectivity (Intra_Conn), and between- 880

cluster separation measure, the complement of the inter-cluster 881

connectivity (1 − Inter_Conn), are obtained from the “con- 882

nectivity matrix” (a weighted Delaunay triangulation) defined 883

in [1], thus Conn_Index reflects the cluster validity according 884

to the adjacencies of the prototypes, and to local data distri- 885

bution within their receptive fields. This makes Conn_Index 886

applicable for validity evaluation of clustering results for data 887

sets with clusters of different shapes, sizes or densities, or with 888

overlapping clusters. The scope of this index is restricted to 889

prototype-based clusterings due to its construction, and it is not 890

applicable for data mining scenarios where data samples are 891

clustered directly. 892

Conn_Index and its components are bounded (all are in 893

[0, 1]). The maximum Conn_Index value indicates that clus- 894

ters are well-separated whereas any index value less than 1 895

shows clusters are overlapping. Due to the constructions of 896

Intra_Conn (which uses all connections of each cluster) and 897

Inter_Conn (which uses the connections of the prototypes 898

at the cluster boundaries only), Conn_Index can also help 899

evaluation of partial clusterings, where different prototypes are 900

left unclustered in different clusterings. 901

One thing to notice about the Intra_Conn component of 902

Conn_Index is its dependence on the size of clusters. We 903

can illuminate this as follows: Assume the body of the Clown 904

in Fig. 2 has more data samples (hence more prototypes) at 905

the bottom of the body, and we are calculating the index for 906

true labels. The sum of the receptive fields
∑

RFj of the 907

body increases with these additional samples but the num- 908

ber of the prototypes that have their second BMU in other 909

clusters [one in the body, the prototype connected to O1 in 910

Fig. 2(b)] remains the same. This produces an equal amount of 911

increase (number of additional samples) in the numerator and 912

the denominator of Intra_Conn(body) [(10)], resulting in a 913

higher Intra_Conn(body), hence a higher Intra_Conn value 914

than the actual Intra_Conn of the original true labels (0.97, 915

Table I). The body becomes more self-contained than before. 916

However, such addition of data samples does not affect the sep- 917

aration of the body from others because the separation measure 918

[1 − Inter_Conn, (13)] depends only on the prototypes at the 919

cluster boundaries. Yet, Conn_Index becomes slightly larger 920

which indicates a better clustering because of a slightly more 921

self-contained cluster. The averaging of Intra_Conn(Ck) val- 922

ues [(9)] will diminish the effect of few large clusters in case 923

of many existing clusters. However, partitioning large data sets 924

into a few clusters will produce a high Intra_Conn value since 925
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Intra_Conn(Ck) [(10)] tends to one as the size of cluster Ck926

increases, even if those clusters do not correspond to the true927

partitions. For such cases, the quality of extracted clusters is928

determined by the Inter_Conn value which is independent of929

the size of the clusters but dependent on the similarities at the930

cluster boundaries.931

The computational complexity of Conn_Index is of O(P 2)932

and only dependent on the number of prototypes P . It is similar933

to or less complex than the computational complexities of other934

indices in this paper. We refer to the Appendix for a detailed935

complexity analysis.936

One important aspect of the application of Conn_Index is937

that the number of prototypes should be significantly lower938

than the number of data samples and much greater than the939

number of clusters. If the number of prototypes (with nonempty940

receptive fields) is very close to the number of data samples, the941

index becomes meaningless due to the fact that the matrices942

CADJ and CONN , from which the index is constructed,943

represent the topology of prototypes with the local data distrib-944

ution. If the number of prototypes is very close to the number of945

clusters, then many prototypes will be singleton clusters, which946

in turn produces invalid Inter_Conn measures. However, both947

of these cases are in contradiction to the idea of prototype-based948

clustering and should not arise in connection with the use of949

Conn_Index. Apart from the above extremes, Conn_Index950

should provide a significant tool for measuring the quality of951

prototype-based clustering of complex data sets, specifically952

when the number of prototypes P is much less than the number953

of data samples N , (P is of O(
√

N ), but much larger than the954

number of clusters K (P is of O(K2)), as it is the case for the955

data sets in this paper.956

Finally, we want to emphasize that while we present this957

paper in the context of SOM prototypes and k-means clustering958

of these prototypes, the construction of Conn_Index is not959

specific to SOM prototypes or to the clustering algorithm.960

The construction of the Conn_Index is based on the Voronoi961

tessellation of the data space with respect to a given set of962

prototypes (obtained with any clustering algorithm, or in any963

other manner). Therefore, Conn_Index is applicable to the964

evaluation of any prototype-based clustering where prototypes965

are produced by a vector quantization algorithm.966

APPENDIX967

COMPLEXITY OF Conn_Index968

In this section, we discuss the computational complexity of969

the proposed Conn_Index and compare it to the computational970

complexities of various indices used in this paper. Due to971

the fact that this paper is focused on the evaluation of the972

quality of clustering, the computational cost of prototype-based973

clustering algorithm, which is the same for any index used for974

the evaluation of cluster validity, is ignored.975

The complexity of Conn_Index is computed from the976

complexity of the two subcomponents Inter_Conn and977

Intra_Conn. Let N , P , and K be the number of data points,978

the number of prototypes, and the number of clusters, re-979

spectively, and let Pk and Nk be the number of prototypes980

and data points in cluster Ck, respectively. D will denote the981

dimensionality (number of features) of the data points. For982

Pk prototypes in cluster Ck, finding Intra_Conn will need983

∑
k Pk ∗ (Pk − 1)/2(< P 2) operations. To find Inter_Conn, 984

we need to find, for each pair of clusters, Inter_Conn(k, l), 985

the connectivities across cluster boundaries (this costs, for each 986

pair of clusters Ck and Cl, at most Pk ∗ Pm operations) and we 987

need the within-cluster connectivities of the prototypes at the 988

boundaries (at most
∑

k Pk ∗ (Pk − 1)/2 operations, assum- 989

ing each prototype has connections to prototypes in another 990

cluster). Calculation of Inter_Conn from Inter_Conn(k, l) 991

requires O(K2) � O(P 2) operations. Thus, Conn_Index has 992

a complexity of at most O(P 2). (Note that the calculation 993

of matrices CADJ and CONN do not carry any additional 994

computational cost since they are formed during assignment of 995

data samples to the prototypes, which is a mandatory step in 996

prototype-based clustering.) The complexity depends only on 997

the number of prototypes and does not depend on the number 998

of data samples or on the dimensionality of the data points, 999

which makes Conn_Index easily applicable for large and 1000

high-dimensional data sets. 1001

The complexity of GDI [5] [(1)] based on average dis- 1002

tance to cluster centroid as within-cluster distance requires 1003∑
k Pk ∗ (Pk − 1)/2 operations to find cluster centroids and 1004∑
k Pk = P operations to find the within-cluster distances if 1005

it is calculated based on the prototypes (at most of O(DP 2)), 1006

and
∑

k Nk ∗ (Nk − 1)/2 operations (of O(DN2)) if it is 1007

calculated based on the data samples. The calculation of av- 1008

erage linkage requires K ∗ (K − 1)/2 operations after finding 1009

centroids, whereas the calculation of single linkage requires 1010∑
k

∑
m Pk ∗ Pm(< P 2) operations. Thus GDI has a computa- 1011

tional complexity of O(DP 2) when calculated from prototypes 1012

and O(DN2) when based on data samples. The computational 1013

complexity of the DBI which uses average distance to cluster 1014

centroid and average linkage [ (1)]; of the Silhouette width 1015

criterion that uses average distance between samples in the 1016

cluster and single linkage [(3)]; and of CH-VRC that uses 1017

average distance to cluster centroid and average linkage [(4)] 1018

is similar to the complexity of GDI. While the complexity of 1019

Conn_Index, O(P 2), is comparable to O(DP 2), it is much 1020

less than O(DN2) since for the data sets used in this paper, P 1021

is typically in the order of a few times the square root of the 1022

number of data samples (
√

N), that is O(DN2) ≈ O(DP 4). 1023

(For example, the Clown data set has 2220 data samples, 254 1024

prototypes with nonempty receptive fields, and 9 clusters; the 1025

Iris data set has 150 samples, 16 prototypes, and 3 clusters; 1026

Ocean City has 262 144 [512 × 512] samples, 1600 proto- 1027

types and about 30 clusters.) Assuming an equal number of 1028

prototypes per cluster, Pk = P/K, the complexity of CDbw[6] 1029

is O(NDP 2
k K2) = O(NDP 2) ≈ O(DP 4), obviously higher 1030

than the complexity of Conn_Index, and the gap widens for 1031

large values of N and D. 1032
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A Validity Index for Prototype-Based Clustering of
Data Sets With Complex Cluster Structures

1

2
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Abstract—Evaluation of how well the extracted clusters fit the4
true partitions of a data set is one of the fundamental chal-5
lenges in unsupervised clustering because the data structure and6
the number of clusters are unknown a priori. Cluster validity7
indices are commonly used to select the best partitioning from8
different clustering results; however, they are often inadequate9
unless clusters are well separated or have parametrical shapes.10
Prototype-based clustering (finding of clusters by grouping the11
prototypes obtained by vector quantization of the data), which12
is becoming increasingly important for its effectiveness in the13
analysis of large high-dimensional data sets, adds another dimen-14
sion to this challenge. For validity assessment of prototype-based15
clusterings, previously proposed indexes—mostly devised for the16
evaluation of point-based clusterings—usually perform poorly.17
The poor performance is made worse when the validity indexes18
are applied to large data sets with complicated cluster structure.19
In this paper, we propose a new index, Conn_Index, which can20
be applied to data sets with a wide variety of clusters of different21
shapes, sizes, densities, or overlaps. We construct Conn_Index22
based on inter- and intra-cluster connectivities of prototypes.23
Connectivities are defined through a “connectivity matrix”, which24
is a weighted Delaunay graph where the weights indicate the local25
data distribution. Experiments on synthetic and real data indicate26
that Conn_Index outperforms existing validity indices, used in27
this paper, for the evaluation of prototype-based clustering results.28

Index Terms—Cluster validity index, complex data structure,29
connectivity, Conn_Index, prototype-based clustering.30

I. INTRODUCTION31

UNSUPERVISED clustering aims to extract the natural32

partitions in a data set without a priori class information.33

It groups the data samples into subsets so that samples within a34

subset are more similar to each other than to samples in other35

subsets. Any given clustering method can produce a different36

partitioning depending on its parameters and criteria. This leads37

to one of the main challenges in clustering—to determine,38

without auxiliary information, how well the obtained clusters fit39

the natural partitions of the data set. The common approach for40

this evaluation is to use validity indices. A meaningful validity41
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index is of great importance; however, an index that accurately 42

evaluates clusterings of complicated data sets (data sets with 43

many clusters of varying statistics) has not been developed yet. 44

The objective of this paper is to propose such an index for 45

prototype-based clustering of large data sets. 46

Existing cluster validity indices, discussed in Section II, 47

work well for data with simple structures or for scenarios 48

where the user is seeking well-behaved superclusters that can 49

be readily derived from a simple and scalable algorithm, such 50

as k-means, instead of extracting detailed structure of complex 51

clusters. Two reasons for seeking satisfactory performance on 52

this level are difficulty to search for more complex structures 53

due to many attributes and noise and the difficulty to interpret 54

those complex structures even if they are extracted. However, 55

many real-world applications are increasingly dependent on 56

finding complex structures even if interpretation may be, at 57

least initially, challenging. Prototype-based clusterings, among 58

them self-organizing maps (SOM) in particular, are successful 59

for finding detailed structure, and are gaining importance for 60

large data sets that are collected to characterize many real- 61

world problems and to enable the discovery of new knowledge. 62

Currently, evaluation of complex clusterings can be done only 63

through expert knowledge and ground truth. This necessitates 64

sophisticated indexes for validity assessment of complex cluster 65

structures, and motivates the exploitation of specific aspects of 66

prototype-based clustering. 67

We introduce a validity index Conn_Index that can evaluate 68

prototype-based clusterings of data sets with a wide variety of 69

cluster types. Conn_Index takes advantage of the knowledge 70

encapsulated in the prototypes of a quantized data set and uses 71

new measures for separation between clusters and scatter within 72

clusters based on data topology on the prototype level. The data 73

topology is represented by the “connectivity matrix” CONN 74

introduced in [1] as a weighted version of the Delaunay graph of 75

the prototypes. The weights (the elements of CONN ) express 76

the data density local to the prototypes. This will be further 77

explained in Section III. 78

To evaluate the effectiveness of Conn_Index, we use two 79

synthetic data sets with clusters of different shapes, sizes, 80

dimensionalities, and densities. We also use four real data sets, 81

the Breast Cancer Wisconsin (9-D), Iris (4-D), Wine (13-D) 82

data from the UCI repository [2], and Ocean City, a remote 83

sensing spectral image. We obtain prototypes with SOMs and 84

cluster these prototypes with various methods—k-means and 85

two interactive clusterings. We compare the performance of 86

Conn_Index to the performances of commonly used indices 87

by evaluation of which clustering results are favored as the best 88

by each of the indices used in this paper. The outline of the 89

paper is as follows: Section II gives a background information 90

on cluster validity indices and common approaches for index 91

1083-4419/$26.00 © 2011 IEEE
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construction, Section III briefly reviews the prototype-based92

clustering, describes the “connectivity matrix”, and introduces93

Conn_Index. Sections IV and V give examples for the per-94

formance of Conn_Index on synthetic data sets and on the95

real data sets, respectively. In addition, Section V shows that96

Conn_Index can also provide a meaningful measure when97

different prototypes may be left unclustered in different clus-98

terings. Section VI concludes the paper. An Appendix pro-99

vides estimates on computational complexities of the indexes100

compared.101

II. BACKGROUND ON CLUSTER VALIDITY INDICES102

A cluster validity index can be constructed by using one103

of the following three criteria: 1) external crtieria; internal104

criteria; and 3) relative criteria [3]. External criteria are used to105

compare clustering results to a pre-specified structure. Internal106

criteria are for comparison to a proximity matrix of the data107

samples. The common approach is to use relative criteria,108

which is to compare the validity of several clustering results109

based on a combined measure of between-cluster separation110

and within-cluster scatter. There are many different methods111

to determine the validity of crisp clustering (where each data112

sample belongs to only one cluster) [4]–[11] or that of fuzzy113

clustering (where each data sample has a degree of membership114

in several clusters) [12]–[16]. Some validity indices are specific115

to the clustering method. For example, the indices in [17], [18]116

are proposed for support vector clustering whereas the indices117

proposed in [16] are for generalized fuzzy c-means clustering.118

In this paper, we focus on crisp clustering algorithms and we119

refer to Kim et al.[14] for a detailed analysis of the cluster120

validity indices for fuzzy clustering, where an index (based on121

the data distribution at overlapping regions) is also proposed.122

For crisp clustering, the Davies–Bouldin index (DBI) [4]123

and the generalized Dunn Index (GDI) [5] are two commonly124

used indices. Two other indices are the Silhouette width cri-125

terion [19] (selected best in a recent study [20]), and the126

Calinski–Harabasz variance ratio criterion (CH-VRC) [21] (se-127

lected best among 30 indices in [9]). A recent index shown to128

be useful is PBM [10]. All these indices provide meaningful129

measures for well-separated or parametrical clusters but they130

may fail for complicated data structures with clusters of differ-131

ent shapes or sizes or with overlaps. This is because available132

distance measures for separation between clusters and scatter133

within clusters may be ineffective for complicated data sets due134

to the fact that the cluster boundaries are usually defined not135

only by the distances between the data samples but also by how136

the samples are distributed within the clusters. Several indices137

proposed in recent years integrate the data distribution and the138

distance metrics [6], [14], [22]. One of these, CDbw (com-139

posite density between and within clusters) [6] is promising140

for clusters of different shapes and with homogeneous density141

distribution. Brief explanations of these indices are given below142

along with the discussion on their constructions.143

A. Construction of Cluster Validity Indices144

The separation and scatter measures, used in the index con-145

struction, are often computed from various distances, some146

of which are illustrated in Fig. 1. A general approach is to147

Fig. 1. Several metrics for within-cluster (dw_cent, dw_max, dw_nn_max)
and between-cluster (db_cent, db_comp, db_slink) distances. dw_cent is the
average distance to the cluster centroid, dw_max is the maximum distance
between the points within the cluster, dw_nn_max is the maximum of the near-
est neighbor distances. db_cent is the distance between the cluster centroids,
db_comp(db_slink) is the maximum (minimum) distance between the points
across the clusters. Among them, db_cent and dw_cent are the commonly used
metrics.

use centroid-based distance metrics (db_cent and dw_cent) for 148

separation and scatter [4], [9], [10], [12], [13], [15], which 149

favor (hyper)spherical or (hyper)ellipsoidal clusters. The most 150

reliable results for validity indices are obtained when all data 151

samples in the clusters are considered in the computation of the 152

distances for index construction [5]. In the following, N will 153

denote the number of data vectors in a data set, K will denote 154

the number of clusters in the clustering, and, where applicable, 155

P will denote the number of prototypes that result from a vector 156

quantization (SOM or other) of a data set. 157

In addition to the choice of distance metrics for separation 158

and scatter measures, how the index is constructed from these 159

measures is also important. One way to construct the index is to 160

calculate the ratio between the total or maximum within-cluster 161

scatter and minimum separation between clusters such as in the 162

Dunn index [7], or in the GDI [5]. For example, the GDI is 163

calculated as follows: 164

GDI = min
m

{
min

n

{
db_i(Cm, Cn)

maxk {dw_j(Ck)}

}}
(1)

where Cm, Cn, and Ck are clusters; db_i is a between-cluster 165

separation measure and dw_j is a within-cluster scatter measure 166

with i, j indicating choices of distances. The choices for db_i 167

and dw_j can be metrics from Fig. 1 or any other that the user 168

selects. The index constructed this way heavily depends on the 169

cluster with the maximum scatter and on the pair of clusters 170

with the minimum separation. If there is a large cluster or there 171

are two small clusters which are very close to each other, the 172

index will be dominated by their scatter or separation and will 173

be insensitive to the separation or scatter of other clusters, thus 174

producing an incorrect measure. 175

Another way to construct the index is to consider the scatter 176

and separation measures of all clusters. A good example is the 177

DBI, which is computed by averaging the ratio of the within- 178

cluster scatter to the between-cluster separation over all clus- 179

ters. This type of construction is useful when the separation and 180

the scatter measures together provide a meaningful geometric 181

interpretation of the cluster structure. The DBI is calculated 182

with the distances between cluster centroids (db_cent) and aver- 183

age distances of data samples to their cluster centroid (dw_cent) 184
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(from Fig. 1) as follows:185

DBI =
1
K

K∑
k=1

max
m

(
dw_cent(Ck) + dw_cent(Cm)

db_cent(Ck, Cm)

)
. (2)

With this construction, the DBI provides correct interpretation186

for data sets with hyperspherical clusters or with hyperellip-187

soidal clusters if Mahalanobis distance is chosen instead of188

Euclidean. A similar approach has been used in the Silhouette189

width criterion [19] where the average distance of a data sample190

i to the samples within its own cluster (davg_i) is considered191

along with the minimum distance of i to samples in other192

clusters (db_i). The criterion is obtained by averaging over all193

N samples as follows:194

Silhouette =
1
N

N∑
i=1

db_i − davg_i

max(db_i, davg_i)
. (3)

Another example for this type of index construction is the195

variance ratio criterion of Calinski and Harabasz [21] (CH-196

VRC). This criterion is constructed as197

CHV RC =
BGSS/(K − 1)

WGSS/(N − K)
(4)

where BGSS is between-group sum of squares [sum of squared198

distances of cluster centroids to the geometric center (or cen-199

troid) of all data samples], WGSS is within-group sum of200

squares (sum of squared distances between each data sample201

and its respective cluster centroid). A recent index PBM [10]202

also uses a similar approach and is constructed by using three203

components204

PBM =
(

1
K

E1

EK
DK

)2

. (5)

E1 is the average distance to the geometric center of all sam-205

ples; EK is the sum of within-cluster distances (distances of206

data samples to their respective cluster centroid); and DK is the207

maximum distance between the centers of the K clusters.208

Instead of using cluster centroids, the CDbw index [6] de-209

fines the separation and the scatter based on distances between210

multiple cluster prototypes and data distribution around them,211

as follows:212

CDbw = Intra_dens × Sep (6)

where Intra_dens, the scatter, is the density within one stan-213

dard deviation around the prototypes, averaged over all clusters;214

and Sep, the separation, is the sum of the distances (db_slink)215

between all pairs of clusters divided by the sum of densities216

at the cluster boundaries (number of data samples around the217

midpoints of the prototypes that form single linkage between218

clusters). CDbw correctly evaluates clusterings where clusters219

have homogeneous distribution. However, CDbw fails to repre-220

sent true inter- and intra-cluster densities when the clusters have221

inhomogeneous density distribution which is often the case for222

real data.223

Considering the scatter and the separation of all samples224

or clusters (as in the case of Silhouette, CH-VRC, DBI and225

CDbw) can provide more reliable results than using the scatter226

and the separation of selected clusters, because the delineation 227

of cluster boundaries is more dependent on the relationship 228

between neighbor clusters than on the relationship between, for 229

example, the closest pair of clusters. Therefore, the index we 230

propose below utilizes the scatter and separation of all clusters, 231

with new definitions of the scatter and separation based on the 232

local data distribution. 233

III. Conn_Index: A VALIDITY INDEX BASED ON 234

PROTOTYPE LEVEL DATA TOPOLOGY 235

The proposed Conn_Index is tailored to exploit the in- 236

formation produced by prototype-based clustering methods, 237

which makes Conn_Index suitable only for those methods. 238

Therefore, we first explain prototype-based clustering, discuss 239

how the data topology on the prototype level can help validity 240

assessment, and then define the new index. 241

A. Prototype-Based Clustering for Large Data Sets 242

Prototype-based clustering aims to find a number of repre- 243

sentative data vectors or prototypes in the data space which 244

faithfully represent the large number of data samples. This 245

is usually done through an iterative minimization of a cost 246

function based on the deviation of the data samples from their 247

closest prototypes, i.e., their best matching units (BMUs). For 248

clustering of large data sets with complex cluster structures, 249

prototype-based clustering is often preferred. Compared to 250

clustering data samples, prototype-based clustering has the 251

advantage that it is easier to deal with a smaller number of 252

prototypes than with a large number of data samples (for 253

reasons of lower computational complexity and less memory 254

demand), and it is robust to noise and outliers. The use of 255

single prototypes to represent a cluster, such as in k-means and 256

fuzzy c-means, is often inadequate to describe complex cluster 257

structures with arbitrary shapes and sizes. Therefore, multiple 258

prototypes per cluster are employed in recent studies based on 259

SOMs [23], [24], neural gas [25], and CURE [26]. In these 260

methods, the number of prototypes is often much larger than 261

the number of expected clusters, yet still much smaller than 262

the number of the data samples. After obtaining the prototypes, 263

they are grouped according to their similarities and data clusters 264

are extracted by assigning each data point to the cluster of 265

its prototype. In particular, SOMs have been successful for 266

extraction of detailed structure [1], [27] because SOMs distrib- 267

ute prototypes in the data space through a topology-preserving 268

mapping in an iterative learning process, which results in as 269

faithful representation of the data distribution as possible with 270

the given number of prototypes. The SOM neural units are, at 271

the same time, indexed in a (usually 2-D) rigid lattice according 272

to their similarity relations; therefore, similar prototypes map 273

close to one another in the lattice and vice versa, and prototypes 274

(weight vectors) of neural units that are neighbors in the SOM 275

lattice represent similar data vectors. Therefore, the visualiza- 276

tion and examination of the prototype relationships in the SOM 277

lattice facilitates the extraction of clusters. 278

We briefly summarize here the SOM learning rule for com- 279

pleteness, details can be found in many text books. Let M be 280

a data set, and S be the fixed SOM lattice with P neural units. 281
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For a given data sample v ∈ M , the BMU wi is found by282

‖v − wi‖ ≤ ‖v − wj‖ ∀ j ∈ S (7)

and then the BMU wi and its lattice neighbors (determined283

by a (often Gaussian) neighborhood function hi,j(t), centered284

around the BMU wi) are updated according to285

wj(t + 1) = wj(t) + α(t)hi,j(t) (v − wj(t)) (8)

where α(t) is a learning parameter. Both α(t) and hi,j(t)286

should decrease with time t. The weight vectors of the neural287

units become the vector quantization prototypes of the data set,288

ordered on a rigid lattice.289

The data space can be partitioned with respect to the pro-290

totypes (obtained by any vector quantization method, SOM291

included), resulting in a Voronoi tessellation where each pro-292

totype is the geometric center or centroid of its Voronoi polyhe-293

dron. The Voronoi polyhedron contains the data samples which294

are closest to its centroid, thus it corresponds to the receptive295

field (RF ) of the respective prototype. A Voronoi polyhedron296

containing no data samples indicates a discontinuity in the data297

space (possible separation between clusters).298

B. Topology Representation of Quantized Data by299

Connectivity Matrix (CONN)300

Each quantization prototype is the BMU for the samples301

in its receptive field (RF , Voronoi polyhedron). In general,302

topology can be expressed by the Delaunay graph (the dual of303

the Voronoi tessellation) which is obtained by connecting the304

centers of the neighboring Voronoi polyhedra (polyhedra that305

share an edge). In order to better characterize and summarize306

the data topology on the prototype level, we introduced the307

cumulative adjacency matrix, CADJ , and the connectivity308

matrix, CONN , in [1]. CADJ and CONN describe, as309

we formally explain below, the topology of the quantization310

prototypes but not only their adjacency relations but also their311

“attractions” to one another, as defined by the local densities312

of the manifold. They are obtained by assigning weights to313

edges of the induced Delaunay graph (which is the intersection314

of the Delaunay graph with the data manifold) that provides315

the binary adjacency relations of the prototypes. As proposed316

by Martinetz and Schulten [25], when prototypes are dense317

enough in the data set, the induced Delaunay graph can be318

produced by connecting two prototypes pi and pj if at least319

one data sample selects them as a BMU and second BMU pair,320

i.e., if they are the two closest prototypes to a data sample.321

(When a data sample is equidistant from multiple prototypes,322

which is a very rare case, it is assigned to the one with the323

lowest index i among them.) Analogously, a weighted induced324

Delaunay graph can be produced by assigning the number of325

data samples for which pi and pj are the BMU and the second326

BMU pair, as the weight to the edge in the Delaunay graph327

that connects pi and pj . These weights are the elements of the328

CONN matrix. The weight of the edge between pi and pj is329

CONN(i, j). Obviously, CONN is a symmetric matrix. The330

cumulative adjacency CADJ is nonsymmetric. CADJ(i, j) is331

the number of data samples for which pi is the BMU and pj is332

the second BMU. CADJ(i, j) therefore describes the density333

distribution within the receptive field RFi of pi with respect334

to its neighbors indexed by j. CONN(i, j), which is the sum 335

of CADJ(i, j) and CADJ(j, i), is a similarity measure for 336

prototypes based on local densities. Both CADJ and CONN are 337

P × P matrices indicating similarities between P prototypes. 338

Fig. 2 shows a visualized example of the CONN matrix 339

for a 2-D data set called “Clown”, created by Vesanto and 340

Alhoniemi [28] by using different parametric models for each 341

cluster and adding noise. This data set has clusters of various 342

shapes and sizes: spherical (right eye), elliptical (nose), U- 343

shaped (mouth), three subclusters in the left eye, a sparse 344

body, and outliers. The prototypes were obtained by a 19 × 345

17 SOM, also by [28]. CONN makes high-density regions 346

and no-data regions (disconnected parts of the data set) visible. 347

As explained in Fig. 2(b), when CONN is visualized by 348

indicating the connection weights with proportional line width 349

for edges in the Delaunay graph, separations between clusters 350

may become apparent. This outlines the boundaries of some 351

clusters even though the distances between the prototypes at the 352

cluster boundaries may be smaller than the distances between 353

the prototypes within clusters. The illustration in Fig. 2(b) 354

further suggests that CONN can help determine the validity of 355

clustering for prototype based clustering algorithms. We show 356

this in the next sections. 357

C. Definition of Conn_Index 358

We define Conn_Index with the help of two quantities: the 359

intra-cluster connectivity (Intra_Conn) as the within-cluster 360

scatter and the complement of the inter-cluster connectivity 361

(1 − Inter_Conn) as the between-cluster separation measure. 362

First, we introduce these quantities and then we define our 363

new index. Assume K clusters and P prototypes pi (i = 364

1, 2, . . . , P ) in a data set (N > P > K), and let Ck and Cl 365

refer to two different clusters (1 ≤ k, l ≤ K). 366

Definition 1: The intra-cluster connectivity Intra_Conn is 367

the average of intra-cluster connectivities Intra_Conn(Ck) 368

over all clusters 369

Intra_Conn =
K∑
k

Intra_Conn(Ck)/K (9)

where Intra_Conn(Ck) is the ratio of the number of those 370

data samples in Ck which have both their BMU and second 371

BMU in Ck to the total number of data samples in Ck 372

Intra_Conn(Ck) =

∑P
i,j {CADJ(i, j) : pi, pj ∈ Ck}∑P

i,j {CADJ(i, j) : pi ∈ Ck}
.

(10)

The denominator of (10) can be replaced by the sum of 373

receptive field sizes of prototypes pi ∈ Ck because, obviously, 374

the receptive field size of pi is RFi =
∑P

j {CADJ(i, j)}. 375

Intra_Conn is computed from all data samples in Ck. By 376

definition, Intra_Conn(Ck) ∈ [0, 1] where a greater value 377

means more connectivity within the cluster, i.e., Ck is more 378

self-contained. If the second BMUs of all data samples in Ck 379

are also in Ck (there is no connection to any other cluster) 380

Intra_Conn(Ck) = 1. 381

To define the inter-cluster connectivity 382

Inter_Conn(Ck, Cl) between clusters Ck and Cl, we 383
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Fig. 2. (a) 2-D data set “Clown” (a mixture of several parametrical distributions) and the SOM prototypes created by [28]. Small gray diamonds indicate data
samples. Notice that there are several outliers at the far upper left which are somewhat hard to see. The black dots are prototypes with non-empty receptive fields,
while × are prototypes with empty receptive fields. The data set has different types of clusters, such as spherical (right eye), elliptical (nose), U-shaped (mouth),
sparse (body), three small elliptical subclusters (left eye). Variances within clusters and inter-cluster distances are different but the clusters are well separated
except for the mouth and nose. (b) Topology representation by connectivity matrix CONN . An edge between two prototypes indicates adjacency of their Voronoi
cells. The width of a line is proportional to the number of data samples for which the prototypes connected by this line are a BMU and the second BMU pair. The
separations between clusters are indicated by unconnected prototypes.

consider the prototypes at the cluster boundaries since those384

prototypes are the ones which often facilitate the separation385

between clusters. A prototype at a cluster boundary is the one386

which may have connections to clusters other than its own.387

Definition 2: The inter-cluster connectivity of clusters Ck388

and Cl Inter_Conn(Ck, Cl) is the ratio of the sum of the389

connectivity strengths between Ck and ClConn(Ck, Cl) to the390

sum of the connectivity strengths of those prototypes in Ck391

which have at least one connection to a prototype in Cl392

Inter_Conn(Ck, Cl)

=

{
0, if Pk,l = ∅

Conn(Ck,Cl)∑P

i,j
{CONN(i,j):pi∈Pk,l}

, if Pk,l �= ∅

with Conn(Ck, Cl)

=
P∑
i,j

{CONN(i, j) : pi ∈ Ck, pj ∈ Cl}

and Pk,l

= {pi : pi ∈ Ck,∃ pj ∈ Cl : CADJ(i, j) > 0} . (11)

Inter_Conn(Ck, Cl) shows how similar the prototypes at393

the boundary of Ck are to the ones at the boundary of Cl in394

comparison to the similarity of the prototypes within Ck. If395

Ck and Cl are completely separated in the sense that there396

are no cross-connections Inter_Conn(Ck, Cl) = 0. A greater397

Inter_Conn(Ck, Cl) is an indication of a greater degree of398

similarity between Ck and Cl. Inter_Conn(Ck, Cl) > 0.5399

indicates that those prototypes in Ck which have connections400

to Cl are more similar to the prototypes in Cl than to the401

prototypes in Ck. This means they should either be in Cl or402

Ck and Cl should be combined. The cluster most similar to 403

Ck is the one for which Inter_Conn(Ck, Cl) is maximum 404

(l �= k, 1 ≤ l ≤ K). 405

Definition 3: The inter-cluster connectivity (average similar- 406

ity) Inter_Conn is the average of the inter-cluster connectivi- 407

ties of all clusters Inter_Conn(Ck) 408

Inter_Conn =
K∑
k

Inter_Conn(Ck)/K (12)

where 409

Inter_Conn(Ck) = max
l,l≤K

Inter_Conn(Ck, Cl). (13)

Similarly to Intra_Conn, Inter_Conn ∈ [0, 1] by de- 410

finition. Since Inter_Conn is average similarity, 1 − 411

Inter_Conn becomes a dissimilarity (separation) measure. We 412

define our new validity index, the Conn_Index, as 413

Conn_Index = Intra_Conn × (1 − Inter_Conn). (14)

Conn_Index ∈ [0, 1] increases with better clustering and 414

has a maximum of one when the clusters are separated. De- 415

tails of the calculation of Conn_Index and its components 416

Intra_Conn and Inter_Conn were shown through an exam- 417

ple in [29]. 418

Intra_Conn heavily depends on the sizes of the clusters. 419

When clusters have many data samples, the total strength of 420

within-cluster connections will be relatively strong compared 421

to the total strength of between-cluster connections, resulting in 422

a high Intra_Conn value. As a result, Intra_Conn will de- 423

crease with increasing number of clusters unless the clusters are 424

split along natural cluster boundaries. Contrarily, Inter_Conn 425
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depends only on the connections of prototypes at the cluster426

boundaries, hence it is independent of the sizes of clusters.427

IV. PERFORMANCE OF Conn_Index ON SYNTHETIC DATA428

When comparing indices, we want to see whether they favor429

the true clusters as the best partitioning. True (or natural)430

clusters are those which satisfy the criterion “points in a cluster431

are closer to a point in the same cluster than to any point in432

other clusters”. Accordingly, “true labels” describe known true433

clusters in this discussion. We compare the indices computed434

for the clusterings obtained by different clustering methods to435

the indices computed for the known true labeling (true clusters).436

Since different indices have different ranges, some are bounded,437

some are not, and their nonlinearities are also different, it is438

not quite straightforward to compare their performance. For439

example, a better cluster quality is indicated by a smaller DBI440

while it is indicated by a greater value for other indices in this441

study. Theoretically, DBI, GDI, CH-VRC, PBM, and CDbw442

may have values in [0,∞) while Silhouette is in [−1, 1] and443

Conn_Index ∈ [0, 1]. However, DBI and GDI usually have a444

small range of values (in our experience with different data sets445

and different distance metrics, their maximum value did not446

exceed 10), whereas PBM and CDbw span a much larger range447

of values depending on the number of data samples and their448

distribution within clusters (for example, CDbw can be more449

than 100). Therefore, one meaningful approach is to compare450

the values of the same index obtained for different partitionings451

of the same data and determine the validity rank of clusterings452

according to this index and then to compare the validity ranks453

across different indices.454

For performance evaluation, we compare Conn_Index to455

the indices mentioned above. We use GDI with centroid linkage456

(db_cent in Fig. 1) and average distance of points to cluster457

centroids (dw_cent) as the inter- and intra-cluster distance458

metrics, respectively. We also considered other distance metrics459

(shown in Fig. 1) for GDI but did not include here due to the460

fact that the GDI with those metrics either performed the same461

or poorer than the GDI with dw_cent and db_cent for the data462

sets in this paper. We also computed the non-prototype-based463

indices (DBI, GDI, CH-VRC, PBM, and Silhoutte) based on464

individual data points as well as based on prototypes, in order to465

observe whether they provide different rankings of clusterings.466

Due to the fact that the ranking by the various indices came467

out often the same by both ways of computing the indices, we468

provide the index values based on prototypes in this paper.469

Some specific index values convey important properties.470

For example, Conn_Index = 1 means that the clusters are471

completely separated whereas any other Conn_Index value472

indicates an overlapping case. As Conn_Index goes to zero,473

the degree of overlap increases. For DBI, an index value474

greater than one means either there are overlapping clusters475

or the natural partitions are not hyperspherical. However, if476

DBI is less than one, it does not necessarily indicate well-477

separated clusters. A positive value (close to one) for Silhoutte478

width criterion may indicate non-overlapping clusters whereas479

a negative value surely indicates overlapping clusters. Due to480

the fact that GDI considers the maximum scatter and minimum481

separation but not the relative dissimilarity for each cluster, a482

well-separated case can be represented by any GDI value.483

We analyze the performance of Conn_Index on the clus- 484

terings of two synthetic data sets: the 2-D Clown data [28] 485

with nine clusters of varying statistics, and a 6-D data set with 486

11 known classes [30]. These data sets—although far from 487

the complexities real data can produce—represent some of the 488

characteristics that make data complicated. We also show the 489

performance of Conn_Index for real data sets: three simple 490

data sets (Breast cancer Wisconsin, Iris, Wine) from the UCI 491

machine learning repository [2], and an 8-D remote sensing 492

spectral image [30]. In addition, we compare Conn_Index to 493

DBI, GDI, CDbw, silhouette, CH-VRC, and PBM indices. 494

Since Conn_Index does not depend on the dimensionality of 495

the data sets, we do not include data sets with hundreds of 496

features. In our experiments, we select the number of prototypes 497

(P ) to be larger than the number of expected clusters (K) in 498

the data sets but much smaller than the large number of data 499

samples (N). 500

A. 2-D Clown Data 501

The Clown data set, shown in Fig. 2 and described in 502

Section III-B, has 2220 data samples in nine clusters which 503

are presented in Fig. 3(a). These nine clusters can be naturally 504

grouped into two superclusters: the face and the body. 505

For performance comparison of the indices, we show a 506

hierarchical clustering produced by [28] in Fig. 3(b). This 507

clustering extracts eight clusters with a few incorrectly labeled 508

prototypes as shown. In Fig. 3(c), we combined two subclusters 509

(� and ×) in the left eye in Fig. 3(b) to measure the effect 510

of small changes in the clustering on the validity indices. 511

Fig. 3(d)–(f) provide the results of the k-means clustering for 512

k = 2, 4, 5. The k-means clustering is only successful for k = 2 513

where the two clusters are the face and body which have nearly 514

spherical structures. As k becomes larger, the partitioning is less 515

similar to the natural partitions [Fig. 3(e)–(f)]. 516

Table I and Fig. 4 give the indices for the different partition- 517

ings of the Clown data in Fig. 3. When we compare the indices 518

for the clusterings in Fig. 3(b) and (c), there is a large increase 519

in GDI in favor of the clustering in Fig. 3(c) over the true 520

labels. This is because GDI depends on the minimum separation 521

(which has increased by merging the two subclusters) rather 522

than on the relative comparison of separations as in DBI, CDbw, 523

and Conn_Index. As we stated in Section II, other indices 524

in Table I are less sensitive to this change because of their 525

averaging property. 526

Conn_Index values are similar for k-means clustering with 527

k2 and to those for the true labels. It slightly favors k-means 528

clustering with k2 due to the supercluster structure (face and 529

body) in the data set. This is because face and body are 530

two large clusters connected with a thin connection, whereas 531

known clusters (nose and mouth) are more strongly connected 532

[Fig. 2(b)]. The index value drops slowly up to k4 and signifi- 533

cantly for larger k due to more incorrectly labeled prototypes. 534

GDI, Silhouette, and CH-VRC also favor k-means clustering 535

with k2 while DBI and PBM choose k-means clustering with 536

k4 where there are four superclusters with several incorrectly 537

labeled prototypes. Surprisingly, CDbw favors k-means clus- 538

tering with k5 where the partitioning is quite different from the 539

true labels. One reason can be the incorrect density estimation 540

due to varying statistics of clusters. In summary, as shown in 541
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Fig. 3. Clusterings of the Clown data set by clustering of SOM prototypes. The data points are shown with dots and the prototypes are labeled by symbols. Top:
(a) Known labels. Seven clusters constitute the Clown: one cluster for the body (David stars), and six clusters for the face: nose (�), mouth (�), right eye (�),
and three clusters in the left eye (�, �, open star); the remaining two, + and ∗, are singletons, outliers due to noise. (b) Clustering by a hierarchical algorithm by
Vesanto and Alhoniemi [28]. The two singletons are merged to the closest cluster. The true cluster in the middle of the left eye is extracted as two subclusters �
and ×. There are eight clusters with a few incorrect labels. (c) A clustering similar to (b) except the two subclusters � and × in the middle of left eye are merged
and labeled as �, in order to analyze how the indices respond to this change. Bottom: k-means clustering with (d) k2, (e) k4, (f) k5. The index values of these
clusterings are shown in Table 1.

TABLE I
VALIDITY INDICES FOR THE CLUSTERINGS OF THE CLOWN DATA.
INDICES FOR THE FAVORED PARTITIONINGS ARE IN BOLD FACE

Table I, DBI, GDI, CH-VRC, PBM, and CDbw favor incorrect 542

partitionings of k-means [for example k5, in Fig. 3(f)] over 543

the true labels due to inaccurate density estimation of CDbw 544

and the centroid-based approach of the rest, while Silhouette 545

and Conn_Index favor the true labels and the supercluster 546

structure determined by the face and the body. We point out, 547

however, that the relative difference of Conn_Index values 548

for the true labels (0.89) and for the superclusters (0.88) are 549

much closer than the respective Silhoutte index values, i.e., 550

that Silhoutte ranks the true labels lower (on its scale) than 551

Conn_Index. 552

B. 11-Class Data Set 553

This data set is from a family of 6-D synthetic data cubes 554

used in [30] and described in detail at http://terra.ece.rice.edu. 555

It has 128 × 128 6-D data samples in a square “image” 556

grouped into 11 classes, three of which are relatively small. 557

Each data sample is a 6-D feature vector (signature) specifying 558

its characteristics. The mean signatures of eight classes are 559

quite similar to each other and the small classes have different 560

signatures (Fig. 5). Because the dimensionality of this data 561
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Fig. 4. Validity indices for k-means clusterings of the Clown data. (a) Comparison of DBI, GDI, CDbw, and Conn_Index. CDbw is normalized by its
maximum value 9.18. (b) Comparison with CH-VRC, Silhoutte, and PBM (CH-VRC is normalized to one by its maximum value, 236). (c) Conn_Index and
its subcomponents, Intra_Conn and Inter_Conn. Intra_Conn monotonically decreases with increasing k (except for k = 13,15) since greater k does not
produce a better partitioning but reduces the size of the extracted clusters. Inter_Conn is maximum for k = 5 where some strongly connected prototypes are
incorrectly labeled [Fig. 3(f)].

Fig. 5. (a) 6-D synthetic data set with 11 classes, three of which are relatively
small. The top left image shows the spatial distribution of the data classes in
the 128 × 128 pixel image. The signatures of the 11 classes are shown on the
right, offset for clarity. The signatures of the small classes are very different
from the rest. The bottom left image represents the known labels of the SOM
prototypes. (b) The CONN visualization on the SOM. The classes are well
separated except for two small ones, Y and R, each of which are represented
by one prototype.

set is greater than three, we cannot visualize it in the data562

space. Therefore, we show the classes (Fig. 5) through CONN563

visualization (CONNvis) of the prototypes on the SOM lattice.564

CONNvis is a recent SOM visualization scheme that represents565

data topology [1] and has the advantage of visualizing higher566

dimensional data spaces on the SOM lattice regardless of567

the data dimensionality. CONNvis is obtained by connecting568

prototypes pi, pj whose Voronoi cells are adjacent, with lines569

of various widths and colors. The width of the connection is570

proportional to CONN(i, j) whereas the color indicates the571

ranking of the connections to i.572

Fig. 5 shows that the classes are well separated (no connec-573

tions between the classes) except for two small ones, R and574

Y . We cluster the 20 × 20 SOM prototypes with k-means.575

The cluster labels for k2, 7, 11 and the true labels are given in576

Fig. 6. All k values up to seven produce superclusters of the577

existing 11 classes. Fig. 7 shows the index values for these k-578

means clusterings with different k values. All indices except579

Conn_Index and PBM favor k2 [Fig. 6(a)] as the best k-means580

partitioning even though the two connected small classes R581

and Y are grouped into different superclusters. This is because,582

owing to their small sizes, clusters R and Y have very little583

Fig. 6. k-means clustering of the (20 × 20) SOM prototypes of the 11-class
data set and the true labels. (a) k2 (favored by DBI, GDI, and CDbw) (b) k7
(for which the Conn_Index is maximum). (c) k11 (true number of clusters)
(d) true labels of the 11 classes.

effect on those indices. In contrast, Conn_Index indicates 584

the similarity at the cluster boundaries of these two extracted 585

clusters in Fig. 6(a) by producing a large Inter_Conn value 586

since the prototype representing cluster R is more similar to the 587

prototype of Y than to any other prototype within its own group 588

[open stars in Fig. 6(a)]. The best k-means clustering according 589

to Conn_Index is the one with k7 [Fig. 6(b)] which is the 590

second best according to DBI and CDbw. For k7, the two small 591

classes R and Y are grouped into one cluster [× in Fig. 6(b)] 592

and disconnected from the other six clusters. Inter_Conn, 593

shown in Fig. 7(a), indicates that for k4, k6 and k7, there 594

are no cross-connections between the extracted clusters (the 595

clusters are well separated superclusters of the 11 true 596

classes). However, since in those cases, nonspherical clusters 597

are likely formed, other indices may not indicate the clear 598
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Fig. 7. Validity indices for k-means clustering of the 11-class data set. (a) Conn_Index and its subcomponents, Intra_Conn and Inter_Conn.
Inter_Conn = 0 at k4, 6, 6 indicates that the extracted clusters are well-separated. (b) Comparison with DBI, GDI, CDbw, and Conn_Index for k-means
clusterings. (c) Comparison with Silhoutte, CH-VRC, and PBM indices. For this data set, the indices for true labels are Conn_Index = 1.0, DBI = 0.16,
GDI = 8.5, CDbw = 4000, Silhouette = 0.89, CH-VRC = 0.83, and PBM = 3.58.

separation of these superclusters. In comparison, as long as599

the clusters are separated, it will be reflected by Conn_Index600

even if the clusters have different shapes or sizes or uneven data601

distribution.602

When the index values for the true labels are compared to603

the indices of k-means clusterings in Fig. 7, indices except CH-604

VRC and PBM strongly favor the true labels over any k-means605

clustering due to the fact that these 11 clusters are spherical and606

well-separated. Surprisingly, PBM favors an incorrect partition-607

ing of k-means with ten clusters while CH-VRC favors k-means608

with k2 or k3 (super clusters) over the 11 known well-separated609

clusters.610

V. PERFORMANCE OF Conn_Index ON REAL DATA611

A. Conn_Index for Data Sets With Small Number of Data612

Samples and Few Clusters613

We use three of the benchmark data sets in the UCI Machine614

Learning Repository [2]: Breast Cancer Wisconsin, Iris, and615

Wine. These have small numbers of data samples and at most616

three classes. The analyses of the index performance on these617

data sets provide a necessary step before moving on to compli-618

cated data because if the index does not perform well on these619

data, it may not perform well on more complicated ones. We620

obtain the quantization prototypes of the data sets with a SOM621

and cluster the (4 × 4) SOM prototypes by k-means clustering.622

The validity indices values are listed in Table II.623

1) Breast Cancer Wisconsin: This data set consists of 699624

samples with ten features grouped into two linearly inseparable625

classes (benign and malignant). Conn_Index and Silhouette626

(Table II) favor the true labels as the best partitioning of627

the data set and k-means clustering with k2 as the second628

best. Contrarily, DBI, GDI, and CH-VRC indicate k-means629

clustering with k2 as the best and the true labels as the second630

best. This is mainly because the true clusters are nonspherical631

and these three indices are dependent on centroid distances.632

Surprisingly, CDbw favors any k-means clustering over the true633

labels. One reason for this can be the highly connected nature634

of the SOM where prototypes may exist close to the boundaries635

of the clusters, which in turn results in incorrect estimation of636

intra-cluster density by CDbw.637

2) Iris: The Iris data set has 150 samples across three638

species, Setosa, Versicolor, and Virginica. (50 samples per639

species) The input features are sepal length, sepal width, petal640

TABLE II
VALIDITY INDICES FOR k-MEANS CLUSTERING OF THREE REAL DATA

SETS: BREAST CANCER WISCONSIN, IRIS AND WINE. INDICES FOR THE

FAVORED PARTITIONINGS ARE IN BOLD FACE

length, and petal width. All indices, listed in Table II, except 641

CH-VRC and PBM, select k-means clustering with k2 as the 642

best fit. This is expected in this case [5] due to the inseparability 643

of Versicolor and Virginica and their clean separation from 644

Setosa. PBM is the only index that (slightly) favors the true 645

clusters. The runner-up is the true partitioning according to 646

GDI, CDbw, and Conn_Index. CH-VRC provides different 647
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rankings for Iris data depending on whether it is calculated648

based on data points or based on prototypes. It strongly favors649

k-means clustering with k2 over any other ones including650

the true labels for the former, whereas it strongly favors k-651

means clustering with k4 (CH-VRC = 34.3) and (true labels,652

CH-VRC = 33.7) over any other partitioning for the latter.653

Conn_Index is as far from selecting the true clusters as any of654

the other indices due to the well-known separated cluster from655

two other overlapping clusters.656

Conn_Index = 1 for k-means with k2 reflects the clean657

separation of the two extracted clusters. The Conn_Index658

value of less than 1.0 for the true labels (0.67) and for the659

k-means with k3 (0.62) indicate overlap among the clusters.660

The same information can be learned, to some extent, from the661

GDI and DBI values, which strongly favor k-means clustering662

with k2 and have a similar percentage change (about 40%) in663

the index value in response to increasing k to 3. For example,664

the GDI value is 3.61 for k-means with k2 whereas it is 2.62665

for k-means with k3 and 2.75 for true labels. However, we666

cannot directly learn from the GDI and DBI values whether667

the extracted clusters are clearly separated. This is because the668

GDI is not necessarily constructed from the separation and the669

scatter of the same cluster (numerator and denominator in (1)670

may be from different clusters), and the DBI and Silhouette671

consider the average distance to cluster centroid but not the672

maximum distance to cluster centroid [(2)].673

3) Wine: This data set has 178 13-D samples with674

three classes. The groups are nonspherical but separable.675

Conn_Index is the only index which selects the known labels676

as the best partitioning. It also produces values less than 0.5677

for k-means clusterings with k2, 4, 5as an indication of poor678

partitioning. The other indices choose k-means with different679

k values while the number of clusters in the Wine data set is 3.680

B. Conn_Index Performance for a Real Remote Sensing681

Image: Ocean City682

For performance evaluation of Conn_Index on complicated683

data, we use a remote sensing spectral image of Ocean City,684

Maryland, comprising 512 × 512 pixels. Each pixel has an685

8-D feature vector called spectrum, associated with it. 28686

meaningful physical clusters have been identified in this scene687

and verified by a domain expert, with field observations and688

with aerial photographs [24], [30]. Fig. 8(a) shows the spatial689

layout of different surface cover types in this image through an690

earlier cluster map [1] which indicates the spectrally different691

materials by different colors. Some clusters are ocean (blue,692

I), small bays (medium blue, J), water canals (turquoise, R),693

lawn, trees and bushes (green, L; and split-pea green, O), dry694

grass (orange, N), marshlands (brown, P; and ocher, Q), soil695

(gray, S), road (magenta, G) with a reflective paint (E). The696

small rows of rectangles are houses with different types of roof697

materials (A, B, C, D, V, a, c). A detailed discussion on these698

28 clusters is given in [1], [24]. Here, we point out that these699

28 clusters have widely varying statistical properties and they700

exhibit a large range of sizes, shapes, and densities [27].701

We use the 1600 SOM prototypes created for this data set in702

[30] and compare clusterings of these prototypes obtained by703

k-means and by two interactive clusterings produced in earlier704

works from different SOM visualizations: modified U-matrix705

(mU-matrix) [30] and CONN visualization (CONNvis) [1]. 706

The mU-matrix is a SOM visualization that shows Euclidean 707

distances between prototypes neighboring in the SOM lattice 708

as well as the number of data samples in their receptive 709

fields, as explained in Fig. 9. CONNvis is the visualization 710

of CONN graph on the SOM lattice. The first interactive 711

clustering [Fig. 9(a)] was obtained from mU-matrix [30]; the 712

second one, shown in Fig. 9(b), was obtained from CONNvis 713

[1]. The clustered image, obtained through CONNvis, is shown 714

in Fig. 8(a). The clustered image produced from the mU-matrix 715

can be seen in [1]. In both cases, the extracted clusters look 716

very similar except the clustering from mU-matrix leaves more 717

prototypes unclustered as seen in Fig. 9(a). Table III gives the 718

index values for the interactive clusterings and for k-means with 719

selected k values whereas Fig. 10 shows the index values for k- 720

means with k values up to 40. For k-means, k4 is favored as 721

the best partitioning by Conn_Index, PBM, and CDbw. These 722

four clusters, shown in Fig. 8(b), appear to be superclusters of 723

the known 28 ones. One supercluster (dark green) comprises 724

the known vegetation classes (lawn, trees, bushes, etc.), one 725

(blue) includes the water classes (ocean, canals, pool, etc.), one 726

(brown) represents soil (marshlands, bare soil, etc.) and one 727

(purple) comprises roads, concrete, and different roof materials. 728

The partitioning of k-means clustering with k2 which is favored 729

by DBI, GDI, and Silhouette combines vegetation and soil into 730

one group and everything else into another group. For larger 731

k values, k-means produces smaller spherical clusters which 732

do not correspond to the true partitioning. This is indicated 733

by increasing DBI and decreasing GDI values as k increases. 734

CDbw and Conn_Index do not have monotonic relation with 735

increasing k, and they favor the cases where the clusters are 736

relatively more self-contained (a larger number of connected 737

pairs of prototypes reside within clusters). Contrarily, CH-VRC 738

produces greater index values for greater k values (from k = 10 739

to k = 30) since BGSS increases and WGSS decreases due to 740

smaller clusters for large k and this cannot be balanced by the 741

K − 1 factor in the index formula given in (4) (Fig. 11). 742

When the indices of k-means clusterings are compared to the 743

indices of the interactive clusterings, we expect them to favor 744

the latter ones because we know from expert evaluation that 745

those correspond better to the true material groups. Another rea- 746

son for this expectation is that the separation between clusters 747

is increased by the omission of prototypes at the boundaries 748

[black cells in Fig. 9(a) and (b)]. Conn_Index favors the 749

interactive clusterings over k-means clustering for k > 4 since 750

the resulting partitions obtained by k-means with k > 4 do not 751

fit the natural ones. For k-means clustering with k = 2 or k = 4, 752

the clusters become large and they correspond to the superclus- 753

ters we described above [the k = 4 case is shown in Fig. 9(c)]. 754

In these cases, Intra_Conn is high (0.98 as shown in Table IV) 755

since most of the connected prototypes remain within these 756

large clusters. The high Intra_Conn value produces a large 757

Conn_Index [(14)]. Therefore, Conn_Index favors k = 2 or 758

k = 4 over the interactive clusterings. DBI, CDbw, Silhouette, 759

and PBM favor any of the k-means clusterings over the interac- 760

tive ones in spite that k-means clustering for k > 4 are not su- 761

perclusters anymore (do not fit true partitions). GDI, however, 762

indicates the interactive partitioning as better than k-means for 763

k > 10 due to the fact that all clusters become smaller in k- 764

means clustering with increasing k. The smaller clusters have 765
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Fig. 8. Cluster map of Ocean City, an 8-band 512 × 512 pixel remote sensing image. 28 clusters were identified, and color coded according to the color wedge
(not all colors were used from the color wedge). (a) Cluster map obtained by interactive clustering based on CONN visualization [1]. The cluster labels of the
SOM prototypes are shown in Fig. 9(b). (b) Cluster map by k-means clustering, k4.

Fig. 9. Clusterings of the 40 × 40 SOM prototypes of Ocean City data. Each cell is a prototype, color coded with a cluster label consistent with Fig. 8. The
intensities of the white fences around the cells are proportional to the distances between neighbor prototypes (mU-matrix). Black cells are unclustered prototypes.
(a) Clustering obtained from a modified U-matrix visualization [30], (b) Clustering from CONN visualization [1] (c) k-means clustering, k4 (k2 produces two
clusters where one is the union of the purple and blue clusters and the other is the union of the brown and green clusters).

TABLE III
VALIDITY INDICES FOR THE CLUSTERINGS OF OCEAN CITY. INDICES FOR THE FAVORED PARTITIONINGS ARE IN BOLD FACE

relatively smaller within-cluster distances which reduces GDI.766

Similarly to Conn_Index, GDI favors k-means clusterings767

with k2 and k4 over the interactive ones, but the GDI values for768

these k-means clusterings are at least four times higher than the 769

index values for the interactive ones (2.75 and 2.25 versus 0.55 770

and 0.41 in Table III), whereas the Conn_Index values are 771
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Fig. 10. Validity indices for k-means clustering of the Ocean City data
set. (a) Comparison with DBI, GDI, CDbw, and Conn_Index for k-means
clusterings. (c) Comparison with Silhoutte, CH-VRC, and PBM indices. CH-
VRC is normalized to 1 by its maximum value 906 (k-means with k = 30,
Table 3).

Fig. 11. Analysis of CH-VRC for k-means clustering with different k values
up to 40. WGSS/(N − k) in (4) is normalized to one for comparison
since N is large. For k > 10, it can be seen that average between-cluster
distance (BGSS/(k − 1)) is almost constant whereas within-cluster distances
WGSS/(N − k) decreases due to smaller cluster size by increasing k values.
This provides large CH-VRC values even if the partitioning is bad.

much similar (0.70 and 0.72 versus 0.66 and 0.63 in Table IV).772

CH-VRC strongly favors k-means clustering with k = 30 as the773

best even though that is a bad partitioning of the data set. CH-774

VRC also strongly favors the interactive clusterings [Fig. 9(a)775

and (b)] as second and third; however, this is mainly due to776

the large number of clusters which results in decreasing within-777

cluster distances while keeping the average between-cluster778

TABLE IV
Conn_IndexAND ITS COMPONENTS Intra_ConnAND Inter_ConnFOR

THE CLUSTERINGS OF OCEAN CITY. INDICES FOR THE FAVORED

PARTITIONINGS ARE IN BOLD FACE

distance constant with increasing number of clusters (Fig. 11). 779

To further support this claim, we refer to Table I which shows 780

that for a smaller number of clusters in the Clown data, CH- 781

VRC ranks the true partitioning very low. 782

To summarize, for the relatively large number of clusters 783

with different shapes and sizes in this data set, DBI, GDI, 784

CDbw, Silhouette, CH-VRC, and PBM may not be helpful in 785

evaluation of cluster validity. Conn_Index appears to provide 786

more faithful evaluation for this case. 787

C. Evaluation of Partial Clusterings 788

SOM visualizations provide tools to extract cluster bound- 789

aries and find the cluster structure. However, due to different vi- 790

sualization schemes, knowledge representations, or processing 791

by different users, different prototypes may be left unclustered 792

in various clusterings of the same SOM. Yet, comparison of the 793

quality of such different clusterings can be of great importance. 794

We can argue that for these situations, Conn_Index and its 795

components provide useful measures. 796

Conn_Index, Intra_Conn, and Inter_Conn express the 797

relation of the unclustered prototypes to the clustered ones. 798

Since Intra_Conn measures how self-contained the clusters 799

are based on the connections among prototypes, it reflects how 800

important the prototypes are for the clusters. For example, 801

assume that pm is a prototype in cluster Ck, and a and b 802

are the numerator and the denominator of Intra_Conn(Ck) 803

[(10)], respectively. Let us remove pm from Ck and recalculate 804

the intra-connectivity of Ck after this removal, denoted by 805

Intra_Conn(Ck)− 806

Intra_Conn(Ck)− =
a −

∑P
j {CADJ(m, j) : pj ∈ Ck}
b −

∑P
j CADJ(m, j)

.

(15)
Since a ≤ b, Intra_Conn(Ck)− will be smaller than a/b, i.e., 807

Intra_Conn(Ck), if 808

P∑
j

{CONN(m, j) : pj ∈ Ck} >
a

b

P∑
j

CADJ(m, j).

(16)
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If pm has all its connections to prototypes within809

its own cluster Ck, then Intra_Conn(Ck)− becomes810

smaller than Intra_Conn(Ck) since
∑P

j {CADJ(m, j) :811

pj ∈ Ck} =
∑P

j CADJ(m, j) = RFm. In this case, the de-812

crease in Intra_Conn(Ck) depends on the RFm and on the813

size of Ck. The Inter_Conn(Ck) remains unchanged after814

this removal since pm is not at the cluster boundary [hence not815

used in either the numerator or the denominator of (13)]. If pm816

has connections to the prototypes in Ck and also to prototypes817

in another cluster, then pm is at a cluster boundary. If within-818

cluster connections of pm and its connections to other clusters819

have similar strengths, then pm is in an overlapping region820

of the clusters. For this case, removal of pm may not reduce821

Intra_Conn because
∑P

j {CADJ(m, j) : pj ∈ Ck} is about822

half of the
∑P

j CADJ(m, j). Contrarily, this removal de-823

creases Inter_Conn(Ck) [(13)] since the connections across824

clusters are reduced, which in turn increases Conn_Index825

(a better clustering). If within-cluster connections of pm are826

much stronger than its connections to other clusters, removal827

of pm reduces both Intra_Conn(Ck) and Inter_Conn(Ck).828

However, since in this case, Ck − {pm} becomes less self-829

contained due to strong connections with pm (now outside of830

Ck), the decrease in Intra_Conn value will be more sig-831

nificant than in the previous case of overlapping clusters. At832

the same time, the separation (1 − Inter_Conn) only slightly833

increases because the connections of pm to other clusters are834

much weaker than its within-cluster connections. This produces835

a lower Conn_Index value, indicating decreased clustering836

quality due to the removal of pm.837

Based on the above discussion, if prototypes at the overlap-838

ping regions are left unclustered, Conn_Index is expected to839

be higher than in the case they are assigned to a cluster. How-840

ever, if prototypes are left unclustered at the true boundaries841

of a cluster, the remaining prototypes in that cluster will have842

strong connections to these unclustered ones near the edges of843

the “trimmed” cluster. Hence, in this case, the Intra_Conn844

value will be smaller than when the prototypes are included in845

the right cluster, indicating that the omitted prototypes should846

be assigned to the respective cluster. Intra_Conn can also be847

small for random partitioning. Fortunately, in such cases a high848

Inter_Conn value will indicate the incorrect grouping.849

The interactive clusterings of the 40 × 40 SOM for Ocean850

City are shown in Fig. 9. The first one [Fig. 9(a)], obtained851

from a modified U-matrix [30], has many unclustered pro-852

totypes (black cells) due to the user’s conservative judgment853

given the uncertainty about the boundaries in the SOM visu-854

alization. The second one [Fig. 9(b)], obtained from CONN855

visualization [1], has very few omitted prototypes. Table IV856

shows the Conn_Index and its components for these cluster857

maps. Omitting a large number of prototypes in Fig. 9(a)858

produces smaller Intra_Conn and Inter_Conn. This is to859

say, the clusters are more separated in this case but many860

unclustered prototypes are strongly connected to some clusters,861

which makes those clusters less self-contained. Table IV shows862

that the difference between the Intra_Conn values of the863

clusterings from the CONN visualization and from the mU-864

matrix is 0.09 whereas the difference of their Inter_Conn865

values is 0.04. In this case, the decrease in Intra_Conn is more866

significant than the decrease in Inter_Conn, which results in867

a decreased Conn_Index value according to (14). Therefore, 868

Conn_Index favors the more complete clustering based on 869

CONN visualization over the clustering based on the modified 870

U-matrix. 871

VI. SUMMARY, DISCUSSION, AND CONCLUSION 872

Conn_Index is a new validity index for prototype-based 873

clustering algorithms. Prototype-based clustering is increas- 874

ingly important in the light of the data volume explosion 875

we experience in real applications and because of the need 876

for extraction of complex structure from data. Conn_Index 877

utilizes the data topology on the prototype level as its scatter 878

and separation measures. Its within-cluster scatter measure, 879

the intra-cluster connectivity (Intra_Conn), and between- 880

cluster separation measure, the complement of the inter-cluster 881

connectivity (1 − Inter_Conn), are obtained from the “con- 882

nectivity matrix” (a weighted Delaunay triangulation) defined 883

in [1], thus Conn_Index reflects the cluster validity according 884

to the adjacencies of the prototypes, and to local data distri- 885

bution within their receptive fields. This makes Conn_Index 886

applicable for validity evaluation of clustering results for data 887

sets with clusters of different shapes, sizes or densities, or with 888

overlapping clusters. The scope of this index is restricted to 889

prototype-based clusterings due to its construction, and it is not 890

applicable for data mining scenarios where data samples are 891

clustered directly. 892

Conn_Index and its components are bounded (all are in 893

[0, 1]). The maximum Conn_Index value indicates that clus- 894

ters are well-separated whereas any index value less than 1 895

shows clusters are overlapping. Due to the constructions of 896

Intra_Conn (which uses all connections of each cluster) and 897

Inter_Conn (which uses the connections of the prototypes 898

at the cluster boundaries only), Conn_Index can also help 899

evaluation of partial clusterings, where different prototypes are 900

left unclustered in different clusterings. 901

One thing to notice about the Intra_Conn component of 902

Conn_Index is its dependence on the size of clusters. We 903

can illuminate this as follows: Assume the body of the Clown 904

in Fig. 2 has more data samples (hence more prototypes) at 905

the bottom of the body, and we are calculating the index for 906

true labels. The sum of the receptive fields
∑

RFj of the 907

body increases with these additional samples but the num- 908

ber of the prototypes that have their second BMU in other 909

clusters [one in the body, the prototype connected to O1 in 910

Fig. 2(b)] remains the same. This produces an equal amount of 911

increase (number of additional samples) in the numerator and 912

the denominator of Intra_Conn(body) [(10)], resulting in a 913

higher Intra_Conn(body), hence a higher Intra_Conn value 914

than the actual Intra_Conn of the original true labels (0.97, 915

Table I). The body becomes more self-contained than before. 916

However, such addition of data samples does not affect the sep- 917

aration of the body from others because the separation measure 918

[1 − Inter_Conn, (13)] depends only on the prototypes at the 919

cluster boundaries. Yet, Conn_Index becomes slightly larger 920

which indicates a better clustering because of a slightly more 921

self-contained cluster. The averaging of Intra_Conn(Ck) val- 922

ues [(9)] will diminish the effect of few large clusters in case 923

of many existing clusters. However, partitioning large data sets 924

into a few clusters will produce a high Intra_Conn value since 925
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Intra_Conn(Ck) [(10)] tends to one as the size of cluster Ck926

increases, even if those clusters do not correspond to the true927

partitions. For such cases, the quality of extracted clusters is928

determined by the Inter_Conn value which is independent of929

the size of the clusters but dependent on the similarities at the930

cluster boundaries.931

The computational complexity of Conn_Index is of O(P 2)932

and only dependent on the number of prototypes P . It is similar933

to or less complex than the computational complexities of other934

indices in this paper. We refer to the Appendix for a detailed935

complexity analysis.936

One important aspect of the application of Conn_Index is937

that the number of prototypes should be significantly lower938

than the number of data samples and much greater than the939

number of clusters. If the number of prototypes (with nonempty940

receptive fields) is very close to the number of data samples, the941

index becomes meaningless due to the fact that the matrices942

CADJ and CONN , from which the index is constructed,943

represent the topology of prototypes with the local data distrib-944

ution. If the number of prototypes is very close to the number of945

clusters, then many prototypes will be singleton clusters, which946

in turn produces invalid Inter_Conn measures. However, both947

of these cases are in contradiction to the idea of prototype-based948

clustering and should not arise in connection with the use of949

Conn_Index. Apart from the above extremes, Conn_Index950

should provide a significant tool for measuring the quality of951

prototype-based clustering of complex data sets, specifically952

when the number of prototypes P is much less than the number953

of data samples N , (P is of O(
√

N ), but much larger than the954

number of clusters K (P is of O(K2)), as it is the case for the955

data sets in this paper.956

Finally, we want to emphasize that while we present this957

paper in the context of SOM prototypes and k-means clustering958

of these prototypes, the construction of Conn_Index is not959

specific to SOM prototypes or to the clustering algorithm.960

The construction of the Conn_Index is based on the Voronoi961

tessellation of the data space with respect to a given set of962

prototypes (obtained with any clustering algorithm, or in any963

other manner). Therefore, Conn_Index is applicable to the964

evaluation of any prototype-based clustering where prototypes965

are produced by a vector quantization algorithm.966

APPENDIX967

COMPLEXITY OF Conn_Index968

In this section, we discuss the computational complexity of969

the proposed Conn_Index and compare it to the computational970

complexities of various indices used in this paper. Due to971

the fact that this paper is focused on the evaluation of the972

quality of clustering, the computational cost of prototype-based973

clustering algorithm, which is the same for any index used for974

the evaluation of cluster validity, is ignored.975

The complexity of Conn_Index is computed from the976

complexity of the two subcomponents Inter_Conn and977

Intra_Conn. Let N , P , and K be the number of data points,978

the number of prototypes, and the number of clusters, re-979

spectively, and let Pk and Nk be the number of prototypes980

and data points in cluster Ck, respectively. D will denote the981

dimensionality (number of features) of the data points. For982

Pk prototypes in cluster Ck, finding Intra_Conn will need983

∑
k Pk ∗ (Pk − 1)/2(< P 2) operations. To find Inter_Conn, 984

we need to find, for each pair of clusters, Inter_Conn(k, l), 985

the connectivities across cluster boundaries (this costs, for each 986

pair of clusters Ck and Cl, at most Pk ∗ Pm operations) and we 987

need the within-cluster connectivities of the prototypes at the 988

boundaries (at most
∑

k Pk ∗ (Pk − 1)/2 operations, assum- 989

ing each prototype has connections to prototypes in another 990

cluster). Calculation of Inter_Conn from Inter_Conn(k, l) 991

requires O(K2) � O(P 2) operations. Thus, Conn_Index has 992

a complexity of at most O(P 2). (Note that the calculation 993

of matrices CADJ and CONN do not carry any additional 994

computational cost since they are formed during assignment of 995

data samples to the prototypes, which is a mandatory step in 996

prototype-based clustering.) The complexity depends only on 997

the number of prototypes and does not depend on the number 998

of data samples or on the dimensionality of the data points, 999

which makes Conn_Index easily applicable for large and 1000

high-dimensional data sets. 1001

The complexity of GDI [5] [(1)] based on average dis- 1002

tance to cluster centroid as within-cluster distance requires 1003∑
k Pk ∗ (Pk − 1)/2 operations to find cluster centroids and 1004∑
k Pk = P operations to find the within-cluster distances if 1005

it is calculated based on the prototypes (at most of O(DP 2)), 1006

and
∑

k Nk ∗ (Nk − 1)/2 operations (of O(DN2)) if it is 1007

calculated based on the data samples. The calculation of av- 1008

erage linkage requires K ∗ (K − 1)/2 operations after finding 1009

centroids, whereas the calculation of single linkage requires 1010∑
k

∑
m Pk ∗ Pm(< P 2) operations. Thus GDI has a computa- 1011

tional complexity of O(DP 2) when calculated from prototypes 1012

and O(DN2) when based on data samples. The computational 1013

complexity of the DBI which uses average distance to cluster 1014

centroid and average linkage [ (1)]; of the Silhouette width 1015

criterion that uses average distance between samples in the 1016

cluster and single linkage [(3)]; and of CH-VRC that uses 1017

average distance to cluster centroid and average linkage [(4)] 1018

is similar to the complexity of GDI. While the complexity of 1019

Conn_Index, O(P 2), is comparable to O(DP 2), it is much 1020

less than O(DN2) since for the data sets used in this paper, P 1021

is typically in the order of a few times the square root of the 1022

number of data samples (
√

N), that is O(DN2) ≈ O(DP 4). 1023

(For example, the Clown data set has 2220 data samples, 254 1024

prototypes with nonempty receptive fields, and 9 clusters; the 1025

Iris data set has 150 samples, 16 prototypes, and 3 clusters; 1026

Ocean City has 262 144 [512 × 512] samples, 1600 proto- 1027

types and about 30 clusters.) Assuming an equal number of 1028

prototypes per cluster, Pk = P/K, the complexity of CDbw[6] 1029

is O(NDP 2
k K2) = O(NDP 2) ≈ O(DP 4), obviously higher 1030

than the complexity of Conn_Index, and the gap widens for 1031

large values of N and D. 1032
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