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In Proc. Int’l Joint Conference on Neural Networks, 2007 (IJCNN 2007), Orlando, FL, Aug 12-17, 2007

Abstract— One of the fundamental challenges of clustering is
how to evaluate, without auxiliary information, to what extent
the obtained clusters fit the natural partitions of the data set. A
common approach for evaluation of clustering results is to use
validity indices. We propose a new validity index,Conn Index,
for prototype based clustering. Conn Index is applicable to
data sets with a wide variety of cluster characteristics (different
shapes, sizes, densities, overlaps). We constructConn Index

based on inter- and intra-cluster connectivities of prototypes,
which are found through a weighted Delaunay triangulation
called “connectivity matrix” [1], where the weights indicate the
data distribution. We compare the performance ofConn Index

to commonly used indices on synthetic and real data sets.

I. I NTRODUCTION

Clustering means splitting a data set into groups such that
the data samples within a group are more similar to each
other than to the data samples in other groups. Clustering
is done with many methods which can be categorized in
several ways where the two major ones are partitioning and
hierarchical clustering. For any method, clustering the data
directly becomes computationally heavy as the size of the
data set increases. In order to significantly reduce the com-
putational cost, two-step algorithms have been proposed [2],
[3], [4], [5]. Two-step algorithms (prototype based clustering)
first find the quantization prototypes of data, and then cluster
the prototypes. Using the prototypes instead of data can also
reduce noise because the prototypes are the local averages
of the data.

A widely and successfully used neural paradigm for find-
ing prototypes is the Self-Organizing Map (SOM). The SOM
is a spatially ordered quantization of a data space where
the quantization prototypes are adaptively determined for
optimal approximation of the (unknown) distribution of the
data. The SOM also facilitates visualization of the structure
of a higher-dimensional data space in one or two dimensions,
which can guide semi-manual clustering. Thus, the SOM
is a powerful aid in capturing clusters in high-dimensional
intricate data sets [1], [2], [3], [6].

With any clustering method, whether clustering the data
itself or its prototypes, the main problems are to determine
the number of clusters and to evaluate the validity of the
clusters. A validity measure of the clustering ideally shows
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how well the obtained clusters fit the natural partitions
of the data set, without any a priori class information.
Cluster validity approaches can use three criteria:external
criteria (evaluate the result with respect to a pre-specified
structure),internal criteria (evaluate the result with respect to
a proximity matrix of the data vectors), andrelative criteria
(evaluate the validity by comparing it to other clustering
results) [7]. Many different methods exist for investigations
of the validity of crisp clustering [8], [9], [10], [11], [12]
or fuzzy clustering [13], [14], [15]. Due to space constraints
we refer the reader to [7], [10], [11], [12] for crisp clustering
and to [7], [15] for fuzzy clustering for detailed analysis of
the cluster validity indices. For crisp clustering, the Davies-
Bouldin index [8] and the generalized Dunn Index [10]
are some of the most commonly used. Both depend on
a separationmeasure between clusters and a measure for
compactnessof clusters based on distance. Even though these
two indices work satisfactorily for well-separated clusters,
they may fail for complicated data structures with clusters
of different shapes or sizes or with overlapping clusters.
When the clusters have homogeneous density distribution,
one effective approach to correctly evaluate the clustering of
data sets is CDbw (composite density between and within
clusters) [16]. CDbw finds prototypes for clusters instead of
representing the clusters by their centroids, and calculates the
validity measure based on inter- and intra-cluster densities,
and cluster separation. The densities are calculated as the
number of data samples within a standard deviation from
the prototypes. However, it fails to represent true inter- and
intra-cluster densities when the clusters have inhomogeneous
density distribution.

Our objective is to define a validity index that can be used
successfully for any data set with overlapping clusters, with
varying cluster statistics or with clusters of different shapes
or sizes. We introduce a new validity index,Conn Index,
based on inter- and intra-cluster densities of the prototypes.
These densities are found through a weighted Delaunay trian-
gulation (connectivity matrix, [1]) where the weights indicate
the data distribution between the neighbor prototypes.

In order to evaluate the effectiveness ofConn Index we
use three synthetic data sets with different properties andfour
real data sets: Breast Cancer Wisconsin (10-dimensional),
Iris (4-dimensional), Wine (13-dimensional) and Ocean City,
an 8-band remote sensing spectral image. Their prototypes
are clustered with various methods: k-means, single linkage;
and two semi-manual clusterings of the SOM prototypes.
We describeConn Index in Section II and give examples
of its performance on synthetic data sets in Section III. In



Section IV we applyConn Index to the real data sets. We
summarize our conclusions in Section V.

II. Conn Index: A VALIDITY INDEX BASED ON INTRA -
AND INTER-CLUSTER DENSITIES

A. Density representation by cumulative adjacency matrix
(CADJ) and connectivity strength matrix (CONN )

The first step of prototype based clustering algorithms is
to find the prototypes of the data vectors by a process such
as neural networks, hierarchical clustering algorithms, etc.
Each prototype is the best matching unit (BMU) for the data
vectors in its receptive fieldRF (Voronoi polyhedron). The
sizes of the receptive fields indicate how the data is dis-
tributed among the prototypes. To indicate the similarity of a
prototype to others, we introduce a weighted Delaunay trian-
gulation (cumulative adjacency matrixCADJ , connectivity
matrixCONN [1]) where the weights correspond to the data
distribution among the neighbor prototypes.CADJ (directed
weighted Delaunay triangulation) andCONN (weighted
Delaunay triangulation) are defined in [1] as follows:

Definition 1: Let CADJ be an N × N matrix where
N is the number of prototypes. The cumulative adjacency,
CADJ(i, j), of two prototypesvi and vj , is the number of
data vectors for whichvi is the BMU andvj is the second
BMU. By this definition,|RFi| =

∑N

k=1
CADJ(i, k).

Definition 2: The level of connectedness (similarity) of
two prototypesvi and vj is

CONN(i, j) = CADJ(i, j) + CADJ(j, i) (1)

By definition, CONN is symmetric and shows how
similar two prototypes are by indicating the number of data
vectors for which they are the BMU and the second BMU
pair. CADJ andCONN indicate the data topology on the
prototype level by showing the neighborhood relations of
the prototypes. They also provide a finer resolution for data
distribution than the Voronoi polyhedron level by showing
how the data is distributed within the Voronoi polyhedron
among the neighbor prototypes.

A visualized example of theCONN matrix is shown
in Figure 1 for a 2-d data set called “Lsun” created by
[17]. This data set has three well-separated clusters (two
rectangular and one spherical) with different variances within
clusters and different inter-cluster distances. The prototypes
were obtained by a 10x10 SOM.CONN makes high-
density regions and no-data regions (disconnected parts of
the data set) visible, which outlines the boundaries of the
three clusters. We show in the next sections howCADJ
andCONN can help determine the validity of clustering for
two-step clustering (prototype based clustering) algorithms.

B. Definition ofConn Index

AssumeK clusters,N prototypesv in a data set and let
Ck, Cl refer to two different clusters where1 ≤ k, l ≤ K.
Conn Index will be defined with the help of two quantities,
compactnessof clusters,Intra Conn, and separationof
clusters,1 − Inter Conn, so we introduce these quantities

(a)

(b)

Fig. 1. Density representation by connectivity matrixCONN , shown on
a simple 2-d dataset Lsun [17]. A 10x10 SOM is used to obtain prototypes.
(a) Lsun (3 clusters) and its prototypes with true labels in data space.
Interpolating prototypes (small open circles) have empty receptive fields.
Variances within clusters and inter-cluster distances aredifferent but the 3
clusters are well separated. (b)CONN visualization for this dataset in data
space. The width of a line indicates the number of data vectors for which the
prototypes connected by this line are the BMU and the second BMU pair.
The separations between clusters are indicated by unconnected prototypes.

first. The compactness ofCk, Intra Conn(Ck), is the ratio
of the number of data vectors inCk whose second BMU is
also inCk, to the number of data vectors inCk:

Intra Conn(Ck) =

∑N

i,j{CADJ(i, j) : vi, vj ∈ Ck}
∑N

i,j{CADJ(i, j) : vi ∈ Ck}
(2)

By this definition, Intra Conn(Ck) ∈ [0, 1] where a
greater value shows a more compact cluster. If the second
BMUs of all data vectors inCk are also in Ck, then
Intra Conn(Ck) = 1. The intra-cluster connectivity of all
clusters,Intra Conn, is the average compactness,i.e.,

Intra Conn =
K∑

k

Intra Conn(Ck)/K (3)

We define the inter-cluster connectivity between clustersCk

andCl, Inter Conn(Ck, Cl), as the ratio of the connectivity
betweenCk andCl to total connectivity of the prototypes in
Ck which have at least one connection to a prototype inCl,

Inter Conn(Ck, Cl) =
Conn(Ck, Cl)∑N

i,j{CONN(i, j) : vi ∈ Vk,l}
(4)

with Conn(Ck, Cl) =
N∑

i,j

{CONN(i, j) : vi ∈ Ck, vj ∈ Cl}

andVk,l = {vi : vi ∈ Ck, ∃ vj ∈ Cl : CADJ(i, j) > 0}.

This ratio shows how similar the prototypes at the boundary
of Ck are to the ones at the boundary ofCl. If Ck and



Cl are completely separated (have no connection), then
Inter Conn(Ck, Cl) = 0. A greaterInter Conn(Ck, Cl)
indicates a greater degree of similarity betweenCk andCl.
Inter Conn(Ck, Cl) > 0.5 indicates that those prototypes
in Ck which have connections toCl should in fact be in
Cl, or Ck andCl should be combined. We define the inter-
connectivity ofCk to all other clusters,Inter Conn(Ck),
and the average similarity of clusters,Inter Conn, as

Inter Conn(Ck) = max
l,l≤K

Inter Conn(Ck, Cl) (5)

Inter Conn =

K∑

k

Inter Conn(Ck)/K (6)

Then 1 − Inter Conn is the separationmeasure between
clusters. Finally, we defineConn Index as

Conn Index = Intra Conn × (1 − Inter Conn) (7)

Conn Index ∈ [0, 1], increases with better clustering, where
1 means completely separated clusters. The complexity of
Conn Index is O(N3), which depends only on the number
of prototypes, while the complexity of GDI [10] isO(d ×
M2) and of CDbw [16] isO(d × M × N2) whered is the
data dimensionality andM is the number of data vectors.
Conn Index is fast for large and high-dimensional data sets
compared to GDI and CDbw.

To exemplify howConn Index is calculated, Figure 2
shows a clustering of eleven prototypes of synthetic data into
three groups, A, B and C. Numbers on the connecting lines
show the connectivity strengths between the respective proto-
types. For the prototypes at the cluster boundaries (p5, p6, p8,
p9 and p10), cumulative adjacencies are also indicated. B
has 10 (6+4+4) data vectors whose BMU and second BMU
are in B. B also has 3 data vectors whose second BMU
is in another cluster (CADJ(p6, p5) + CADJ(p6, p9) =
2 + 1 = 3). Thus Intra Conn(B) is 14/17. Similarly,
Intra Conn(A) is 18/19 andIntra Conn(C) is 11/13,
which produceIntra Conn = 0.87. The total connec-
tivity strength between B and C isCONN(p6, p9) +
CONN(p8, p10) = 2+1 = 3. The prototypes in B that have
a connection to C arep6 and p8. Their connections within
B areCONN(p6, p7), CONN(p6, p8) andCONN(p8, p7)
which sum up to 10. Hence,Inter Conn(B, C) is 3/17.
Similarly, Inter Conn(B, A) is 3/13 which results in
Inter Conn(B) = max(3/13, 3/17) = 3/13. A and C
are only connected to B, soInter Conn(A) = 3/10 and
Inter Conn(C) = 3/14 which result in Inter Conn =
0.25 andConn Index = 0.87 × 0.75 = 0.65.

While Inter Conn depends only on the connections of
prototypes at the cluster boundaries,Intra Conn heavily
depends on the sizes of the clusters. Therefore,Intra Conn
will certainly decrease with increasing number of clusters,
unless the clusters are split along natural cluster boundaries.

III. E XAMPLES FORConn Index PERFORMANCE

We use three synthetic data sets created by [17]: Lsun,
Wingnut, Engytime, each with different properties. We obtain

Fig. 2. An example of howConn Index is calculated. We have three
clusters, A, B and C, and 11 prototypes indicated bypi. The numbers on
the lines connecting two prototypes are the connectivity strengths between
those prototypes. We also indicate the cumulative adjacencies for the
prototypes at the boundaries,CADJ(p5, p6) = 1, CADJ(p6, p5) =
2; CADJ(p6, p9) = CADJ(p9, p6) = CADJ(p10, p8) = 1 and
CADJ(p8, p10) = 0.

TABLE I

VALIDITY INDICES FOR SINGLE LINKAGE CLUSTERING OFLSUN

Indices for Indices for single-linkage clustering,

Validity true cluster k = # of clusters

Indices labels (k=3) k=2 k=3 k=4 k=5

DBI 0.77 1.16 1.36 0.74 0.78

GDI 1.37 0.83 0.35 0.51 0.41

CDbw 0.96 1.18 1.17 1.03 2.05

Conn Index 1.0 0.37 0.84 0.88 0.68

the prototypes by a 10x10 SOM, and cluster them by k-means
and single linkage clustering. We compareConn Index to
the commonly used Davies-Bouldin index (DBI) [8], to the
generalized Dunn index (GDI) [10] and to an index proposed
for prototype based clustering (CDbw) [16]. GDI is used with
centroid linkage and average distance of points to cluster
centroids as the inter- and intra-cluster distance metrics, re-
spectively. DBI decreases with the increasing cluster quality
while GDI, CDbw andConn Index increase with better
clustering. DBI, GDI and CDbw have values in[0,∞) while
Conn Index ∈ [0, 1].

A. Lsun: 400 points, 3 well-separated clusters

Lsun has three well separated clusters: two rectangular,
one spherical, shown in Figure 1.a. Since the true clusters are
completely separated,Conn Index is 1 (Figure 1.b). Single
linkage clustering with 3 clusters, merges two rectangular
clusters and has an extra singleton (Figure 3.a). The closest
result to the true labels is the one with 4 clusters (Figure 3.b)
where the only difference is a singleton prototype. It is also
favored best byConn Index (Figure 3.c) with a maximum
index, 0.88, for k=4, although it is less than the index for
the true labels, as expected. Table I provides DBI, GDI,
and CDbw values for single linkage clustering. Among
them, only GDI favors the true clusters. Figures 3.d-e show
k-means clustering, which is unsuccessful because of the
variable cluster shapes and proximity relations of clusters.
Due to the same reasons, all indices exceptConn Index
favor five clusters for k-means (Table II) which is the case



(a) (b) (c)

(d) (e) (f)

Fig. 3. Clustering of Lsun. Small dots are data points, symbols indicate prototypes, with labels assigned by a clustering algorithm. Top: Single linkage
clustering (a) with the true number (3) of clusters, (b) k=4 (for which theConn Index is maximum, Table II), and (c)Conn Index for different numbers
of clusters. Bottom: k-means clustering (d) with the true number of clusters, (e) k=2 (at maximumConn Index), and (f) Conn Index for different
numbers of clusters.

TABLE II

VALIDITY INDICES FOR K-MEANS CLUSTERING OF THE SYNTHETIC

DATA SETS USED IN THIS PAPER

Indices for Indices for k-means,

Data Validity true k = # of clusters

Sets indices clusters k=2 k=3 k=4 k=5

DBI 0.77 0.93 0.77 0.61 0.58

Lsun GDI 1.37 1.50 1.67 1.63 1.83

(k=3) CDbw 0.96 1.34 0.76 1.64 1.80

Conn Index 1.0 0.70 0.51 0.34 0.54

DBI 0.97 0.95 0.88 0.85 0.84

Wingnut GDI 1.48 1.51 1.32 1.55 1.34

(k=2) CDbw 0.86 1.02 0.54 0.39 0.43

Conn Index 0.90 0.60 0.45 0.52 0.58

DBI 0.80 0.97 0.94 0.81 0.89

Engy GDI 1.36 1.35 1.63 1.11 1.27

time CDbw 1.69 1.27 0.82 0.67 0.75

(k=2) Conn Index 0.77 0.77 0.54 0.53 0.53

where the two rectangular clusters are split into four spherical
ones. The maximumConn Index = 0.70 indicates the
poorer quality of k-means compared to the true partitions.

B. Wingnut: 1048 data points, 2 non-overlapping clusters

Figure 4.a shows the data set and its prototypes with
the true labels. The data set has highly varying density
distribution within clusters. The clusters are not overlap-
ping, but they are very close, which results in connections
across the prototypes at the cluster boundaries. That ex-
plainsConn Index < 1 (0.90) for the true labels. Neither
k-means nor single linkage clustering results in the true

partitioning. We leave out single linkage clustering due to
its poor performance. Figure 4.b shows the best k-means
clustering as judged byConn Index (k=2, in Figure 4.c).
Conn Index in Table II indicates the poor performance of
k-means by much smaller values than0.90. The other indices
are unsuccessful due to the data structure: they favor k-means
clustering with larger k values.

C. Engytime: 4096 data points, 2 overlapping clusters

Engytime is a mixture of two highly overlapping Gaussian
distributed clusters (Figure 5.a).Conn Index is 0.77 for the
true clusters. Even though one can expectIntra Conn to be
small because of highly overlapping clusters,Intra Conn
is 0.97 due to relatively large sizes of the clusters. The best
k-means clustering (Figure 5.b) according toConn Index
is with k=2 (0.77, Table II). The index is much larger than
the index for other k values and the same as the index for
the true clusters. For this data set, CDbw provides the best
evaluation,i. e., it significantly favors k=2 for k-means, and
it is by far the highest for the true clusters. This is becauseit
is based on deviation radius of data distribution within and
between the clusters.

IV. I NDICES ON REAL DATA SETS

A. Data sets with small number of clusters

We used three data sets from the benchmark data sets for
clustering and classification in the UCI Machine Learning
Repository: Breast Cancer Wisconsin (699 samples with 2
classes, 10-d); Iris (150 samples with 3 classes, 4-d); and
Wine (178 samples with 3 classes, 13-d). Table III gives
the indices for the known labels, and for k-means clustering
of (4x4) SOM prototypes.Conn Index favors the known



(a) (b) (c)

Fig. 4. Wingnut: A 2-d data set with highly varying density distribution within the clusters. (a) The data vectors are shown by dots, the prototypes obtained
by a 10x10 SOM are annotated with the true labels of the data intheir receptive fields. (b) k-means clustering with k=2 (at maximumConn Index). (c)
Conn Index for k-means clustering.

(a) (b) (c)

Fig. 5. Engytime: A 2-d data set which is a mixture of 2 Gaussian distributions. (a) The data vectors are shown by dots, the prototypes obtained by
a 10x10 SOM are annotated with the true labels of the data in their receptive fields. (b) k-means clustering with k=2 (at maximum Conn Index). (c)
Conn Index for k-means clustering.

TABLE III

VALIDITY INDICES FOR K-MEANS CLUSTERING OF THREE REAL DATA

SETS: BREAST CANCER WISCONSIN, IRIS AND WINE

Indices Indices for k-means,

Data Validity for true k = # of clusters

Sets indices clusters k=2 k=3 k=4 k=5

Breast DBI 0.80 0.76 1.61 1.86 1.87

Cancer GDI 1.17 1.27 0.66 0.60 0.28

Wisconsin CDbw 6.03 43.7 20.6 19.3 8.98

(k=2) Conn Index 0.79 0.78 0.64 0.39 0.30

DBI 0.81 0.49 0.75 0.92 0.98

Iris GDI 2.75 3.61 2.62 1.69 1.38

(k=3) CDbw 1.06 4.77 0.68 0.41 0.30

Conn Index 0.67 1.0 0.62 0.54 0.53

DBI 1.36 1.26 1.34 1.58 2.08

Wine GDI 0.85 1.12 0.97 0.82 0.37

(k=3) CDbw 0.24 0.67 0.51 0.45 0.25

Conn Index 0.63 0.45 0.55 0.36 0.23

labels as the best clustering for Breast Cancer and Wine.
In contrast, DBI, GDI and CDbw favor k-means clustering
(k=2) for both data sets even though Wine has 3 clusters.
Surprisingly, CDbw favors any k-means clustering to the
known labels for these two data sets. For Iris, where two
clusters are overlapping and very dissimilar to the third one,
all indices includingConn Index validate two clusters as
the best, and all indices except DBI favor the known labels
as the second best.

B. Ocean City: A large real remote sensing image

To evaluate indices on complicated data, we use a large
real remote sensing spectral image of Ocean City, Maryland.
It comprises 512x512 pixels and represents fairly com-
plicated data. Each pixel is an 8-d feature vector, called
spectrum. Ocean City is a long linear urban settlement on
the seashore. More details of the data set are in [18]. At least
25 clusters were verified by a domain expert as meaningful
physical clusters, partly by ground truthing for an earlier
supervised classification of the same image [18]. Figure 6
shows the Ocean City image with 28 clusters obtained by a
semi-manual clustering based onCONN visualization [1].
Some major classes in the image are ocean (blue), small
bays (medium blue), water canals (turquoise), lawn, trees
and bushes (green and split-pea green), dry grass (orange),
marshlands (brown and ocher), soil (gray), road (magenta)
and concrete (red). The small rows of rectangles are buildings
and their colors indicate different types of roof materials.

We have 1600 prototypes from a 40x40 SOM. When we
cluster the prototypes by k-means (k≤40),Conn Index and
CDbw favor k=4 as the best result (Table IV). These four
clusters appear to be superclusters of the known ones. One
supercluster comprises the known vegetation classes (lawn,
trees, bushes, etc.), one represents water classes (ocean,
canals, pool, etc.), one represents soil (marshlands, bare
soil, etc.) and one comprises roads, concrete, different roof
materials, etc. Table IV presents the indices up to k=8 and
Figure 7 givesConn Index, Intra Conn andInter Conn



Fig. 6. Cluster map of Ocean City, an 8-band 512x512 pixel remote sensing
image, obtained by semi-manual clustering based onCONN visualization
[1]. Each color represents a different cluster.

Fig. 7. Conn Index for k-means clustering of Ocean City data.

for all k values (k≤40). DBI and GDI reflect k=2 as the best
result where one cluster combines vegetation and soil, the
other one contains everything else. Compared to the known
clusters, k-means produces very poor partitioning fork > 4.
The incorrect clustering for large k is indicated by all indices
selecting either k=4 or k=2.

It is common practice to cluster the SOM prototypes semi-
manually, based on visualizations. In many cases, different
prototypes may be omitted from different clusterings of
the same SOM due to different visualization schemes with
different knowledge representation or processing by different
users. This results in different numbers of unclustered proto-
types in different cluster maps. Yet, we still need to be able
to compare those different clusterings.

We compare two semi-manual clusterings of the Ocean
City prototypes, based on different SOM visualizations: the
first one (Figure 8.a) is obtained from a modified U-matrix
[18], the second one (Figure 8.b) is obtained fromCONN
visualization [1]. Both of these clusterings fit the data well
(the clusters mapped back to the spatial image look very
similar to known clusters) except Figure 8.a leaves more

(a)

(b)

Fig. 8. Semi-manual clustering of the SOM prototypes of Ocean City
overlain on the 40x40 SOM. Each cell is a prototype, color coded with a
cluster label consistent with Fig.6. The intensities of thewhite fences around
the cell are proportional to the distance between neighbor prototypes. Black
cells are unclustered prototypes. (a) Clustering obtainedfrom a modified
U-matrix visualization [18], (b) Clustering fromCONN visualization [1]

TABLE IV

VALIDITY INDICES FOR K-MEANS CLUSTERING OFOCEAN CITY DATA

Indices for k-means clustering,

Validity k = # of clusters

Indices k=2 k=3 k=4 k=5 k=6 k=7 k=8

DBI 0.66 0.70 0.72 0.80 0.73 0.84 0.84

GDI 1.93 1.59 1.61 1.31 0.74 0.43 0.46

CDbw 0.38 1.94 2.33 1.56 2.17 2.27 1.91

Conn Index 0.70 0.71 0.72 0.70 0.60 0.61 0.59

data vectors unclustered due to less prototypes assigned
to clusters. The large number of unclustered prototypes in
Figure 8.a reflects the user’s conservative judgment given the
uncertainty about divisions based on the modified U-matrix.
Table V shows the indices for these cluster maps. We expect
that the validity indices favor the semi-manual clusterings
over the incorrect k-means clustering because they match the
ground truth well, and because unclustered prototypes are at
the cluster boundaries, thus increasing separation. DBI, GDI
and CDbw favor the incorrect partitioning of k-means all the
way up to k=40 even though k-means clustering fork > 4
is bad. DBI, GDI and CDbw are not helpful in evaluation of



TABLE V

VALIDITY INDICES FOR DIFFERENT CLUSTERINGS OFOCEAN CITY DATA

U-matrix CONN

Validity clustering [18] clustering [1] k-means k-means

Indices k=28 k=28 k=2 k=4

DBI 1.17 1.30 0.66 0.72

GDI 0.41 0.55 1.93 1.61

CDbw 0.18 0.21 0.38 2.33

Conn Index 0.62 0.66 0.70 0.72

Intra Conn 0.74 0.83 0.99 0.98

Inter Conn 0.17 0.21 0.29 0.27

such clustering results.
Contrarily, Conn Index, Intra Conn and Inter Conn

provide meaningful measures when the numbers of clustered
prototypes resulting from different clusterings are not the
same.Intra Conn measures the effect of omitted prototypes
because the smaller the clusters than their true size, the less
compact they are, which produces a smallerIntra Conn.
This is because the prototypes at the edges of a cluster
whose fringes are trimmed have strong connections to the
unclustered prototypes near edges, which probably belong
to that cluster.Intra Conn can also decrease when the
data set is randomly partitioned, however, in such cases,
Inter Conn will be high. If the unclustered prototypes are
at the cluster boundaries, a smaller number of clustered
prototypes is expected to yield a smallerInter Conn value.
Conn Index indicates the combined effect ofIntra Conn
and Inter Conn. In our case,Conn Index favors the
clustering based onCONN visualization over the clustering
based on the modified U-matrix.Intra Conn indicates the
clusters are more compact in the former whileInter Conn
indicates the clusters are more separated in the latter. It
is seen in our experiments that when more prototypes re-
main unclustered at cluster boundaries,Inter Conn and
Intra Conn decrease, as expected.

When clusterings with different numbers of clustered
prototypes are compared to a fully clustered SOM,
only Inter Conn should be taken into account because
Intra Conn is affected heavily by the unclustered proto-
types. When we compare the semi-manual clusterings to the
k-means clustering, Table V shows that even the smallest
Inter Conn of k-means clustering (0.27) is larger than that
of either of semi-manual clusterings (0.17 and 0.21). Hence,
Inter Conn expresses that the partitionings of semi-manual
clusterings are more correct than the ones of the k-means.

V. CONCLUSIONS

In this paper, we propose a new validity index,
Conn Index, for prototype based clustering algorithms. It
depends on the intra-cluster (Intra Conn) and inter-cluster
(Inter Conn) connectivities obtained from a weighted De-
launay triangulation (connectivity matrix, [1]).Conn Index
can be useful to evaluate cluster validity for data sets with
clusters of different shapes or sizes, or with overlapping

clusters. Conn Index in our experiments measured the
cluster validity in a more meaningful way, with respect to
the true structure of data, compared to other indices in this
study. When comparing the validity of a fully clustered
SOM with one that has unclustered prototypes,Intra Conn,
and consequentlyConn Index do not provide a meaningful
measure. However,Inter Conn can still be used for reliable
evaluation of cluster separation. We will address this situation
in future work. Although we present this discussion in the
context of SOM prototypes, we stress that the construction
of Conn Index has no specifity to SOM prototypes and
therefore it can be applied to prototypes produced by any
other vector quantization algorithms.
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