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A new cluster validity index for prototype based clustering
algorithms based on inter- and intra-cluster density
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Abstract— One of the fundamental challenges of clustering is oy well the obtained clusters fit the natural partitions
how to evaluate, without auxiliary information, to what extent

the obtained clusters fit the natural partitions of the data ®t. A of the dat‘_”‘ .set' without any a priori Class_ 'nformat'on'
common approach for evaluation of clustering results is to ge ~ Cluster validity approaches can use three crlteevs[ernal_ _
validity indices. We propose a new validity indexConn_Index,  criteria (evaluate the result with respect to a pre-specified

for prototype based clustering. Conn_Index is applicable to  structure)jnternal criteria (evaluate the result with respect to
data sets with a wide variety of cluster characteristics (dferent a proximity matrix of the data vectors), amelative criteria

shapes, sizes, densities, overlaps). We constru€onn_Index L . . .
based on inter- and intra-cluster connectivities of prototypes, (evaluate the validity by comparing it to other clustering

which are found through a weighted Delaunay triangulation ~results) [7]. Many different methods exist for investigats

called “connectivity matrix” [1], where the weights indicate the  of the validity of crisp clustering [8], [9], [10], [11], [1]2

data distribution. We compare the performance ofConn_Index  or fuzzy clustering [13], [14], [15]. Due to space consttain

to commonly used indices on synthetic and real data sets. we refer the reader to [7], [10], [11], [12] for crisp clusteg

and to [7], [15] for fuzzy clustering for detailed analysit o

the cluster validity indices. For crisp clustering, the Bav
Clustering means splitting a data set into groups such thBbuldin index [8] and the generalized Dunn Index [10]

the data samples within a group are more similar to eacre some of the most commonly used. Both depend on

other than to the data samples in other groups. Clusteringseparationmeasure between clusters and a measure for

is done with many methods which can be categorized ifcompactnessf clusters based on distance. Even though these

several ways where the two major ones are partitioning ando indices work satisfactorily for well-separated cluste

hierarchical clustering. For any method, clustering theadathey may fail for complicated data structures with clusters

directly becomes computationally heavy as the size of thef different shapes or sizes or with overlapping clusters.

data set increases. In order to significantly reduce the com¢hen the clusters have homogeneous density distribution,

putational cost, two-step algorithms have been proposkd [2dne effective approach to correctly evaluate the clusgesin

[3], [4], [5]. Two-step algorithms (prototype based clustg) data sets is CDbw (composite density between and within

first find the quantization prototypes of data, and then elustclusters) [16]. CDbw finds prototypes for clusters instefd o

the prototypes. Using the prototypes instead of data can algepresenting the clusters by their centroids, and calesi ke

reduce noise because the prototypes are the local averagaldity measure based on inter- and intra-cluster desssiti

of the data. and cluster separation. The densities are calculated as the
A widely and successfully used neural paradigm for findaumber of data samples within a standard deviation from

ing prototypes is the Self-Organizing Map (SOM). The SOMhe prototypes. However, it fails to represent true interd a

is a spatially ordered quantization of a data space wheigtra-cluster densities when the clusters have inhomangse

the quantization prototypes are adaptively determined faensity distribution.

optimal approximation of the (unknown) distribution of the Our objective is to define a validity index that can be used

data. The SOM also facilitates visualization of the struetu successfully for any data set with overlapping clustersh wi

of a higher-dimensional data space in one or two dimensiongarying cluster statistics or with clusters of differenaples

which can guide semi-manual clustering. Thus, the SOMr sizes. We introduce a new validity indeXpnn_Indezx,

is a powerful aid in capturing clusters in high-dimensionabased on inter- and intra-cluster densities of the protsyp

intricate data sets [1], [2], [3], [6]. These densities are found through a weighted Delaunay trian
With any clustering method, whether clustering the datgulation Connectivity matrix[1]) where the weights indicate

itself or its prototypes, the main problems are to determinthe data distribution between the neighbor prototypes.

the number of clusters and to evaluate the validity of the In order to evaluate the effectiveness@bnn_Index we

clusters. A validity measure of the clustering ideally skowuse three synthetic data sets with different propertieSaund

real data sets: Breast Cancer Wisconsin (10-dimensional),
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I. INTRODUCTION



Section IV we applyConn_Index to the real data sets. We e
summarize our conclusions in Section V. s 42 , probees
T4 4 cluster
Il. Conn_Index: A VALIDITY INDEX BASED ON INTRA - ' Ta O chsed
AND INTER-CLUSTER DENSITIES ? qj%n ;’8 &y %30
A. Density representation by cumulative adjacency matrix : 442 j = <><><>°<><>
(CADJ) and connectivity strength matribxXC(ON N) w g}* ;;gg e § %ﬁﬁ:%
The first step of prototype based clustering algorithms is i % i‘ EQ Al + :
to find the prototypes of the data vectors by a process such (a)
as neural networks, hierarchical clustering algorithns, e 8
Each prototype is the best matching unit (BMU) for the data 5
vectors in its receptive fiel& F' (Moronoi polyhedron). The . b
sizes of the receptive fields indicate how the data is dis- e
tributed among the prototypes. To indicate the similaritya o ’ L
prototype to others, we introduce a weighted Delaunay-trian R %o -
gulation gumulative adjacency matri€ AD.J, connectivity 1 Em
matrix CON N [1]) where the weights correspond to the data o} . : . " .
distribution among the neighbor prototypésd D.J (directed (b)

weighted Delaunay triangulation) andONN (weighted . 0 o
; ; . ; . Fig. 1. Density representation by connectivity matfiXO N N, shown on
De'a“,”"?‘Y trlangulatlon) are defined in [1] as fO|_|0WS. a simple 2-d dataset Lsun [17]. A 10x10 SOM is used to obtairopypes.
Definition 1: Let CADJ be an N x N matrix where (a) Lsun (3 clusters) and its prototypes with true labels atadspace.
N is the number of prototypes. The cumulative adjacenchpterpolating rI?_rotoltypes (Smsl! Opeﬂl Circleg_) have igflﬂlyepti\ée fiﬁldsa-
. ; ariances within clusters and inter-cluster distancesdiferent but the
OADJ(Z’ j)' of two .proto.typeazi and vj, 1S the number of clusters are well separated. (6O N N visualization for this dataset in data
data vectors for whichy; is the BMU andv; is the second  space. The width of a line indicates the number of data vedtsrwhich the
BMU. By this definition,|RF;| = ZN CADJ(i, k). prototypes connected by this line are the BMU and the secavit) Bair.
S . k=1 A The separations between clusters are indicated by uncethpoototypes.
Definition 2: The level of connectedness (similarity) of

two prototypesy; and v; is i ) )
first. The compactness @y, Intra_-Conn(Cy), is the ratio

CONN(i,j) = CADJ(i,5) + CADJ(j4,1) (1) of the number of data vectors ifi, whose second BMU is

" . ) also inCy, to the number of data vectors @:
By definition, CONN is symmetric and shows how N
Zi,j{OADJ(iaj) : 5,05 € Ci}

similar two prototypes are by indicating the number of dat

vectors for which they are the BMU and the second BM SSNACADJ(i,5) : v; € Cy}
pair. CAD.J and CONN indicate the data topology on the _ o ”
prototype level by showing the neighborhood relations oY this definition, Intra_Conn(Cy) € [0,1] where a

the prototypes. They also provide a finer resolution for da@feater value shows a more compact cluster. If the second
distribution than the Voronoi polyhedron level by showingBMUs of all data vectors inCj. are also inCy, then
how the data is distributed within the Voronoi polyhedrorf nira-Conn(Cy) = 1. The intra-cluster connectivity of all

ntra_-Conn(Cy) = 2)

among the neighbor prototypes. clusters,Intra_Conn, is the average compactnesgs,,

A visualized example of the’ONN matrix is shown K
in Figure 1 for a 2-d data set called “Lsun” created by Intra.Conn =Y _ Intra_Conn(Cy)/K (3)
[17]. This data set has three well-separated clusters (two k

rectangular and one spherical) with different variancebiwi  We define the inter-cluster connectivity between clusteys
clusters and different inter-cluster distances. The pyp&s andC, Inter_Conn(Cy, C)), as the ratio of the connectivity
were obtained by a 10x10 SOMCONN makes high- betweenC), andC; to total connectivity of the prototypes in
density regions and no-data regions (disconnected parts ©f which have at least one connection to a prototypé&'in
the data set) visible, which outlines the boundaries of the

three clusters. We show in the next sections howD.J Conn(Cr, C))
andCONN can help determine the validity of clustering for/nter-Conn(Cr, Ci) = —5 —

two-step clustering (prototype based clustering) algorg. ZW’{OONN(ZJ) H0i € Vit}

(4)

B. Definition ofConn_Index ih O o c N CONN o o
: t = i,9) v ,;
AssumeK clusters,N prototypesv in a data set and let w onn(C, C1) zj:{ (5,7) 1 vi € Ci,v5 € 1}
Cy, Cy refer to two different clusters where < k,1 < K. P _ _ o
Conn_Indez will be defined with the help of two quantities, "0 Vit = {vi+ vi € Gy, 3v; € G CADJ(, j) > 0}
compactnes®f clusters, Intra_-Conn, and separationof  This ratio shows how similar the prototypes at the boundary
clusters,1 — Inter_Conn, so we introduce these quantitiesof C) are to the ones at the boundary 6f. If C) and



C; are completely separated (have no connection), then
Inter Conn(Cy,C;) = 0. A greaterInter_Conn(Cy, Cy)
indicates a greater degree of similarity betwé&gnand C;.
Inter_Conn(Cy,C;) > 0.5 indicates that those prototypes
in C), which have connections t@¢; should in fact be in

C;, or Cy, and C; should be combined. We define the inter-
connectivity of Cy to all other clustersinter_Conn(Cy),

and the average similarity of clustet®ter_Conn, as

Inter_Conn(Cy) = lnll<ati)§ Inter_Conn(Cy,C;) (5)

K Fig. 2.  An example of howConn_Index is calculated. We have three
clusters, A, B and C, and 11 prototypes indicatedphy The numbers on
Inter_Conn = Z Inter_Conn(Ck)/K (6) the lines connecting two prototypes are the connectivitgngfths between
& those prototypes. We also indicate the cumulative adjaeenfor the
. . prototypes at the boundarie§;ADJ(ps,ps) = 1, CADJ(ps,p5) =
Then 1 — Inter_Conn is the separationmeasure between 2; CAD.J(ps,p9s) = CADJ(pg,ps) = CADJ(pio,ps) = 1 and

clusters. Finally, we defin€onn_Index as CADJ(ps,p10) = 0.

Conn_Index = Intra_Conn x (1 — Inter_Conn)  (7) TABLE |
. . . VALIDITY INDICES FOR SINGLE LINKAGE CLUSTERING OFLSUN
Conn_Index € [0, 1], increases with better clustering, where

1 means completely separated clusters. The complexity of Indices for | Indices for single-linkage clustering,
Conn_Index is O(N?), which depends only on the number | Validity true cluster k = # of clusters

of prototypes, while the complexity of GDI [10] i©(d x Indices | labels (k=3) | k=2 | k=3 | k=4 k=5
M?) and of CDbw [16] isO(d x M x N?) whered is the DBI 0.77 1.16 | 1.36 | 0.74 0.78
data dimensionality and/ is the number of data vectors. GDI 1.37 0.83 | 0.35 | 0.51 0.41
Conn_Index is fast for large and high-dimensional data sets| CDbw 0.96 1.18 | 1.17 | 1.03 2.05
compared to GDI and CDbw. Connlndex 1.0 0.37 | 0.84 | 0.88 0.68

To exemplify howConn_Index is calculated, Figure 2
shows a clustering of eleven prototypes of synthetic data in
three groups, A, B and C. Numbers on the connecting lindbe prototypes by a 10x10 SOM, and cluster them by k-means
show the connectivity strengths between the respectivieproand single linkage clustering. We comparenn_Index to
types. For the prototypes at the cluster boundayiggg, ps, the commonly used Davies-Bouldin index (DBI) [8], to the
pe and py1p), cumulative adjacencies are also indicated. Beneralized Dunn index (GDI) [10] and to an index proposed
has 10 (6+4+4) data vectors whose BMU and second BM{or prototype based clustering (CDbw) [16]. GDI is used with
are in B. B also has 3 data vectors whose second BMCentroid linkage and average distance of points to cluster
is in another cluster@AD.J(ps,ps) + CAD.J(ps,pe) = centroids as the inter- and intra-cluster distance metrees
2 +1 = 3). Thus Intra_Conn(B) is 14/17. Similarly, spectively. DBI decreases with the increasing clusterityual
Intra_Conn(A) is 18/19 andIntra_Conn(C) is 11/13, while GDI, CDbw andConn_Index increase with better
which producelntra_Conn = 0.87. The total connec- clustering. DBI, GDI and CDbw have values i co) while
tivity strength between B and C i€ ONN(pg,po) + Conn_Index € [0,1].
CONN (ps, p1o) = 2+1 = 3. The prototypes in B that have
a connection to C argg and pg. Their connections within
B areCONN(pg, p7), CONN (ps, ps) andCON N (ps, p7) Lsun has three well separated clusters: two rectangular,
which sum up to 10. Hencenter_Conn(B,C) is 3/17. one spherical, shown in Figure 1.a. Since the true clusters a
Similarly, Inter_Conn(B,A) is 3/13 which results in completely separated;onn_Index is 1 (Figure 1.b). Single
Inter_Conn(B) = max(3/13,3/17) = 3/13. A and C linkage clustering with 3 clusters, merges two rectangular
are only connected to B, sbnter_Conn(A) = 3/10 and clusters and has an extra singleton (Figure 3.a). The tloses
Inter Conn(C) = 3/14 which result inInter_Conn = result to the true labels is the one with 4 clusters (Figubg 3.
0.25 and Conn_Index = 0.87 x 0.75 = 0.65. where the only difference is a singleton prototype. It i®als

While Inter_Conn depends only on the connections offavored best byConn_Index (Figure 3.c) with a maximum
prototypes at the cluster boundaridsitra_Conn heavily index, 0.88, for k=4, although it is less than the index for
depends on the sizes of the clusters. Therefbie;a_Conn  the true labels, as expected. Table | provides DBI, GDI,
will certainly decrease with increasing number of clusterand CDbw values for single linkage clustering. Among
unless the clusters are split along natural cluster bougslar them, only GDI favors the true clusters. Figures 3.d-e show
k-means clustering, which is unsuccessful because of the
variable cluster shapes and proximity relations of clisster

We use three synthetic data sets created by [17]: LsuDue to the same reasons, all indices exc€ptn_Index
Wingnut, Engytime, each with different properties. We afbta favor five clusters for k-means (Table 1l) which is the case

A. Lsun: 400 points, 3 well-separated clusters

Ill. EXAMPLES FORConn_Index PERFORMANCE
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Fig. 3. Clustering of Lsun. Small dots are data points, syimbalicate prototypes, with labels assigned by a cluggeslgorithm. Top: Single linkage
clustering (a) with the true number (3) of clusters, (b) kfgt (vhich theConn_Index is maximum, Table Il), and (a onn_Index for different numbers
of clusters. Bottom: k-means clustering (d) with the truenber of clusters, (e) k=2 (at maximuonn_Index), and (f) Conn_Index for different
numbers of clusters.

TABLE Il

partitioning. We leave out single linkage clustering due to
VALIDITY INDICES FOR K-MEANS CLUSTERING OF THE SYNTHETIC

its poor performance. Figure 4.b shows the best k-means
clustering as judged b@onn_Index (k=2, in Figure 4.c).

DATA SETS USED IN THIS PAPER

Indices for Indices for k-means, Conn_Index in Table Il indicates the poor performance of
Data Validity true k = # of clusters k-means by much smaller values thaf0. The other indices
Sets indices clusters | k=2 | k=3 | k=4 | k=5 are unsuccessful due to the data structure: they favor lasnea
DBI 0.77 093] 0771 061 058 clustering with larger k values.
Lsun GDI 1.37 150 ) 167 ] 1.63 | 1.83 C. Engytime: 4096 data points, 2 overlapping clusters
(k=3) CDbw 0.96 1.34| 076 | 1.64 | 1.80
Connindex 10 0701 0511 032 | 052 Engytime is a mixture of two highly overlapping Gaussian
DB 0.97 0951 0881 085 082 distributed clusters (Figure 5.8y onn_Index is 0.77 for the
Wingnut GDI 1.48 151 132 | 155 | 1.32 true clusters. Even though one can expegatira_Conn to be
(k=2) CDbw 0.86 102 | 054 | 039 | 0.43 small because of highly overlapping clustefsira_Conn
Connindex 0.90 060 ] 0451 052 | 058 is 0.97 due to relatively large sizes of the clusters. The best
DBI 0.80 097 | 094 0811 089 k-means clustering (Figure 5.b) according@@nn_Index
Engy GDI 1.36 1351 1.63 | 1.11 ] 1.27 is with k=2 (0.77, Table II). The index is much larger than
time CDbw 1.69 127 | 082 ] 067 | 0.75 the index for other k values and the same as the index for
(k=2) | Connindex 077 077 | 0541 053 | 0.53 the true clusters. For this data set, CDbw provides the best

evaluationj. e., it significantly favors k=2 for k-means, and
it is by far the highest for the true clusters. This is becatise
where the two rectangular clusters are split into four sighkr is based on deviation radius of data distribution within and
ones. The maximunConn_Index = 0.70 indicates the between the clusters.

oorer quality of k-means compared to the true partitions.
P q y P P IV. INDICES ON REAL DATA SETS

B. Wingnut: 1048 data points, 2 non-overlapping clusters A. Data sets with small number of clusters

Figure 4.a shows the data set and its prototypes with We used three data sets from the benchmark data sets for
the true labels. The data set has highly varying densitlustering and classification in the UCI Machine Learning
distribution within clusters. The clusters are not overlapRepository: Breast Cancer Wisconsin (699 samples with 2
ping, but they are very close, which results in connectiondasses, 10-d); Iris (150 samples with 3 classes, 4-d); and
across the prototypes at the cluster boundaries. That eéxfine (178 samples with 3 classes, 13-d). Table Il gives
plains Conn_Index < 1 (0.90) for the true labels. Neither the indices for the known labels, and for k-means clustering
k-means nor single linkage clustering results in the truef (4x4) SOM prototypesConn_Index favors the known
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TABLE Il
VALIDITY INDICES FOR K-MEANS CLUSTERING OF THREE REAL DATA
SETS BREASTCANCER WISCONSIN, IRIS AND WINE

B. Ocean City: A large real remote sensing image

To evaluate indices on complicated data, we use a large
real remote sensing spectral image of Ocean City, Maryland.

Indices Indices for k-means, It comprises 512x512 pixels and represents fairly com-
Data Validity | for true k = # of clusters plicated data. Each pixel is an 8-d feature vector, called
Sets indices | clusters| k=2 | k=3 | k=4 | k=5 spectrum. Ocean City is a long linear urban settlement on
Breast DBl 080 |076) 161|186 1.87 the seashore. More details of the data set are in [18]. At leas
Cancer GDI 117 | 127 066 | 0.60 | 0.28 25 clusters were verified by a domain expert as meaningful
Wisconsin | CDbw 6.03 | 437|206 19.3 | 898 physical clusters, partly by ground truthing for an earlier
(k=2) | Connindex | 0.79 | 0.78 | 0.64 | 0.39 | 0.30 supervised classification of the same image [18]. Figure 6
DBI 081 | 049] 075 0.92 | 0.98 shows the Ocean City image with 28 clusters obtained by a
Iris GDI 275 | 361]262) 169 138 semi-manual clustering based 6fON N visualization [1].
(k=3) CDbw 106 | 477|068 ) 041 | 0.30 Some major classes in the image are ocean (blue), small
Connlndex | 0.67 | 1.0 | 062 | 0.54 | 0.58 bays (medium blue), water canals (turquoise), lawn, trees
DBl 136 | 126 134 158 | 2.08 and bushes (green and split-pea green), dry grass (orange),
Wine GDI 08 | 112097 082 ] 0.37 marshlands (brown and ocher), soil (gray), road (magenta)
(k=3) CDbw 024 | 067]051]045] 0.25 and concrete (red). The small rows of rectangles are bugjtdin
Connindex | 063 | 0.45] 0.55] 036 | 0.23 and their colors indicate different types of roof materials

We have 1600 prototypes from a 40x40 SOM. When we

labels as the best clustering for Breast Cancer and Winduster the prototypes by k-means{#0), Conn_Index and

In contrast, DBI, GDI and CDbw favor k-means clusteringCDbw favor k=4 as the best result (Table 1V). These four
(k=2) for both data sets even though Wine has 3 clusterslusters appear to be superclusters of the known ones. One
Surprisingly, CDbw favors any k-means clustering to thaupercluster comprises the known vegetation classes ,(lawn
known labels for these two data sets. For Iris, where twiyees, bushes, etc.), one represents water classes (ocean,
clusters are overlapping and very dissimilar to the third,oncanals, pool, etc.), one represents soil (marshlands, bare
all indices includingConn_Index validate two clusters as soil, etc.) and one comprises roads, concrete, differeuit ro
the best, and all indices except DBI favor the known labelmaterials, etc. Table IV presents the indices up to k=8 and
as the second best.

Figure 7 giveonn_Index, Intra_Conn andInter_Conn



Fig. 6. Cluster map of Ocean City, an 8-band 512x512 pixebtersensing
image, obtained by semi-manual clustering based’6énN N visualization
[1]. Each color represents a different cluster.
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Number of clusters U-matrix visualization [18], (b) Clustering frol@ON N visualization [1]
Fig. 7. Conn_Index for k-means clustering of Ocean City data. TABLE IV
VALIDITY INDICES FOR K-MEANS CLUSTERING OFOCEAN CITY DATA
for all k values (kX40). DBI and GDI reflect k=2 as the best Indices for k-means clustering,
result where one cluster combines vegetation and soil, the \ajigity k = # of clusters
other one contains everything else. Compared to the known |ngices =2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=8
clusters, k-means produces very poor partitioningkfor 4. DBI 066| 070| 0.72| 080 | 0.73 | 0.84 | 0.84
The incorrect clustering for large Kk is indicated by all ioel GDI 193] 159 1611 1.31] 074 | 043 | 046
selecting either k=4 or k=2. | cobw [ 038 194 2.33| 156 | 2.17 | 227 | 1.91
It is common practice to cluster the SOM prototypes semi-[ connindex | 0.70 | 0.71 | 0.72 | 0.70 | 0.60 | 0.61 | 0.59

manually, based on visualizations. In many cases, difteren
prototypes may be omitted from different clusterings of
the same SOM due to different visualization schemes witliata vectors unclustered due to less prototypes assigned
different knowledge representation or processing by difie  to clusters. The large number of unclustered prototypes in
users. This results in different numbers of unclusteredopro Figure 8.a reflects the user’s conservative judgment given t
types in different cluster maps. Yet, we still need to be ablancertainty about divisions based on the modified U-matrix.
to compare those different clusterings. Table V shows the indices for these cluster maps. We expect
We compare two semi-manual clusterings of the Oceahat the validity indices favor the semi-manual clustesing
City prototypes, based on different SOM visualizationg thover the incorrect k-means clustering because they magch th
first one (Figure 8.a) is obtained from a modified U-matribpground truth well, and because unclustered prototypestare a
[18], the second one (Figure 8.b) is obtained fra® NN  the cluster boundaries, thus increasing separation. DBI, G
visualization [1]. Both of these clusterings fit the datalweland CDbw favor the incorrect partitioning of k-means all the
(the clusters mapped back to the spatial image look veryay up to k=40 even though k-means clustering £or 4
similar to known clusters) except Figure 8.a leaves moiis bad. DBI, GDI and CDbw are not helpful in evaluation of



VALIDITY INDICES FOR DIFFERENT CLUSTERINGS OFOCEAN CITY DATA

TABLE V

U-matrix CONN

Validity clustering [18] | clustering [1] | k-means| k-means
Indices k=28 k=28 k=2 k=4
DBI 1.17 1.30 0.66 0.72
GDI 0.41 0.55 1.93 1.61
CDbw 0.18 0.21 0.38 2.33
Connlndex 0.62 0.66 0.70 0.72
Intra_Conn 0.74 0.83 0.99 0.98
Inter_.Conn 0.17 0.21 0.29 0.27

clusters. Conn_Index in our experiments measured the
cluster validity in a more meaningful way, with respect to
the true structure of data, compared to other indices in this
study. When comparing the validity of a fully clustered
SOM with one that has unclustered prototypleg;ra_Conn,

and consequentl'onn_Index do not provide a meaningful
measure. Howevefnter_Conn can still be used for reliable
evaluation of cluster separation. We will address thisasitun

in future work. Although we present this discussion in the
context of SOM prototypes, we stress that the construction
of Conn_Index has no specifity to SOM prototypes and
therefore it can be applied to prototypes produced by any

other vector quantization algorithms.

such clustering results.

Contrarily, Conn_Index, Intra_-Conn and Inter_Conn
provide meaningful measures when the numbers of clustered
prototypes resulting from different clusterings are nat th
same.ntra_Conn measures the effect of omitted prototypes
because the smaller the clusters than their true size, $ise le
compact they are, which produces a smalletra_Conn.
This is because the prototypes at the edges of a clusté?l
whose fringes are trimmed have strong connections to the
unclustered prototypes near edges, which probably belong
to that cluster.Intra_Conn can also decrease when the [4]
data set is randomly partitioned, however, in such cases,
Inter_Conn will be high. If the unclustered prototypes are [5]
at the cluster boundaries, a smaller number of clustered
prototypes is expected to yield a smallerter_Conn value. (6]
Conn_Index indicates the combined effect éfhitra_Conn
and Inter_Conn. In our case,Conn_Index favors the
clustering based o@ON N visualization over the clustering
based on the modified U-matriXntra_Conn indicates the [7]
clusters are more compact in the former whileter _Conn
indicates the clusters are more separated in the latter. ¢!
is seen in our experiments that when more prototypes re-
main unclustered at cluster boundaridsiter_Conn and  [9]
Intra_-Conn decrease, as expected. 10]

When clusterings with different numbers of Clustereo[l
prototypes are compared to a fully clustered SOM
only Inter_Conn should be taken into account becaus
Intra_-Conn is affected heavily by the unclustered proto-
types. When we compare the semi-manual clusterings to tHél
k-means clustering, Table V shows that even the smallest
Inter_Conn of k-means clustering (0.27) is larger than thaf13]
of either of semi-manual clusterings (0.17 and 0.21). Hence
Inter_Conn expresses that the partitionings of semi—manu:ﬁ‘,r]

clusterings are more correct than the ones of the k-means.
[15]

11]

V. CONCLUSIONS

In this paper, we propose a new validity index 161
Conn_Index, for prototype based clustering algorithms. It
depends on the intra-clustefritra_Conn) and inter-cluster [17]
(Inter_Conn) connectivities obtained from a weighted De-
launay triangulation (connectivity matrix, [1JJ.onn_Index  [1g]
can be useful to evaluate cluster validity for data sets with
clusters of different shapes or sizes, or with overlapping
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