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Abstract—The self-organizing map (SOM) is a powerful method
for visualization, cluster extraction, and data mining. It has been
used successfully for data of high dimensionality and complexity
where traditional methods may often be insufficient. In order to an-
alyze data structure and capture cluster boundaries from the SOM,
one common approach is to represent the SOM’s knowledge by vi-
sualization methods. Different aspects of the information learned
by the SOM are presented by existing methods, but data topology,
which is present in the SOM’s knowledge, is greatly underutilized.
We show in this paper that data topology can be integrated into
the visualization of the SOM and thereby provide a more elabo-
rate view of the cluster structure than existing schemes. We achieve
this by introducing a weighted Delaunay triangulation (a connec-
tivity matrix) and draping it over the SOM. This new visualization,
CONNvis, also shows both forward and backward topology viola-
tions along with the severity of forward ones, which indicate the
quality of the SOM learning and the data complexity. CONNvis
greatly assists in detailed identification of cluster boundaries. We
demonstrate the capabilities on synthetic data sets and on a real
8-D remote sensing spectral image.

Index Terms—Clustering, data mining, self-organizing map
(SOM), topology preservation, visualization.

I. INTRODUCTION

T HE self-organizing map (SOM) [1] is a widely and effec-
tively used neural paradigm for clustering and data mining

of high-dimensional data due to its several advantageous prop-
erties such as topology preserving mapping and learning of the
data distribution. By preserving the neighborhood relations on
a rigid lattice, the SOM facilitates the visualization of the struc-
ture of a higher dimensional data space in lower (usually one or
two) dimensions.

Informative representation of the SOM’s knowledge can sig-
nificantly assist accurate capture of cluster boundaries. Similar-
ities of prototypes adjacent in the SOM, or the size of the recep-
tive fields of neural units, are often used in various ways in ex-
isting visualization schemes (discussed in Section II). With this
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paper, we want to call attention to the power of a greatly under-
utilized component of the SOM’s knowledge: data topology. We
will show that the inclusion of data topology in the SOM visu-
alization provides more sophisticated clues to cluster structure
than existing SOM visualization approaches. This inclusion is
especially important for high-dimensional, large, and intricate
data sets with many meaningful clusters, which have interesting
rare clusters to be discovered [2], [3].

A limited use of data topology in SOM representation is pro-
posed by Pölzbauer et al. [4] to indicate topology violations and
data distribution. In [4], lines are drawn between the prototypes
on the SOM grid for those data vectors that are neighbors in
data space according to some metric, but are mapped to dif-
ferent SOM prototypes. A large number of lines and their con-
centrations in the SOM show dense regions while the lengths of
the lines express the range of topology violations. By using the
neighborhood of the data vectors to determine topology viola-
tions (contrary to the common approach of using the neighbor-
hood of the SOM prototypes), Venna and Kaski [5] construct
two measures: “trustworthiness” and “neighborhood preserva-
tion” of the SOM. The visualization of Pölzbauer et al. [4] shows
the set of violations that forms the measure of “neighborhood
preservation” defined in [5]. The approach taken by [4] works
well for estimating data distribution and finding topology viola-
tions when prototypes outnumber the data vectors. In contrast,
when there are plenty of data, neighboring data vectors that are
mapped to different prototypes are only the ones at the bound-
aries of the Voronoi polyhedra of the prototypes, in which case
the method in [4] ignores a lot of helpful mapping information
and estimates data distribution inadequately. That makes it a
partial solution for the visualization of data topology on a SOM.

More generally, for a given set of data vectors and their corre-
sponding prototypes obtained by any quantization process (in-
cluding the SOM), a complementary approach for exploiting
data topology is to use a graph model in the data space. One way
to construct a topology representing graph is to use the induced
Delaunay triangulation proposed by Martinetz and Schulten [6].
Several learning algorithms such as topology representing net-
works [6], Growing Neural Gas [7], and grow-when-required
[8] use induced Delaunay triangulation in combination with pa-
rameters that depend on the occurrences of data samples for a
better topographic mapping than with the Kohonen SOM. The
induced Delaunay triangulation is binary: it reflects the adja-
cency relations of the quantization prototypes in data space, but
it does not convey data distribution. Therefore, it may not be suf-
ficient for detailed cluster analysis, especially in case of slightly
overlapping clusters or noisy data. A more informative approach
is to construct the graph by using statistical learning theory as
proposed by Aupetit [9]. This method considers the statistics of
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the data distribution within the Voronoi polyhedra of the proto-
types, which makes it useful for estimating data topology and
robust to noise. However, its use for visualization is limited to
low-dimensional, 1-D to 3-D, applications since it shows neigh-
borhood relations in the data space.

The objective of this paper is to integrate the data topology,
present in the SOM’s knowledge, into the visualization of the
SOM for improved capture of clusters. This objective will be
accomplished through a new concept of the “connectivity ma-
trix” and its specific rendering over the SOM. The term “con-
nectivity matrix” exists in the literature, for pairwise distances
of data points. Here we use it for quantization prototypes with a
novel definition of connectivity. We define the connectivity ma-
trix as a weighted version of the induced Delaunay triangulation
where the weights of the edges signify the data distribution. The
method we present is not limited by data dimensionality because
the neighborhood relations in the data space are shown on the
SOM grid. This new visualization also shows both forward and
backward topology violations as a byproduct due to rendering
data topology on the SOM.

Section II briefly reviews the SOM algorithm and discusses
previous visualization schemes for the SOM. Section III intro-
duces the “connectivity matrix,” its visualization, and its use
for assessing topology violations. Section IV gives a step-by-
step procedure for the extraction of cluster boundaries from the
SOM through the visualization of the connectivity matrix. It also
presents a clustering example on a real 8-D data set. Section V
discusses the advantages of this scheme, open and unresolved
issues, and possible follow-up improvements.

II. PREVIOUS WORK ON VISUALIZATION OF SOM KNOWLEDGE

The SOM is an unsupervised neural learning algorithm that
maps a data manifold to a (lower dimensional) fixed
lattice of neural units. Each neural unit has a weight vector

assigned to it, which is adapted through a learning process
as originally defined by Kohonen [1]. The process is based on
finding the best matching unit for a given data vector ,
such that

(1)

and updating and its neighbors according to

(2)

where is time, is a learning parameter, and is
the neighborhood function, often defined by a Gaussian kernel
around the best matching unit . After the learning process, the
weight vectors become the vector quantization prototypes of the
input space . From now on, we will use the term “prototype”
for SOM weight vectors. Ideally, the SOM is a topology pre-
serving mapping, i.e., the prototypes that are neighbors in are
also neighbors (centroids of neighboring Voronoi polyhedra) in

and vice versa.
There is a variety of existing schemes for the representation

of the SOM’s knowledge including visualization of the (Eu-
clidean) distances between prototypes that are immediate neigh-
bors in . The most commonly used method, the U-matrix [10]
and its variants (e.g., [11] and [12]) signify these distances by

using proportional intensities of gray shades on grid cells. These
work well for small data sets with a low number of clusters
mapped to a relatively large SOM grid but, because of aver-
aging of prototype distances over neighboring SOM grid cells,
or thresholding, they tend to miss finer structure in complicated
and large data sets [13]. Another method is the adaptation of the
size or the shape of the grid cells according to the distances be-
tween neighboring prototypes [14], [15], which can help manual
cluster extraction for simple data sets. The use of automated
color assignments aims at qualitative exploration of the approx-
imate cluster structure [3], [16]–[18]. Examination of individual
component planes of the SOM is helpful in discovering infor-
mation specific to the corresponding component, which may be
hidden when all planes are examined together [17], [19].

Many researchers convey SOM knowledge through visual-
izing the receptive field sizes of prototypes (data histograms)
by drawing vertical bars, curves, gray shades, etc. (e.g., [12],
[17], and [19]). Pampalk et al. [20] propose smoothing data his-
tograms by assigning a weighted membership of data vectors
to the prototypes in order to get a precise visualization of den-
sity distribution. However, expression of the SOM’s knowledge
solely with data histograms conceals finer structure in com-
plicated data. Approaches employing data histograms and dis-
tances between prototypes together in the same visualization,
such as in [3] and [14], do not overcome the drawbacks of each
individual method, which are discussed above.

In order to visualize the cluster structure during the training
of the SOM, adaptive coordinates [21] and the double SOM
[22] update not only the prototypes but also their positions in
the SOM lattice. These methods expose the dissimilarities be-
tween the prototypes by the lattice distance of the prototypes,
which in turn produces a visual separation of clusters. However,
it is unclear how they would work for large data volumes. For
the double SOM, finding the appropriate parameters for robust
learning is difficult. Ressom et al. proposed an improved tech-
nique for the double SOM whereby the use of adaptive param-
eters produces more robust learning than the double SOM [23].
This technique worked demonstratively well for a data set of
gene expression profiles consisting of a small number of vec-
tors.

An innovative proposal to find structures in high-dimensional
manifolds is a growing SOM [24], but it appears less robust than
the Kohonen SOM because of the large number of parameters
needing adjustment. Its performance for large data volumes is
also undemonstrated. Another variant of the SOM that enables a
direct and visually appealing measure of interpoint distances on
the map is the visualization-induced SOM (ViSOM) [25]. The
ViSOM produces a smooth and evenly graded mesh through the
data points that reveals the discontinuities in the manifold. How-
ever, it requires a relatively large number of prototypes even for
small data sets.

III. TOPOLOGY VISUALIZATION THROUGH CONNECTIVITY

MATRIX OF SOM PROTOTYPES

A. Induced Delaunay Triangulation and Connectivity Matrix

In order to faithfully characterize a data manifold that can
possibly be discontinuous or folded, Martinetz and Schulten [6]
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Fig. 1. Comparison of Delaunay triangulation (thin lines) and induced De-
launay triangulation (thick lines) for the 2-D Clown data using the SOM pro-
totypes created by [26]. The “Clown” is indicated by the annotations in Fig. 2.
The data manifold is shown by the dots. The induced Delaunay triangulation
exposes the discontinuities in the data manifold, for example, the separations
between the eyes, the nose, and the mouth, while the Delaunay triangulation
does not highlight them.

introduce the notion of induced Voronoi tessellation and its
dual, the induced Delaunay triangulation . These are the inter-
sections of the regular Voronoi polyhedra (or Delaunay trian-
gulation) with . For prototype , the Voronoi polyhedron
and its induced counterpart are

(3)

According to the definition in [6], and are adjacent in
if and only if their receptive fields and (their masked
Voronoi polyhedra and ) are adjacent. An example of the
Delaunay triangulation and its induced version is shown in
Fig. 1 for a 2-D data set called “Clown” created by Vesanto and
Alhoniemi [26]. The SOM prototypes were also computed and
graciously provided to us along with the Clown data by these
authors. This 2-D data set has several clusters with different
shapes and sizes (eyes, nose, mouth, and body) and outliers.
The induced Delaunay triangulation makes the disconnected
parts of the manifold (such as the eyes, nose, and mouth)
obvious, whereas the regular Delaunay triangulation does
not delineate the same separations.

As proposed by Martinetz and Schulten, the induced De-
launay triangulation can be determined from the relationships
of the best matching units (BMUs) and the second BMUs,
expressed in a so-called adjacency matrix , provided that
the SOM prototypes are “dense enough” in [6]. Following
that, we can build the matrix , for a converged state, by
sequentially presenting data vectors and each time
setting and to 1 when one of and is the
BMU and the other is the second BMU to . (the equivalent
of under the above conditions) delineates the nonlinearities
and the submanifolds in . However, is a binary matrix

Fig. 2. Connectivity matrix (weighted induced Delaunay triangulation) for the
same data and SOM prototypes as in Fig. 1. The prototypes with nonempty re-
ceptive fields are labeled by circles while interpolating prototypes are shown
by “x.” The width of the line connecting two prototypes � and � is propor-
tional to the connectivity strength ������� ��, which is the number of data
vectors for which one of � and � is the BMU and the other is the second
BMU. This weighting makes the data distribution visible. Low-density regions,
for example, the line connecting the outlier O2 and the interpolating prototype
near O1, at the right end of the row of nonempty prototypes, and the lines at the
cluster boundaries, are exposed by thin (or no) lines.

that does not reflect the data distribution within the receptive
fields, and two prototypes and are shown adjacent by

even if was set to 1 by only one data vector. Thus,
noise can easily obscure discontinuities in the manifold by
showing otherwise obviously disjunct clusters as connected.
An example in Fig. 1 is the uniform connectedness of the body
or the mouth of the Clown by the thin lines representing the
regular Delaunay triangulation. For a better characterization of
the data topology and for discrimination of noisy connections
from dense regions, we define a connectivity strength matrix,
which we denote by CONN, and which is a weighted analog
of , where the weights indicate the density distribution of the
input data among the prototypes adjacent in .

Let CONN be an matrix where is the number
of neural units in . The connectivity strength CONN be-
tween units and is the number of data vectors for
which or is the BMU and the other is the second BMU

(4)

where is the part of the receptive field of where is the
second BMU, and is the number of data vectors in .
Obviously, because .
CONN thus shows how the data is distributed within the recep-
tive fields with respect to neighbor prototypes. This provides a
finer density distribution than other existing density representa-
tions, which show the distribution only on the receptive field
level. We define the similarity of two prototypes and
based on their connectivity strength .

Fig. 2 shows CONN visualized in the data space for the case
given in Fig. 1. Compared to Fig. 1, all connections remain,
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but now the strength of each connection is signified by the line
width, which is proportional to . This makes poorly
connected (low density) regions obvious, such as the connec-
tions for the outliers O1 and O2 (encircled prototypes in Fig. 2)
and the thin (or missing) lines at the cluster boundaries. Clusters
not obvious in Fig. 1 clearly emerge here.

B. CONNvis: Visualization of the Connectivity
Matrix on the SOM

We visualize CONN on the SOM lattice by connecting the
neural units and whose prototypes and are adja-
cent in . Lines of various widths and colors are used for

(Fig. 3). The line width is proportional to
the strength of the connection and therefore reflects the density
distribution among the connected units. It also shows the global
importance of the connection since it displays the number of
data vectors in relative to the number of all data
vectors. The connectivity strengths of indicate how often

and each of its neighbors in are selected together (are
BMU and second BMU pairs for data vectors). This shows the
local data distribution among its neighbors. Hence, a ranking
of the connectivity strengths of reveals the most-to-least
dense regions local to in data space. We show the ranking
of neighbors of by line colors, red, blue, green, yellow, and
dark to light gray levels, in descending order. (Alternatively, the
ranking could be shown by using intensities of a single color.)
The connections on the SOM are drawn in the order of lowest
to highest ranking so in case of intersections the higher ranking
connection will overlay the lower ranking one. Because the
density ranking does not depend on the size of ’s receptive
field, but only on the relative contribution of each neighbor,
line colors express the local importance of the connections.
The line width and the line color together indicate a combined
view of the global and local properties of the data distribution.

An example of CONN visualization (CONNvis) on the SOM
is in Fig. 4 for the Clown data presented in Fig. 1. A detailed
explanation for this example will be given in Section III-D. One
important aspect we want to note here is that the ranking of
the prototypes is not symmetric, i.e., if the rank of for
is , and the rank of for is , is not necessarily equal
to . The rank displayed by the color is the higher ranking one
of and , regardless of the directionality of the connection.
Therefore, a prototype may seem to have multiple connections
of the same rank. For example, some prototypes at the bottom
left of Fig. 4(a) have several red connections.

C. Assessment of Topology Preservation With CONNvis

Superimposing CONN on the SOM grid shows the neighbor-
hood relations of the prototypes both in and in in the same
visualization. Therefore, this new visualization also helps in a
detailed assessment of topology preservation. For a perfectly
topology preserving mapping, only the immediate SOM neigh-
bors are expected to be connected. However, topology violations
may occur, which will manifest in the CONNvis as:

• connected neural units that are not immediate neighbors in
(forward topology violations);

• unconnected neural units that are immediate neighbors in
(backward topology violations).

An example of an indication of forward topology violation is
the green connection in Fig. 3: the prototype has a neighbor in
data space (the prototype at the end point of the green line) that
is not mapped to an immediate lattice neighbor of . A back-
ward topology violation is shown by the lack of connection be-
tween and its lattice neighbor to the right. As it is seen from
this illustration, both forward and backward topology violations
are identified through CONNvis. The visualization of backward
topology violations reveals the discontinuities or submanifolds
in the data that are obvious cluster boundaries. CONNvis also
quantifies the extent of the forward violations. The strength (line
width) of a forward topology violating connection character-
izes the degree of the violation, which we will call severity. The
more data vectors contribute to a given connection, the more se-
vere is the violation. For a topology violating connection, low
strength (thin lines) usually indicates outliers or noise while
greater strengths are due to data complexity or badly formed
SOM. The folding length of the violating connection, that is
the maximum norm distance between the connected neural units
in the SOM lattice, describes whether the topology violation is
local (short ranged) or global (long ranged).

In most cases, perfect topology preservation is not necessary
for cluster extraction. Weak global violations, or violations that
remain within clusters, do not affect the delineation of bound-
aries. Proper investigation of such conditions for a trained SOM
is therefore important. The connectivity matrix and its visual-
ization, introduced above, is a useful tool for such analysis.

D. An Example of CONNvis for a 2-D Data Set

Fig. 4 demonstrates CONNvis for the 2-D Clown data dis-
cussed in Figs. 1 and 2. CONN is draped over the 19 17 hexag-
onal SOM lattice that was used in [26]. Thin dashed lines indi-
cate the areas of the SOM where the different parts of the Clown
are mapped. Since there is no dimensionality conflict between

and , few (if any) forward topology violations are expected,
which is confirmed by the visualization. There are no thick lines
connecting distant units. The thin red line of , con-
necting O2 and the prototype at the upper right corner of the
SOM, and the thin blue vertical connection from
O1 to the body of the Clown at the right edge are examples of
global violations. In this case, the weakness of these connections
suggests that the prototypes O1 and O2 are outliers. Prototypes
with empty receptive fields often do not have any connections,
however, sometimes they may have connections because they
can be second BMUs for some data vectors. An example is the
prototype circled in the nose of the Clown close to the upper left
corner in Fig. 4. Although it has an empty receptive field, it is
the second BMU for two data vectors mapped to two adjacent
prototypes. Some immediate lattice neighbors are not connected
because the corresponding prototypes are not adjacent in .
The resulting separations between neural units expose cluster
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Fig. 3. Example of CONN visualization (CONNvis) on a SOM grid for the con-
nections of a prototype (center node �). A line is drawn between two prototypes
if they are adjacent in the data manifold� according to the induced Delaunay
triangulation. The line width is proportional to the strength of the connection,
������� ��, which is the number of data vectors in�� ��� (4). It shows
the global importance of the connection since it states the number of data sam-
ples in �� � �� relative to the total number of all data samples. The line
colors encode a ranking of the immediate neighbors of this prototype in�: the
line to the neighbor with the strongest connection to � is colored red, and blue,
green, yellow, and gray shades indicate the connections to the rest of the neigh-
bors in decreasing order of rank. This ranking signifies the local importance of
the connections as it displays the relative similarity of adjacent prototypes in
data space.

Fig. 4. (a) CONNvis of the 2-D Clown data (from Fig. 1) on the 19� 17
hexagonal SOM lattice given in [26]. Prototypes with nonempty �� are shown
by small circles. Line widths are proportional to connectivity strengths. The
meaning of line widths and line colors is explained in Fig. 3. Dashed lines show
major parts of the Clown. Some prototypes that are neighbors on the SOM grid
are not connected, which indicates discontinuities in� (backward topology vi-
olations). Some clusters (mouth and body, left eye and nose, right eye and nose)
are clearly separated. Others (O1 and O2, O1 and body, nose and nm, nm and
mouth) are weakly connected (thin lines). The connections of O2 to the proto-
type at the top right corner, and O1 to the body are examples of global but weak
topology violations. (b) The connections of the subcluster nm to the nose (c1,
c2) and to the mouth (c5) are weak: c1� 	, c2� 	, and c5� 
. In contrast, the
connections within nm (c3, c4) are strong: c3 � �, � �. c2 and c5 exemplify
weak local topology violations, which suggest that nm is a subcluster.

Fig. 5. (a) Visualization of CONN in the data space using the same scheme
of line widths and colors as in Fig. 3. This verifies the separations seen in the
SOM. (b) The cluster nm in data space, and its relations to the nose and the
mouth clusters.

or submanifold structure in . For example, the separations be-
tween left eye and nose, right eye and nose, and mouth and body
are obvious. The two global topology violations at the upper
and right edges of the CONNvis make the prototypes between
the end points seem connected and might obscure the disconti-
nuities. For example, the connection that links O1 to the body
of the Clown in Fig. 4 makes it look like O1; the right eye, the
nose, and the body are all connected, even though the right eye
and the nose are clearly separated from each other, and from the
body when this connection is removed. If we first display only
the nonviolating connections, then we can get an accurate view
of the discontinuities. For this case, the discontinuities between
the right eye, the body, and the outliers are clearly outlined by
this view.

In Fig. 4(b), we focus on some instructive details. Cluster nm
in the dashed oval is a subcluster connecting the nose and the
mouth. It has weak and local topology violating connections be-
tween the mouth and the nose. The connections of nm to the nose
(c1, c2) and to the mouth (c5) are weak compared to the connec-
tions within nm (c3, c4). Being both weak and violating, these
connections suggest that nm is indeed a subcluster between the
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Fig. 6. (a) U-matrix visualization of the 2-D Clown data (from Fig. 1) on the
19� 17 hexagonal SOM lattice given in [26]. The lighter the gray intensity of
the cell is, the more similar the neighbor prototypes are. The coarse boundaries
between the well-separated clusters, indicated by the lines, can be seen through
this visualization. However, finer details, such as the three subclusters in the left
eye are obscured. (b) ISOMAP of the Clown data. While most clusters can be
identified, two major clusters (the nose and the mouth), which are distinct in the
U-matrix and in the CONNvis, are not separated.

nose and the mouth. Fig. 5 uses the same scheme to visualize
CONN in the data space (which we can do for the special case
of 2-D data) to show and validate the structures detected through
CONNvis on the SOM grid in Fig. 4.

Fig. 6(a) shows the U-matrix visualization for the SOM of
the Clown data. The boundaries between the well-separated nat-
ural clusters (such as the right eye and the nose and the body
and the mouth) are clearly visible through the U-matrix. How-
ever, finer details, such as the three clusters in the left eye,
are not emerging. We also compare CONNvis with ISOMAP
in Fig. 6(b). ISOMAP is a commonly used manifold learning
method [27], mapping a data set onto a 2-D space, while pre-
serving the relationship of the pairwise distances. While most

of the natural clusters can be seen through the ISOMAP of the
Clown data, two major partitions, the nose and the mouth, are
not separated. Because ISOMAP aims to find one underlying
submanifold, it may provide a better topographic mapping than
the SOM for data sets with no discontinuities. However, for the
same reason, ISOMAP may be less informative for cluster ex-
traction than CONNvis, especially for high-dimensional com-
plicated data.

E. CONNvis for Complicated, Large Data Sets

For maps where the number of data vectors is much larger
than the number of prototypes, the connectivity strengths span
a large range of values. Using a different line width for each
connectivity strength becomes infeasible due to limitation by
screen resolution and the discrimination capability of the human
eye. To help this, line widths can be based on a binning of the

values as follows:

...
... (5)

where is a small number. A good choice as threshold is
the mean strength of the th ranking con-
nections: , , where
is the number of prototypes. This choice provides an automated
selection of thresholds based on internal data characteristics as
described in the following paragraph. It also employs the limited
number of bins efficiently, because each bin reflects the global
importance of one rank. Its resolution not only distinguishes
strong connections but also reveals weak connections between
(separated) clusters.

The above choice of the binning thresholds is motivated by
the statistics of connectivity strengths shown in Figs. 7 and 8.
These examples are for a 6-D synthetic data set and for an 8-D
real remote sensing data set, respectively. Both of these data
sets will be described in detail in Section IV. Fig. 7(a) and (b)
gives the distribution of connections over ranks for these data
sets, respectively. Perhaps surprisingly, the number of neigh-
bors in data space (the number of connection ranks of a given
prototype) can be higher than 12 for the 6-D data and more than
20 for the real 8-D data. However, Fig. 8, which shows the av-
erage connectivity strength within each rank for the 6-D data and
8-D data sets, tells us that even though the maximum number
of connections for a prototype is much larger than 8 (16 for
6-D data and 29 for 8-D data), the average connectivity strength
drops sharply after the fourth strongest connection (rank 4) and
becomes negligibly small after the eighth strongest connection
(rank 8). Fig. 8 also indicates that these averages decay exponen-
tially. This observation suggests these averages as thresholds so
that the binning of the line width can reflect the nonlinear distri-
bution of the connectivity strengths. The thresholds chosen this
way thus produce relatively wide bins for high ranking connec-
tions and narrow bins for weak connections, which can provide
a good resolution. It also automatically excludes connections
with strengths smaller than . This is advantageous since the
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Fig. 7. Number of connections with the same ranking, across all SOM pro-
totypes, for two different data sets. (a) For a 6-D synthetic, low-noise data set
(128� 128 pixel image in Fig. 9 mapped to a 20� 20 SOM). Half of these pro-
totypes have at least eight connections, and some have as many as 16. (b) For
an 8-D real, noisy remote sensing image discussed in Section IV (512� 512
pixel image mapped to a 40� 40 SOM). Ninety percent of the prototypes have
at least eight connections, and some have more than 25.

Fig. 8. Average connectivity strengths for the (a) 6-D data set and (b) 8-D
data set. � is the mean of all connections, � is the mean of connections
with ������ � � (connections between the prototypes that are in
4–neighborhood in a rectangular lattice), � is the mean of connections with
������ � � (connections between the prototypes that are in 8–neigh-
borhood). The average strengths drops sharply after rank 4 and becomes negli-
gibly small after rank 8, even though the number of connections is much higher
(see Fig. 7).

connections with such low strengths are likely to be caused by
noise or outliers.

One might be inclined to use equally sized bins between
and where and are the mean and stan-

dard deviation of all connections, respectively. However, using
all connections in calculating and may produce very small

and large , which is not useful for an informative binning in
(5) due to noisy connections or outliers. More reasonable thresh-
olds for extracting cluster structure and suppressing noise may
be achieved by using the immediate SOM lattice neighbors, as
some noisy and violating connections may be excluded from the
statistics in that case. Fig. 8 shows , , and for the
6-D data and 8-D data sets where is the mean of all connec-
tions while and are the means of connections of pro-
totypes that are also immediate lattice neighbors (eight neigh-

bors or four neighbors for rectangular lattice), respectively. For
the 6-D data set, there are few topology violating connections,
therefore is very similar to . For the complicated 8-D
data set, is much larger than . However, the binning
may still not be useful to discriminate among strong connec-
tions because thresholds set by and will only bin the
low-strength connections while lumping most rank 1 and rank
2 connections into one bin, as can be seen from Fig. 8. and

produce a high and relatively low but equal-size bins
diminish its usefulness. The thresholds and
should support the specific data and application, which may also
call for other approaches to binning, such as in [28].

IV. CLUSTERING THROUGH CONNVIS

CONNvis guides accurate capture of cluster boundaries
by showing how strongly (weakly) various parts of the data
manifold are connected. It provides a tool to filter out weak
connections, which are mostly caused by noise or negligible
residual errors in the learning, and therefore, are unimportant for
the description of the data structure. Since connections across
cluster boundaries are typically weak and few, filtering out
weak connections using the automatic thresholding, described
in Section III-E, can result in almost clean-cut boundaries,
outlining “coarse clusters.” In the following, we will give a
recipe of the exact procedure of cluster extraction including
steps to separate the coarse clusters interactively.

How do “entanglements” (topology violations) affect our
cluster extraction procedure? Fortunately, CONNvis shows the
exact locations as well as the severity (the strength) and the
folding length of the violating connections. In a reasonably
well-trained SOM most violating connections are weak, and at
short folding lengths, not extending across clusters. Severe vi-
olations (long, thick lines), when present, are signs of incorrect
mapping. With only a small number of such connections, one
can verify and recover twisted clusters manually, ignoring these
connections (temporarily visually removing them) while evalu-
ating the rest. With a large number of strong global violations,
a new SOM training may be needed.

We define a “global violation” as a connection with a folding
length exceeding the radius of the “tightest” SOM neighborhood
into which all prototypes that are neighbors in data space should
be packed when the mapping is (as) topology preserving (as pos-
sible). The tightest SOM neighborhood depends on the data, and
is defined and computed the following way: let be the max-
imum number of prototypes adjacent to any prototype in the
data manifold. For a rectangular lattice, the number of neighbors
within is , hence the number of neighbors
within is . Thus, prototypes
can fit into the tightest neighborhood with the neighbor proto-
types within a distance of where

(6)

Any connection with length greater than will then
be called a “global violation.” For example, for the max-
imum number of connections given in Fig. 6(a), which is 16,
connections with will be global violations, and
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Fig. 9. The 6-D (6-band) synthetic image data set consisting of 20 classes.
Each pixel is a 6-D stacked feature vector. (a) Spatial distribution of classes in
the 128� 128 pixels image. Four classes are relatively rare (R, Q, T, and S).
(b) Mean of the feature vectors for each class, vertically offset for clarity. The
data number shows the mean feature value of classes at the corresponding image
band numbers.

similarly, for the one in Fig. 6(b), which is 29, connections with
will be global violations.

After analysis of the global violating connections, the manual
cluster extraction is based on the strength (width) and the rank
(color) of the connections as well as on the number of connec-
tions between the prototypes bridging coarse clusters. We re-
move weak connections (those with the lowest strength) that
link any two coarse clusters and at their boundary, as fol-
lows.
Step 1) Remove all weak connections to cluster if the

number of weak connections to is less than the
number of weak connections to the other cluster .

Step 2) Remove the weakest connection if the connections
of the prototype to the two clusters have different
widths.

Step 3) Remove the lowest ranking connection if the number
of weak connections to both clusters is the same and
all connections at the boundary of these clusters are
weak.

Step 4) Repeat Steps 1)–3) until this prototype has been dis-
connected from one of the clusters.

Step 5) Repeat Steps 1)–4) for all prototypes at this
boundary.

Below, we give two examples of cluster extraction from
CONNvis, one for a synthetic noisy image data set consisting
of 6-D pixel vectors, and one for a real, noisy remote sensing
image data set with 8-D pixel vectors (6-band and 8-band
images, respectively). In our CONNvis of these images, we
use a 4-level binning with thresholds determined by aver-
ages of same ranking connectivity strengths, as described in
Section III-E under (5). This binning has provided sufficient
resolution for cluster capture for the cases we present here. We
call a connection with “weak” (unimportant), and a

TABLE I
REMOVAL OF CONNECTIONS AT THE BOUNDARIES OF THE COARSE CLUSTERS

IN THE CONNVIS OF THE 20-CLASS DATA SET FOR CLUSTER EXTRACTION

connection with “strong.” This distinction, derived
from the statistics of the data, works well for our applications
in this paper.

A. An Explanatory Example for Cluster Extraction

To illustrate cluster extraction from CONNvis, we use a
synthetic 6-band, 128 128 spectral image. A spectral image
is composed of images acquired simultaneously at a given
set of wavelengths and registered together. At each pixel,
the data vector composed of the measured values at the
wavelengths (image bands) is the spectrum of the material in
that pixel. The spectra are the -dimensional input vectors
to the clustering. Our synthetic image consists of 20 known
classes, four of which are rare. The data vector at each image
pixel was generated from the mean vector of the class that the
given pixel belongs to, by adding 10% 6-D Gaussian noise
to it. Fig. 9(a) shows the spatial layout of the classes in the
image, color coded, and annotated with labels A-S. The color
coding of these classes is shown in the online version. Fig. 9(b)
displays the mean feature vectors (signatures) of the classes.
To include all connections in the CONNvis of the SOM of
this data set, as in Fig. 10(a), we set . The unconnected
and weakly connected prototypes form nearly empty corridors,
which outline coarse cluster boundaries. The known cluster
labels are shown in Fig. 10(b)–(d) to help discuss this cluster
extraction procedure. Some clusters such as classes R and T
are already outlined in the initial view [Fig. 10(a)] by uncon-
nected neighbor prototypes. One can start from here, pruning
connections based on our interpretation of CONNvis. First, we
observe that most topology violations are weak and the ma-
jority of them are between the prototypes in the same (coarse)
cluster. There is no strong global violation (no long thick line)
in this case. We then remove weak global topology violations

. This results in clear separation of
some classes from others [Fig. 10(b)], such as classes K and L.
The choice of is given by (6), with the maximum
number of connections for any prototype being 16 for this data
set [Fig. 7(a)].

From this visualization, we can start manual extraction as pre-
scribed by Steps 1)–5). Fig. 10(b) and (c) illustrates the extrac-
tion of clusters. For example, in Fig. 10(b), clusters E and I are
bridged by a prototype (shown as a black dot), which has two
weak lines (one red and one blue) to I and a weak blue one to E.
In Fig. 10(c), the connection to E has been removed (as per Step
1) because E had only one connection to this prototype whereas
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Fig. 10. (a) CONNvis on the SOM lattice for the 6-D, 20-class data. The prototypes are at the junctions of the connections (open circles). Thin connections
mean weak similarity. CONNvis reveals coarse clusters through the nearly empty corridors formed by unconnected or weakly connected prototypes. In this case,
topology violations remain mostly within these coarse clusters. (b) Weak global violating connections [������ � � for this case as per Fig. 7(a) and (6)] have been
removed. The prototypes at the boundaries of coarse clusters are shown by black dots. The coarse clusters are annotated with the known class labels. (c) The weak
connections that link two coarse clusters have been removed based on the criteria given in Section IV-A in Steps 1)–5). All classes are correctly identified this way,
including the rare ones (R, T, S, and Q). Some of the border prototypes with small receptive fields may need a second look to decide if they really belong to the
respective cluster or should be regarded as outliers. (d) Same as in (c), but the border prototypes are removed. (e) The known labels, color coded as in Fig. 9 (shown
in the online version), are overlain on the SOM for verification of the extracted clusters. The color of a grid cell shows the cluster membership of its prototype.
(f) Modified U-matrix (mU-matrix) over the same SOM. The intensity level of each grid cell is proportional to the size of the receptive field of the corresponding
prototype. The intensity of the “fences” between each pair of grid cells, in all eight directions (including the diagonals) is proportional to the Euclidean distance
of the respective pair of prototypes, in data space. White fence is large dissimilarity, and dark means strong similarity. Most of the grid cells between the double
fences are empty, or have very few data points mapped to them. The white fences perfectly delineate the 20 known classes. For this simple data set, the mU-matrix
and CONNvis provide equally good clues for the determination of the cluster boundaries.

I had two. Removal of the two other connections between I and
this prototype depends on further choices made by the user. One
choice can be the inclusion of this prototype in the cluster to
which it has the strongest connection (I), as shown in Fig. 10(c),
because it is most similar to that cluster with respect to the data.
Another choice can be the exclusion of this prototype, as well
as all those at the cluster boundaries [as in Fig. 10(d)], which
have very small receptive fields because they are often repre-
sentatives of noise or outliers. M and I are separated through a
similar procedure as E and I. An example for separation based
on weakness of the connections (as in Step 2) is the separation
of clusters P and Q. The prototype at the boundary of P and Q
has one connection to Q and two connections to P, but the con-
nections to P are weak whereas the connection to Q is a strong
one, hence the weak connections are removed. Clusters C and
G share a prototype, which is connected with one weak con-

nection to each. However, the connection to G is lower ranking
(green, lower strength) than the connection to C (blue); thus the
green connection is removed (Step 3). Table I lists the pairs of
clusters, which have a common boundary and the method for re-
moving connections between those clusters. By this semimanual
procedure, the clusters are extracted easily. For comparison, we
overlay the known labels on the SOM as shown in Fig. 10(e)
(color coded as in Fig. 9). Here, each grid cell represents a pro-
totype, located in its center. The cell is colored according to the
cluster membership of its prototype. The extracted clusters in
Fig. 10(d) show a striking match to the true clusters.

We show a modified U-matrix (mU-matrix) representation
in Fig. 10(f) to illustrate the differences in knowledge repre-
sentation between CONN and U-matrix type (distance based)
visualizations. First, we need to point out that the mU-matrix
(our modification of the U-matrix [10]) is more detailed than
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Fig. 11. Comparison of cluster maps of the 8-band 512� 512 pixel remote sensing image of Ocean City, MD. There are unclustered pixels in both cluster maps
indicated by the background color “bg.” (a) Earlier cluster map extracted by using a mU-matrix (see [13] for details). Red and white ovals point out the locations of
rare clusters [C, V, a and g in Fig. 12(b)]. Clusters extracted from CONNvis in Fig. 12. The agreement between the two cluster maps is very good. In (a), there are
more pixels unclustered than in (b), which results in more appearances of the background color “bg” in (a), and more coverage by some colors such as turquoise
and green in (b). We also easily capture the formerly identified rare clusters (shown in the ovals). Some clusters in (a) are split into subclusters in (b). An example
is the cluster A (red, concrete) which is split into A (red) and j (pink). A region that is clustered as j is the large building with concrete roof outlined by a black
rectangle at the top right of the image. Subcluster j also covers some regions that are not clustered in (a), for example, the end of a road outlined by the white
rectangle in (a) and (b). See Fig. 12 for their labels and locations in the SOM.

the original U-matrix. Instead of displaying the average of the
distances to the SOM neighbor prototypes over each grid cell,
we display the individual distances to each neighbor in all di-
rections including the diagonal neighbors. This allows crisper
delineation of cluster boundaries than with the U-matrix, and
facilitates the detection of small clusters such as R and T at the
bottom center in Fig. 10(f) [hot pink and grayish blue, respec-
tively, in Fig. 10(e)]. The cluster R is represented by a single
prototype that has large distances to all of its SOM neighbors.
In the customary U-matrix, the average of the distances to its
neighbors would assign a high-intensity color (nearly white) to
the entire cell containing R, separating the cluster to its right
(T) from the cluster to its left (M), while R itself would disap-
pear under this wide fence. The cluster T, which has four proto-
types, would be smeared because the averaging would produce
a medium high fence on each of those four prototypes. For this
simple data set, with low noise and slightly overlapping clus-
ters, the mU-matrix and CONNvis work equally well for cluster
capture. For complicated data, however, CONNvis offers more
support. We demonstrate this next.

B. A Real-Data Application

A real remote sensing spectral image of Ocean City, MD,
comprising 512 512 pixels, represents fairly complicated
data. Each pixel has an 8-D feature vector, called spectrum,

associated with it. The feature vector is composed of the mea-
sured radiance values at a given set of wavelengths. The image
was acquired on April 30, 1997, with a Daedalus AAds-1260
multispectral scanner, which records data in 12 spectral bands,
ten in the 0.38–1.1- m range, and two in the 11–14- m thermal
infrared region. The flight altitude of approximately 600 m and
a FOV of 2.5 mrad yield an average of approximately 1.5 m
per pixel ground resolution [29]. The first two and the last two
spectral bands were excluded from our processing because of
extreme noise.

Ocean City is a long linear settlement on the seashore with
rows of closely spaced buildings separated by straight parallel
roads and water canals. The spatial layout of different surface
types in the city is shown in Fig. 11(a) through an earlier cluster
map [13] where different colors label spectrally different ma-
terials. Ocean (blue, I) surrounds the city from the left ending
in small bays (medium blue, J, at the top center and bottom
center of the scene), which contain suspended sediments and
algae. These small bays are surrounded with coastal marshlands
(brown, P; ocher, Q). Shallow water canals (turquoise, R) sepa-
rate the double rows of houses, trending in roughly North–South
(N–S) direction in the left of the scene and East–West (E–W)
direction in the right of the scene. The canals provide a wa-
terway to boats. Many houses here have private docks (flesh-col-
ored pink, T) and as a consequence, dirty water at such loca-
tions (black, H). The streets have paved roads (magenta, G)
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Fig. 12. Cluster extraction for the Ocean City, MD, data based on CONNvis. (a) CONNvis for the 40� 40 rectangular SOM lattice. The prototypes, shown by
circles, are at the junctions of the connections. The weak global violations were excluded. As an example for cluster extraction, clusters G, j, and A are outlined
by solid black lines. The ovals point out small clusters (C, V, a, and g) extracted in previous work [13]. The separation of those clusters is clearly indicated by the
lack of connections to other clusters. Separation between clusters P and Q is shown by the dashed vertical line where the connectivity strengths between P and Q
are weak. (b) An enlarged view of the bottom left quarter of the CONNvis in Fig. 12(a) This view provides a clearer representation, for easier interpretation. (c)
mU-matrix. The prototypes are at the center of the grid cells. The density distribution is also shown by the red intensity of the cells. Boundaries of some clusters,
small clusters (C, V, g, and a shown in ovals) in particular, are obscure because of the high fence values between the prototypes within the same clusters. (d) The
extracted clusters from CONNvis annotated with the respective labels.

with reflective paint in the middle (light blue, E). The colors of
small rectangles, outlining houses, indicate various roof mate-
rials (A, B, C, D, E). Typical vegetation types around buildings
are healthy lawn, trees, and bushes (pure green, L), yellowish
lawn (split-pea green, O), and dry grass (orange, N). There are

also some rarely occurring material types that only exist at the
locations shown by the ovals in Fig. 11(a). The spatial extent of
the largest one (white, C) is 0.4% of the image while one type of
roof material (pale green, V) in the narrow white oval has only
239 pixels and the material (dark purple in the white circle, g)
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in the middle of the marshland at the bottom of the scene has
251 pixels.

The cluster map in Fig. 11(a) was produced in an earlier work
from mU-matrix representation of a 40 40 SOM [13] and was
verified against expert knowledge. We take this cluster map as
a baseline and show that we achieve the same quality of clus-
tering or better, using CONNvis. We take the same 40 40
learned SOM as was used for the capturing of the clusters from
a mU-matrix, in Fig. 11(a), and apply the procedure described in
Section IV. The statistics of the connections, given in Figs. 7(b)
and 8(b), indicate that the prototypes have up to 29 connec-
tions and large average strengths even for low ranking con-
nections. As described at the beginning of Section IV, a large
number of strong connections at high ranks, in general, indi-
cates folding whereas the existence of low-strength connections
at small ranks most likely indicates noise.

Fig. 11(b) presents the cluster map extracted from CONNvis.
The general agreement between the two cluster maps in Fig. 11
indicates a good clustering based on CONNvis. In what fol-
lows, we discuss the processing and point out similarities with,
and improvements to, the mU-matrix-based cluster map in
Fig. 11(a).

Fig. 12(a) is the CONNvis of the SOM with a 4-level binning
where thresholds are the average strengths of connections of the
same rank [Fig. 8(b)]. This results in ,

, , and . The connections with
and are removed since they are weak

global violations by the argument presented earlier in Section IV
about the relationship between the maximum number of connec-
tions per prototype and the SOM neighborhood radius within
which they can map without being considered globally violating
(6). In the CONNvis [Fig. 12(a)], some coarse clusters are very
obvious. One example is the cluster near the lower center (D)
with a wide empty corridor at one side. Some of the small clus-
ters (g, a, C, V) are clearly separated. Other coarse clusters may
be harder to recognize in this busy figure. To help the reader, we
outlined a few (but not all) coarse clusters (A, G, j) with solid
black lines. These also have nearly empty corridors around them
(where the black lines show), which means they are just as well
separated as the ones with the wide corridors around them, but
these corridors have only the width of one cell, and therefore,
are more difficult to see. Fig. 12(b) shows an enlargement of the
bottom left quarter of Fig. 12(a), for an easier interpretation.

For reference, Fig. 12(c) shows a static snapshot of the
mU-matrix view of the same SOM. An interactive process was
used to find clusters by adjusting the intensity (gray) levels
of the fences between grid cells, which provides maximum
flexibility in viewing the distances between prototypes. How-
ever, the inherent limitations of what is visualized can conceal
some—real, existing—details because the distances between
prototypes, by themselves, do not necessarily reveal all struc-
tural variations. An example is the small cluster “a” in the lower
left corner of the SOM. When we use the connectivity strength
as the similarity measure as in Fig. 12(a), the prototypes reveal
the small clusters that are harder to find in other visualizations.

The dissimilarities, indicated by high fence values in the
mU-matrix, are shown by the corridors outlined by no or weak
connections in the CONNvis [Fig. 12(a)]. The boundaries

Fig. 13. Mean signatures (feature vectors) of the extracted clusters shown in
Fig. 12(d). The signatures are offset for clarity, with standard deviations shown
by the vertical bars. All represent different materials, verified from ground truth
[29]. The subtle differences between some of the signatures indicate the clus-
tering challenge which CONNvis effectively handled.

between the small clusters, labeled C, V, a, and g, in the lower
left corner of the SOM become obvious and are extracted easily
and fast with the CONNvis [Fig. 12(b)]. Because of either
clear separation or weak connections, it is also much easier to
capture other clusters from CONNvis with more certainty. All
extracted clusters are shown in the SOM in Fig. 12(d).

Fig. 13 shows the averages and standard deviations of the
spectral radiance signatures (feature vectors) of the extracted
clusters. Many signatures are distinct, but some are very similar
with slight differences, which pose a clustering challenge. The
small clusters C, V, a, and g have unique signatures, yet it was
difficult to find them in the mU-matrix. Using CONNvis clearly
helped capture the clusters including rare ones, in this data set.

One difference between the two cluster maps in Fig. 11 is
that cluster A (red, concrete) in Fig. 11(a) is split into two sub-
clusters A (red) and j (pink) in Fig. 11(b) because of the weak
connections between them in the CONNvis. An example of the
subcluster j is the large building with concrete roof at the top
right of the image, in a black rectangle. Another region clus-
tered as j is the end of a road, shown in a white rectangle, which
remained unclustered (colored “bg”) in Fig. 11(a). The signa-
tures of A and j have appreciable differences (Fig. 13).

Another difference is the detection of clusters P (brown) and
Q (ocher). The CONNvis delineates the border between the
clusters P and Q through the weak connections across them. The
mU-matrix in Fig. 12(c) clearly indicates the boundary around
the combined cluster P Q by high fence values. However,
the separation between P and Q is hard to distinguish even
by tuning the fence heights to scrutinize the local similarity
relations of the prototypes. This leads to the extraction of P
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Fig. 14. Comparison of the signatures of P, Q to P and Q . P and Q are ex-
tracted from CONNvis in Fig. 12(a) while P and Q are extracted based on
the density distribution seen in Fig. 12(b). The signatures of P and Q are more
distinct than those of P and Q .

and Q together as one cluster from the mU-matrix [Q, ocher
regions in Fig. 11(a)].

As an additional point, one might be tempted to think that
the separation of clusters P and Q is along the direction of the
dashed line shown in Fig. 12(c) because the density in that di-
rection is much lower than the density of the surrounding pro-
totypes. P and Q label the subclusters of P Q extracted
based on this density evaluation. In contrast, according to the
CONNvis [Fig. 12(a)], P Q should be separated in the ver-
tical direction indicated in Fig. 12(a) due to weak and few con-
nections between prototypes. We denote the resulting subclus-
ters by P and Q. Fig. 14 compares the mean signatures of P, Q,
P , and Q . The signatures of P and Q are more different from
each other than the signatures of P and Q . This demonstrates
that density distribution may be misleading for cluster identifi-
cation due to the fact that it only shows the total receptive field
size of the prototypes but does not show how the data is dis-
tributed among the neighbor prototypes. Yet many practitioners
rely on receptive field size alone for cluster identification. The
CONNvis shows the prototypes that are neighbors in data space
and the data distribution among them, which in turn produces a
better topology representation for cluster extraction.

We made an attempt to compare the quality of the two cluster
maps in Fig. 11 quantitatively, by using two commonly accepted
cluster validity indices. One is the Davies–Bouldin index (DBI),
which is based on centroid distance metrics [30]. The other
index is the generalized Dunn index (GDI) with centroid linkage
as between cluster distance metric and average distance to cen-
troid as within cluster distance metric. The best clustering is
indicated by the minimum (maximum) index of DBI (GDI).
GDI favors the CONN-based clustering (GDI 0.63) over the
mU-matrix clustering (GDI 0.44) whereas DBI favors the
mU-matrix clustering over CONNvis clustering (DBI 1.03
versus 1.30). One contributing factor to this contradiction may
be that the two maps contain different numbers of unclustered

prototypes. We do not know of any validity index that has been
shown to yield meaningful comparison in such situation.

V. DISCUSSIONS AND CONCLUSION

We define a new connectivity measure for the similarity of
SOM prototypes. It integrates data distribution into the cus-
tomary Delaunay triangulation, which, when displayed on the
SOM grid, enables 2-D visualization of the manifold structure
regardless of the data dimensionality. We are not aware that
other existing SOM visualizations have this capability. This
representation also enables more detailed detection of mani-
fold structures than the ones that work solely with prototype
distances or those that are limited to low dimensions. An addi-
tional contribution is that the binning scheme used in CONNvis
is automatically derived from internal data characteristics.
This makes the CONN matrix (divorced from visualization)
suitable for automation of cluster extraction. Our CONNvis is
also unique among SOM representations in that it shows both
forward and backward topology violations on the SOM grid.
This allows the assessment of the quality of SOM learning,
data complexity, and dimensionality match between the data
manifold and the SOM, and thus helps decide whether correct
data mining is possible or a new SOM learning or modification
of the grid structure is necessary.

An unresolved issue with this representation and its use in
cluster capture is that the binning scheme, defined globally in
Section III-E, may be ineffective for some large data sets. This
is because the global scheme gathers all connectivity strengths
of prototypes in high-density regions of the SOM into the largest
bin. That results in hiding the underlying (sub)cluster structures
in those regions. One way to overcome this problem may be a
region-based binning by using local statistics of the connectivity
strengths within subregions of the SOM. For example, one could
calculate the means separately for user-defined subregions of
different connectivity densities.

An interesting open problem is how to compare clusterings
produced by different methods that can leave some prototypes
unclustered. For example, in the semimanual clustering we de-
scribed in this paper, some prototypes remain unclustered be-
cause of uncertainty on the part of the analyst based on (limited)
visualization. Automated methods can also produce unclustered
prototypes with various threshold (or parameter) settings. The
number of unclustered prototypes can vary based on the decision
of the analyst or the threshold settings in an automated proce-
dure. In such situation, it is unclear how useful existing cluster
validity indices can be. This may necessitate the development
of new measures to provide meaningful assessment of cluster
validity under such circumstances.

Finally, we point out that the connectivity matrix CONN is
applicable to prototypes obtained by any quantization process
since the knowledge represented by CONN is independent of
visualization. It can be integrated into similarity measures in any
prototype-based clustering algorithms in addition to the more
customary distance-based similarity measures.
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