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Department of Electrical and Computer Engineering

Rice University, Houston, TX
e-mail: erzsebet@rice.edu

Abstract— Generalized Relevance Learning Vector Quantiza-
tion (GRLVQ) [1] is a “double action” supervised neural learning
machine that simultaneously adapts classification boundaries and
a weighting of the input dimensions to reflect the relevance
of each dimension for the given classification. It is thus a
joint classification and feature extraction technique. In [2] we
developed an improved version (GRLVQI) to handle intricate
high-dimensional data. GRLVQI makes significant headway of
feature reduction for hyperspectral images without compromising
classification accuracy. However, the number of features to
which the data can be reduced in the original (reflectance data)
domain is naturally limited by higher order correlations. Here we
investigate GRLVQI processing on wavelet coefficients because
of the approximately decorrelated nature and the sparsity of
those coefficients. We investigate the Dual-Tree Complex Wavelet
Transform (DTCWT) [3] for its reduced oscillatory effects be-
cause spectral data often have discontinuities due to data fallout.
We demonstrate that GRLVQI on the DTCWT coefficients
achieves better classification with fewer features than using the
Critically Sampled Discrete Wavelet Transform (CSDWT), which
was already shown to yield better results with far fewer features
than GRLVQI applied in the original data space.

I. INTRODUCTION

Accurate classification of remotely sensed hyperspectral
images (described in Section I-C) is an important task for
a wide variety of applications. The complexity and high
dimensionality of the data makes it difficult to classify. If
we can extract a set of meaningful features while suppressing
features that confuse the classifier, it is possible to increase
both classification accuracy and speed. However, meaningful
feature extraction that allows one to retain a high quality
classification of intricate data is a difficult task. Many meth-
ods approach feature extraction independent of classification,
often yielding a reduced feature set but poorer classification
than by using all available features. This end result is often
unacceptable. In our work, we use a jointly optimized classifier
and feature extractor: Generalized Relevance Learning Vector
Quantization (GRLVQ) [1].

A. Relevance learning

The term relevance learning describes a supervised neural
machine learning paradigm that simultaneously performs

1The views expressed in this article are those of the author and do not reflect
the official policy or position of the United States Air Force, Department of
Defense, or the U.S. Government.

a) adaptive Learning Vector Quantization (LVQ) [4] for opti-
mal placement of the prototype vectors to define class bound-
aries, and b) an adaptation of the so-called relevance vector,
to reflect the importance of the input dimensions for discrim-
ination of the given classes. The feedback between classifier
training and feature extraction ensures that the latter is opti-
mized for the particular classification problem. GRLVQ in its
original form [1] was not robust enough for high-dimensional
data (such as hyperspectral images). Our improvements in [2]
remedied that, and all results here were produced by our
improved version of GRLVQ, called GRLVQI(mproved). Both
will be described briefly in Section II-A.

B. The novelty of a relevance-wavelet model for classification

Wavelet-based signal processing, such as compression,
takes advantage of the signal compaction achieved by the
wavelet transform. Significant information is contained in a
few sparsely located coefficients with the largest magnitudes.
Coupled with this powerful property, very successful image
compression methods make use of the multi-scale aspects of
the transform; significant wavelet coefficients persist across
wavelet scales. Jerome Shapiro’s embedded zero-tree wavelet
compression algorithm is a well known example [5], which
takes advantage of the multi-scale and sparsity aspects of
the wavelet transform allowing for progressively better signal
reconstruction as more significant coefficients are retained.
There are a host of wonderful properties which make the
wavelet transform a powerful signal processing tool.

The same success compression algorithms have with largest
magnitude coefficient selection have not been shared by
classification algorithms (see, e.g., Moon and Merényi [6]).
Experiments in our previous work indicated that the largest
magnitude wavelet coefficients have relatively poor class
discrimination capability [7]. Similarly, classification using
wavelet subband energy has largely been unsuccessful (see,
e.g., Zhang et al. [8]).

Our relevance-wavelet model selects wavelet coefficients
based on their GRLVQ-determined importance for the given
classification which is a paradigm shift from more typical
largest magnitude selection of coefficients. This paradigm
shift results in very high classification accuracies with only
a handful of wavelet coefficients [2].



C. Hyperspectral images

Hyperspectral images are coveted data that offer the nec-
essary spectral details to distinguish virtually any material.
They are a stack of (co-registered) images where each image
is the measured light response in a narrow frequency band.
This collection of hundreds of images can be thought of as an
image cube (Fig. 1 left), where each pixel has associated with
it a spectral curve (Fig. 1 right).

Fig. 1. A hyperspectral image cube where each pixel is an n-dimensional
vector which is the spectrum of the material in that pixel. Figure with
permission from Campbell [9].

Precise classification of hyperspectral data has historically
proven very difficult. Yet, one wants to discriminate ma-
terial differences that cutting-edge instrumentation records.
Sophisticated classifiers and sophisticated feature extractors
are required to realize the full potential of these data sets.

D. Discontinuities in hyperspectral data

Data fallout often causes discontinuities in spectra. The
most common example in hyperspectral images is irreparable
damage to data in two wavelength windows (see Fig. 2 top)
where the atmospheric water vapor saturates the instrument
response. These two regions are deleted, and a piecewise signal
with discontinuities at the boundaries (Fig. 2 bottom) results.
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Fig. 2. Spectral discontinuities caused by data fallout. Top: Normalized
reflectance spectrum vs. wavelength with “empty” regions where data are
deleted due to saturation of the atmospheric water bands. Bottom: Reflectance
vs. feature index illustrating the band locations of the discontinuities as they
appear to the wavelet transform.

The deletion of spectral bands has no ill effect on our
ability to process the data using GRLVQI on the spectral fea-
tures. However, the discontinuities can manifest in a (wavelet)
transform domain creating a set of false features. These false
features are a concern if using GRLVQI because it may waste
relevance resources by learning artifacts. We can potentially
mitigate the effect of the discontinuities by carefully choosing
the transform.

The Dual-Tree Complex Wavelet Transform (DTCWT) is
known to have less oscillation due to discontinuities then
other forms of the wavelet transform (e.g., the Critically Sam-
pled Discrete Wavelet Transform (CSDWT) with Daubechies
length-four orthogonal (db4) filters [10] used in our previous
work [7]).

To demonstrate the reduced oscillatory effects of the
DTCWT over the CSDWT, we define a function to place
discontinuities in the vicinity of the locations where spectral
bands were deleted, “between” the band pairs (98,99) and
(139,140) (see Fig. 2 bottom):

f [n] = u[n− 97] − u[n− 101]
+u[n− 138] − u[n− 142]. (1)

where n indicates band index and u[·] stands for the unit step
function. We then take the wavelet transform of f [n]. Fig. 3 top
is the CSDWT of f [n] using the CSDWT with the db4 filters
and Fig. 3 bottom with the DTCWT from Selesnick et al. [3].
Fig. 3 shows that the DTCWT results in less oscillation of the
wavelet coefficients.
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Fig. 3. Wavelet transform of f [n] in Eq. 1 in the vicinity of the spectral
discontinuities. Top: Three scales of the CSDWT of f [n] using the db4 filters.
Bottom: The magnitude of three scales of the DTCWT of f [n].

II. BACKGROUND ON GRLVQ(I) & THE DTCWT

A. GRLVQ and GRLVQ-Improved

Learning Vector Quantization 2.1 (LVQ2.1), the third in a
series of progressively more sophisticated paradigms defined
by Kohonen [4], is an adaptive neural learning paradigm used
for supervised classification. Prototype vectors are adapted to
define classification boundaries while minimizing the Bayes



risk. This is accomplished by differentially shifting a best
matching in-class prototype vector wJ (with distortion dJ )
which has the same class label as the input sample xm,
and a best matching out-of-class prototype vector wK (with
distortion dK) which has a different label than the input sample
xm, at each iteration (Fig. 4). The distortion measure used is
the squared Euclidean distance.

Fig. 4. Differential shifting of the in-class (wJ ) and out-of-class (wK )
winning prototype vectors.

In LVQ2.1, prototype vectors can drift from their optimal
locations once placed, resulting in a degradation of classifica-
tion accuracy. Sato and Yamada [11] addressed this divergence
issue in their Generalized LVQ (GLVQ). GLVQ descends a
cost function C which is a sum where each term is a sigmoid-
modulated measure of the classification success µ(·), of one
input sample. f(·) is called the loss function (Eqn. 2).

C =
M∑

m=1

f(µ(xm)) (2)

f(µ(xm)) =
1

1 + e−µ(xm)
,

=
1

1 + e

(
− dJ−dK

dJ+dK

) (3)

µ(xm) =
(
dJ − dK

dJ + dK

)
(4)

Using GLVQ as the starting point, Hammer and Vill-
mann [1] incorporate the learning of an importance weight-
ing of the input dimensions for classification. This adaptive
diagonal metric is the so-called relevance (a vector λ =
(λ1, λ2, ..., λn) where n is the dimensionality of the data),
and gives Generalized Relevance LVQ (GRLVQ). Adaptation
of the prototype vectors is accomplished via gradient de-
scent [1], [11]:

∆wJ =
4ε(t)Jf ′|µ(xm)d

K
λ

(dJ
λ + dK

λ )2
Λ(xm − wJ ), (5)

∆wK = −4ε(t)Kf ′|µ(xm)d
J
λ

(dJ
λ + dK

λ )2
Λ(xm − wK), (6)

where Λ is a diagonal matrix with the λi as its diagonal
elements, f ′ is the derivative of f , and ε(t)J and ε(t)K are
(potentially) time-varying in-class and out-of-class learn rates,
respectively.

Similarly, adaptation of the relevance factors is derived
as [1]:

∆λi = −2ε(t)λf ′|µ(xm
i )d

K
λ (xm

i − wJ
i )

(dJ
λ + dK

λ )2
(7)

+
2ε(t)λf ′|µ(xm

i )d
J
λ(xm

i − wK
i )

(dJ
λ + dK

λ )2

For stability reasons, relevances must be scaled such that
‖λ‖p = 1 [1] and λi ≥ 0 ∀i ∈ {1, ..., n}. We choose p = 1
because relevances then have a nice numerical interpretation
as percentage of a whole.

In our earlier analysis and experimentation with GR-
LVQ [2], we find it still suffers from the potential for diverg-
ing prototype vectors, and in addition, from poor prototype
utilization.

We remedied the first problem by a change to the learning
rule. Our in-class conditional update learning rule updates
both the in-class and out-of-class winning prototype vectors
only if the input sample is misclassified. If the input sample
is classified correctly, we only update the in-class prototype
vector [2].

We addressed the problem of poor prototype utilization
by adapting DeSieno’s conscience learning [12] for in-class
prototype selection, separately for each class. The idea behind
conscience learning is to bias the Euclidean distance between
the input sample xm and the prototype vector wp with the bias
Bp. The bias Bp is calculated based on the winning frequency
of wp and alters the chance of wp becoming the winner,
encouraging the selection of infrequent winners and discour-
aging the selection of frequent winners. This equiprobablistic
approach ensures all prototypes receive an opportunity to
learn during the training process, and achieves an information
theoretically optimum quantization of the data.

Our improvements to GRLVQ (dubbed GRLVQI) result in
better classification and decreased training time. Specifics of
the GRLVQ algorithm and our improved GRLVQI, along with
experimental results, can be found in [2].

B. The Dual-Tree Complex Wavelet Transform

The Critically Sampled Discrete Wavelet Transform (CS-
DWT) represents the signal f(t) as the sum of its scaling
coefficients c(n) and wavelet coefficients dk(n):

f(t) =
∞∑

n=−∞
c(n)φ(t− n) (8)

+
∞∑

k=0

∞∑
n=−∞

dk(n)2k/2ψ(2kt− n) (9)

where φ(t) is the scaling function and ψ(2kt−n) the wavelet
function at scale k.

To perform a k-level CSDWT of the function f(t), one
simply takes the inner product of f(t) with scaling function
φ(t) and wavelet function ψ(2kt− n):

c(n) =
∫ ∞

−∞
f(t)φ(t− n)dt, (10)

dk(n) =
∫ ∞

n=−∞
f(t)2k/2ψ(2kt− n), (11)

where 2k/2 is a normalizing term.
One can efficiently compute the wavelet and scaling func-

tions using a filter bank. Here, the discrete input signal
f [n] is filtered with low-pass scaling filter H(z) and high-
pass wavelet filter G(z), iterating on the low-pass scaling



coefficients at each scale. This process is demonstrated in
Fig. 5 for a three-level wavelet transform.

Fig. 5. Analysis filter bank for the Critically Sampled Discrete Wavelet
Transform. The filters H(z) and G(z) are the z-transforms of the high-pass
wavelet filters and low-pass scaling filters respectively. The symbol ↓2 denotes
a down sampling operation by a factor of two.

The Dual-Tree Complex Wavelet Transform (DTCWT) (see
Selesnick et al. [3]) extends the CSDWT by defining two trees
(or filter banks): one filter bank computes the real part while
a second filter bank computes the imaginary part. Each low-
pass scaling coefficient and high-pass wavelet coefficient is the
sum of its real and imaginary parts: cc(n) = cr(n) + jci(n),
dc

k(n) = dr
k(n) + jdi

k(n)), where j =
√−1.

In the case of the real component, the scaling function φ(t)
and wavelet function ψ(t) are both real and even (symmetric)
functions [3]. Conversely, for the imaginary component, the
scaling and wavelet functions are both imaginary and odd
(anti-symmetric) [3]. We can similarly write the scaling and
wavelet functions as the sum of their real and imaginary parts:
ψc(t) = ψr(t) + jψi(t) and φc

k(t) = φr
k(t) + jφi

k(t).

III. DESIGN OF EXPERIMENTS

A. The Lunar Crater Volcanic Field data set

We use a total of 931 / 1464 verified spectra (for a 23/35-
class problem respectively) from a hyperspectral image of the
Lunar Crater Volcanic Field (LCVF), NV test site obtained
by the NASA/JPL AVIRIS [13] sensor. Each data sample
has 194 spectral features after elimination of wavelength
windows where data were irrecoverably lost. We use 35
predefined classes, identified in previous studies. Mean spectra
and class labels are shown for 23 of those classes (A - W)
in Fig. 6 (see [14] for a more complete description). The
35-class problem uses 12 additional classes, shown in [2],
which introduce more sub-class structure making it a more
challenging classification problem.

B. Experiment process

We train our GRLVQI classifier on a set of training data and
periodically test the quality of the learning on a set of test data.
After training is finished, we record the final classification
accuracy of the test data as determined by GRLVQI, and
count the number of significant relevant features. We define
a feature as “significantly relevant” if GRLVQI assigns a
relevance factor ≥ 0.001 to it. This threshold was chosen as
it represents all relevances that contribute at least one-tenth of
one percent to the classification. We then use the Minimum
Euclidean Distance (MED) classifier to independently assess
the quality of the feature set.

Fig. 6. Average spectra and labels for the 23-class problem. Spectra are
offset for viewing convenience. Dashed vertical lines indicate data fallout due
to the saturation of the atmospheric water bands.

We use a jack-knifing strategy to assess training and testing
classification accuracy during the learning process. We per-
form three jack-knife runs randomly selecting two-thirds of
our known labeled training sample pool for training (621/976
samples for the 23/35-class problems) and one-third for testing
(310/488 samples for the 23/35-class problems). We report
the average of the three jack-knife results for the testing
samples. Accuracy in each run is computed as the average
of individual class accuracies, which allows relatively small
classes to equally contribute to the assessment of the classifier.

IV. RESULTS

A. The 23-class LCVF classification as a baseline

Our previous GRLVQI processing in the wavelet domain,
using a 3-level CSDWT with the db4 filters [7], achieved
an accuracy of 97.3% with 17 wavelet coefficients having
relevances ≥ 0.001. We extend that experiment to a 4-level
and 5-level wavelet transform using the CSDWT as well as
the DTCWT in the following sections.

B. GRLVQI & Complex Wavelets: An initial investigation

Our initial hypothesis was that GRLVQI processing on the
magnitude of the DTCWT would yield best results in the face
of discontinuities in the data (and, consequently, artifacts in
the wavelet coefficients). However, based on Table I it does
not appear advantageous over the CSDWT [7]. Surprisingly,
the imaginary component of the DTCWT (especially the 4-
level transform) shows superior results. We use the imaginary
component of the DTCWT and do GRLVQI processing and
feature extraction on that representation for the remainder of
this study.



Real Imaginary Magnitude Phase

3-level Acc (%) 97.35% 97.44% 95.99% 74.56%

DTCWT # Features 55 16 51 70

4-level Acc (%) 95.13% 98.28% 83.50% 69.97%

DTCWT # Features 15 11 95 75

TABLE I

ACCURACY AND NUMBER OF FEATURES FROM GRLVQI IN THE DTCWT

DOMAIN. FEATURES WITH RELEVANCES ≥ 0.001 WERE COUNTED.

As seen from Table II, the imaginary component of the
4-level decomposition from the complex wavelet transform
achieves best results. For the 4-level DTCWT, a classification
accuracy of 98.0% is achieved while retaining 15 (7.2%) of the
DTCWT wavelet coefficients. Similar classification accuracy
is achieved with the 4-level CSDWT requiring 24 (11.5%) of
the wavelet Coefficients.

CSDWT DTCWT imaginary part

3-level 4-level 5-level 3-level 4-level 5-level

Accuracy 97.3% 98.2% 97.0% 97.9% 98.0% 96.9%

Features 17 24 27 18 15 30

TABLE II

23-CLASS PROBLEM: ACCURACY AND NUMBER OF FEATURES FOR

GRLVQI PROCESSING IN THE WAVELET DOMAIN. FEATURES WITH

RELEVANCES ≥ 0.001 WERE COUNTED.

C. The strength of the DTCWTs imaginary component

When projecting a relatively smooth function on even
wavelet bases, smooth signal information is preserved which
is indicated by a smoothed version (or coarse approximation)
of the original signal f(t). In this case, much of the detailed
information (high-frequency content such as edges) are sup-
pressed making it difficult to pinpoint the exact location of
the edges. In contrast, odd wavelet bases preserve edges. The
projection of a relatively smooth function onto odd wavelet
bases has coefficients that are suppressed, thus accentuating
the differences at the discontinuities and making singularity
identification much easier.

Discriminating absorption bands in hyperspectral data are
often narrow shapes with sharp boundaries that must be
preserved. Symmetric (even) wavelet basis functions smooth
such absorptions making it more difficult to retain critical dis-
tinguishing features. In contrast, odd wavelet basis functions
preserve (and more precisely locate) them. The consequence
is better classification accuracy with the imaginary component
than with the real component or with the magnitude of the
complex wavelet and scaling coefficients.

What about the discontinuities in the spectra due to deleting
spectral information? Since the same discontinuities exist in all
classes, the odd wavelet basis functions are able to accurately
(and consistently) locate them, and since GRLVQI learns the
differences between classes, these consistent false features are
ignored.

D. A more difficult case: the 35-class problem

To further contrast the effectiveness of the imaginary com-
ponent of the DTCWT over the CSDWT with the db4 filters,
we extend our study to the more difficult 35-class problem
discussed briefly in Section III-A.

Classification accuracies and the number of retained features
are tabulated in Table III for the CSDWT and the imaginary
component of the DTCWT. The 4-level wavelet decomposition
has best results for the DTCWT (allowing that 0.5% accuracy
difference between the 4-level and 3-level results is “in the
noise” and considering the further reduction in retained fea-
tures significant).

For this problem, we achieve a 96.9% classification accu-
racy while retaining 16 (7.7%) coefficients. The classification
accuracy improved by 1.4% with 16 coefficients, compared to
26 required by GRLVQI processing on the (4-level) CSDWT
representation.

CSDWT DTCWT imaginary part

3-level 4-level 5-level 3-level 4-level 5-level

Accuracy 95.7% 95.6% 95.4% 97.4% 96.9% 95.9%

Features 26 26 33 21 16 22

TABLE III

35-CLASS PROBLEM: ACCURACY AND NUMBER OF FEATURES FOR

GRLVQI PROCESSING IN THE WAVELET DOMAIN. FEATURES WITH

RELEVANCES ≥ 0.001 WERE COUNTED.

E. Independent assessment of features extracted by GRLVQI

We use a Minimum Euclidean Distance classifier for in-
dependent assessment of the discrimination capability of the
features that GRLVQI deemed relevant. We take the features
(wavelet coefficients) in descending order of their relevance
and classify the test data, in the wavelet domain, as each
new feature is added. We start with the wavelet coefficient
associated with the largest relevance and classify using that
single coefficient. We add to this first coefficient, the wavelet
coefficient that corresponds to the second largest relevance and
then classify using the two coefficients. This process continues
until all wavelet coefficients are used. We record the best clas-
sification and the number of wavelet coefficients required to
obtain that classification. Table IV compares, for the 23-class
problem, the CSDWT and the imaginary component of the
DTCWT. As a baseline comparison, MED classification with
all available features achieves 92.8% classification accuracy
for the 23-class problem (not shown in Table IV).

Three general observations can be made from Table IV.
First, the GRLVQI-selected features (wavelet coefficients) lead
to a better classification than the use of all available features.
Second, the wavelet representation by the imaginary compo-
nent of the DTCWT yields consistently similar classification
results to the CSDWT with the db4 filters. Third, fewer
features are required for best MED performance with the
DTCWT, than with the CSDWT coefficients.

Using the MED classifier to evaluate the quality of
GRLVQI-selected features is admittedly not the best approach.



CSDWT DTCWT imaginary part

3-level 4-level 5-level 3-level 4-level 5-level

Accuracy 95.7% 96.2% 95.8% 96.2% 95.7% 96.2%

Features 17 14 14 12 10 14

TABLE IV

CLASSIFICATION ACCURACY AND CORRESPONDING NUMBER OF

FEATURES FOR THE MINIMUM EUCLIDEAN DISTANCE CLASSIFIER FOR

THE 23-CLASS PROBLEM.

We use it in this study for its value of providing an easy
and quick (albeit coarse) initial sanity check. An LVQ type
classifier uses multiple prototype vectors per class to define
class boundaries. Prototype vectors learn local class structure
(the margins between adjacent classes), thus the computed
relevances of features reflect more localized differences. In
contrast, the MED uses one prototype vector, the mean of the
training data for each class, to discriminate between classes
in a more global sense. Because of this one can hardly expect
the same classification accuracies from the MED and the
GRLVQI, working with features extracted by the QRLVQI.
Other apparent inconsistencies such as less number of features
used by the MED in some cases (Table IV vs. Tables I - II), can
also be ascribed to the above differences of the two classifiers.
More meaningful (relevance- like) features for the MED would
reflect differences in the mean between neighboring classes.

Based on the arguments above, the relevances computed by
GRLVQI may not identify a set of features that can be used in
any classifier with the same success (classification accuracy)
as in GRLVQI itself. This in turn affects the reliability of
the determination of the required number of features for
peak classification accuracy. While the MED assessment in
Table IV provides a first-order confirmation of the GRLVQ-
derived results, a better method for independent evaluation of
GRLVQI-selected features could be to use a classifier more
similar to the GRLVQI, for example, a K-means classifier
where K is assigned the number of GRLVQI prototype vectors
used per class. We plan to address this issue as well as
the approach to more principled and reliable determination
of the necessary number of relevance-assigned features, in
subsequent work.

V. SUMMARY AND DISCUSSION

In this paper, we investigated the application of GRLVQI in
the complex wavelet domain. While investigating the DTCWT
to mitigate the effects of discontinuities introduced in the spec-
tra, we found that the imaginary component (the wavelet bases
with odd symmetry) performed better than the magnitude, real
component, or phase. Since discriminating features are often
sharp bumps and dips in the spectra, the odd symmetry of
the imaginary component of the DTCWT accentuates their
representation in the wavelet domain making it easier for
GRLVQI to focus on these important features. This results
in better classification and feature reduction performance.

We found that GRLVQI more easily distinguishes difficult
class structure with the odd symmetry filters than using

Daubechies length-four orthogonal filters (which are neither
even or odd functions) as indicated by classification accuracy
gains or a reduction in number of significant relevant features,
or both. Additional research is necessary to determine the
effects of the odd wavelet bases over those wavelet bases that
are neither even or odd. Further, we surmise that careful selec-
tion of the employed wavelet system, intelligent preprocessing
of the data (see, e.g., Johnson [15]), and more principled
determination of the number of required features, could yield
more consistent accuracy and feature reduction.
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