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Inverse Problems

• Data estimation from inadequate/noisy observations

– Oft-encountered in practice

• Non-unique solution due to noise and lack of information

• Reduce ambiguity by exploiting structure of desired solution

– Piece-wise smooth structure of real-world signals/images

– Lattice structures due to quantization



Image Processing Inverse Problems

• Deconvolution: restore blurred and noisy image

– Exploit piece-wise smooth structure of real-world signals

– Applications: most imaging applications

• Inverse halftoning: obtain gray shades from black & white image

– Exploit piece-wise smooth structure of real-world signals

– Applications: binary image recompression, processing faxes

• JPEG Compression History Estimation (CHEst) for color images

– Exploit inherent lattice structures due to quantization

– Applications: JPEG recompression, artifact removal



Deconvolution
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• Problem: y = x ? h + n; given y, h, find x

• Applications: most imaging applications (seismic, medical, satellite)



Deconvolution is Ill-Posed

- -
Y (f) =

X(f)H(f) + N(f)
X(f) + N(f)

H(f)

inverse

H−1

blurred
noisy
image

deconvolution
estimate

|H(f)|

frequency f

|H−1(f)|

frequency f after pure inversion

• |H(f)| ≈ 0 ⇒ noise N(f)
H(f)

explodes!

• Solution: regularization (approximate inversion)



Fourier-Wavelet Regularized Deconvolution (ForWaRD)
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• Fourier denoising: exploits colored noise structure

Wavelet denoising: exploits input signal structure

• Choice of α: balance Fourier and wavelet denoising

– Optimal α → economics of signal’s wavelet representation

• Applicable to all convolution operators

• Simple and fast algorithm: O(M log2 M) for M pixels



Asymptotic ForWaRD Properties

• Theorem: Let signal x ∈ Besov space Bs
p,q (i.e., piece-wise smooth

signals), Tikhonov reg. parameter α > 0 (fixed), and “smooth”
|H(f)|. Then as the number of samples M increases,

Wavelet shrinkage error ↓ M
−2s
2s+1 (fast decay)

Fourier shrinkage error → constant determined by α (bias)

• ForWaRD improves on WVD at small samples
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Asymptotic ForWaRD Optimality

• Theorem: Let signal x ∈ Besov space Bs
p,q and H be a

“scale-invariant” operator; that is, |H(f)| ∝ |f |−ν, ν > 0. If

Tikhonov parameter α ≤ M−β,

where β >
s

2s + 2ν + 1
.max


1,

4ν

min
(
2s,2s + 1 − 2

p

)


 ,

then, as the number of samples M increases,

ForWaRD MSE ↓ M
−2s

2s+2ν+1.

Further, no estimator can achieve a faster error decay rate than
ForWaRD for every x(t) ∈ Bs

p,q.

• ForWaRD enjoys the same asymptotic optimality as the WVD



Image Deconvolution Results

Original Observed (9x9, 40dB BSNR)

Wiener (SNR = 20.7 dB) ForWaRD (SNR = 22.5 dB)



ForWaRD: Conclusions

• ForWaRD: balances Fourier-domain and wavelet-domain denoising

• Simple O(M log2 M) algorithm with good performance.

• Ph.D. Contributions:

– Asymptotic (M → ∞) error analysis for most operators

– Asymptotic optimality results for scale-invariant operators

• Status: IEEE Trans. on Signal Processing (to appear)

• Collaborators: H. Choi and R. Baraniuk



Halftoning and Inverse Halftoning

contone halftone

• Halftoning (HT): continuous-tone (contone) → binary (halftone)

– Halftone visually resembles contone

– Employed by printers, low-resolution displays, etc.

• Inverse halftoning (IHT): halftone → contone

– Applications: lossy halftone compression, facsimile processing

– Many contones → one halftone ⇒ ill-posed problem



Inverse Halftoning ≈ Deconvolution
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• From Kite et al. ’97, Y (z) = P(z)X(z) + Q(z)N(z), where

P(z) := K
1+(K−1)H(z)

and Q(z) := 1−H(z)
1+(K−1)H(z)

• Deconvolution: given Y , estimate X – a well-studied problem

⇒ For error diffusion (ED) halftones, IHT ≈ deconvolution



Wavelet-based Inverse Halftoning Via Deconvolution (WInH D)

- - -
y(n)

halftone

x̃(n) x̂(n)

IHT estimate
P−1

denoising

wavelet

• WInHD algorithm:

1. Invert P(z): P−1(z)Y (z) = X(z) + P−1(z)Q(z)Γ(z)

2. Attenuate noise P−1QΓ with wavelet-domain scalar estimation

• Wavelet denoising exploits input image structure

• Computationally efficient: O(M) for M pixels

• Structured solution: adapts by changing P , Q and K for different ED

– Most existing IHT algorithms are tuned empirically



Asymptotic Optimality of WInHD

• Main assumption: accuracy of linear model for ED

• Guaranteed fast error decay with increasing spatial resolution

M ↑
−→

For signals in Besov space Bs
p,q, as the number of pixels M → ∞,

WInHD MSE ↓ M
−s

s+1.

• Decay rate is optimal, if original contone is noisy



Simulation Results

contone halftone

Gaussian LPF Gradient [Kite ’98] WVD
(PSNR 28.6 dB) (PSNR 31.3 dB) (PSNR 32.1 dB)

• WInHD is competitive with state-of-the-art IHT algorithms



WInHD: Conclusions

• Ph.D. Contributions:

– Inverse halftoning ≈ deconvolution

– WInHD: Wavelet-based Inverse halftoning via Deconvolution

∗ O(M) model-based algorithm with good performance

– Asymptotic (M → ∞) error analysis

• Status: IEEE Trans. on Signal Processing (submitted)

• Collaborators: R. Nowak and R. Baraniuk



JPEG Compression History Estimation (CHEst)
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• Observed: color image that was previously JPEG-compressed

• JPEG → TIFF or BMP: settings lost during conversion

• Desired: settings used to perform previous JPEG compression

• Applications:

– JPEG recompression

– Blocking artifact removal

– Uncover internal compression settings from printers, cameras



Digital Color

• Color perceived by human visual system requires three components

• Pixel in digital color image → 3-D vector

• Color space → Reference frame for the 3-D vector

– RGB : Red R, Green G, Blue B

– YCbCr : Luminance Y, Chrominance Cb, Chrominance Cr

• Color spaces are inter-related by linear or non-linear transforms
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JPEG Overview
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• JPEG: common standard to compress digital color images

• JPEG compression history components → chosen by imaging device

1. Color space used to perform compression

2. Subsampling and complementary interpolation

3. Quantization tables



Lattice Structure of Quantized DCT Coefficients

• 3-D vector of G space’s DCT coefficients ∈ rectangular lattice

– XG1, XG2, XG3 → ith frequency DCT coefficnents
qi,1, qi,2, qi,3 → corresponding Q-step sizes
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• 3-D vector of F space’s DCT coefficients ∈ parallelepiped lattice

– Assuming no subsampling, affine G to F : F = [T ]3×3 G + Shift

compression space G observation space F



Lattice Basis Reduction

• Given vectors bi, lattice L :=
∑

i λi bi with λi ∈ ZZ

• Lattice basis reduction by Lenstra, Lenstra, Jr. and Lovasz (LLL):

– Given vectors ∈ L, LLL finds an ordered set of basis vectors

∗ basis vectors are nearly orthogonal

∗ shorter basis vectors appear first in the order

• LLL operations are similar to Gram-Schmidt

1. Change the order of the basis vectors

2. Add to bi an integral multiple of bj

3. Delete any resulting zero vectors



LLL Provides Parallelepiped’s Basis Vectors

• Any basis for parallelepiped containing ith frequency 3-D vectors

Bi :=


 T
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3×3 → unit-determinant matrix

• From LLL’s properties, and since T → nearly-orthogonal

– LLL’s Bi’s 1st (shortest) column is aligned with one of T ’s columns

– The Ui’s in LLL’s Bi are “close” to identity. For example,

Ui =


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Color Transform and Q-step Sizes from Different Bi’s

• Need to undo effect of Ui from Bi to get T Qi

– Choose Ui’s such that UiB
−1
i BjU

−1
j is diagonal

– Obtain T Qi = BiU
−1
i

• Obtain the norms of each column of T from the different T Qi

– ‖(T Qi)(:, k)‖2 = qi,k‖T (:, k)‖2 ⇒ ‖(T Qi)(:, k)‖2 ∈ 1-D lattice

• Extract T and the quantization tables

• From DC components, estimate shift

⇒ Lattice basis provide color transform, quantization table



LLL + Round-off Noise Attenuation

compression space G observation space F

• Round-offs perturb ideal lattice structure

• Need to incorporate noise attenuation step into LLL

– Perform LLL with oft-occuring 3-D vectors

– Use MAP (Gaussian round-offs) to update LLL’s basis estimate

• Modified LLL provides good Bi estimates that help solve CHEst



Lattice-based CHEst Results (Color Transform)

• Actual color transform from ITU.BT-601 YCbCr space to the RGB
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• Estimated color transform
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• Error in shift’s estimate does not affect recompression, enhancement

• T ’s estimate is very accurate



Lattice-based CHEst Results (Quantization Table)

10 7 6 10 14 24 31 ×
7 7 8 11 16 35 36 33
8 8 10 14 24 34 × ×
8 10 13 17 31 × × ×

11 13 22 34 41 × × ×
14 21 × × × × × ×
× × × × × × × ×
× × × × × × × ×

Y plane

10 11 14 28 × × × ×
11 13 16 × × × × ×
14 16 × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

10 11 14 28 × × × ×
11 13 16 × × × × ×
14 16 × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

Cb plane Cr plane

• All estimated step sizes are exact! (× → cannot estimate)



Dictionary-based CHEst

• Lattice-based CHEst → affine color transform, no subsampling

• Dictionary-based CHEst → all types of color transforms, subsampling

• Uses MAP to estimate compression history

– Based on model for quantized coefficients + round-off noise

– Model: given q, PDF =
∑

k truncated Gaussians(kq, σ2)
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• Also yields excellent CHEst results



JPEG Recompression Using CHEst Results

50 100 150 200

22.6

22.8

23

23.2

23.4

23.6

23.8

24

24.2

file−size (in kilobytes)

S
N

R
 (

in
 d

B
 in

 C
IE

La
b 

sp
ac

e)

Lattice−based CHEst
RGB to YCbCr
Comp. RGB to YCbCr601
RGB to Kodak PhotoYCC
sRGB to 8−bit CIELab

20 40 60 80 100 120 140
21.4

21.6

21.8

22

22.2

22.4

22.6

22.8

file−size (in kilobytes)

S
N

R
 (

in
 d

B
 in

 C
IE

La
b 

sp
ac

e)

Dictionary−based CHEst
RGB to YCbCr
Comp. RGB to YCbCr601
RGB to Kodak PhotoYCC
sRGB to 8−bit CIELab

• Aim: recompress a previously JPEG-compressed BMP image

• Naive recompression → large file-size or distortion

• CHEst results → good file-size–distortion trade-off



JPEG CHEst: Conclusions

• Ph.D. Contributions:

– Formulation of JPEG CHEst for color images

– Linear case: LLL algorithm to exploit 3-D lattice structures

– General case: MAP approach to exploit 1-D lattice structure

– Demonstrated JPEG CHEst’s utility in recompression

• Status: IEEE Trans. on Image Processing (to be submitted)

• Collaborators: R. de Queiroz, Z. Fan, and R. Baraniuk



Inverse Problems in Image Processing: Conclusions

• Deconvolution using ForWaRD:

– Exploits piece-wise smoothness of real-world signals

– Demonstrates desirable asymptotic performance

• Inverse halftoning using WInHD:

– Exploits piece-wise smoothness of real-world signal

– Demonstrates desirable asymptotic performance

• Lattice-based and Dictionary-based JPEG CHEst for color images:

– Exploit lattice structures created due to JPEG’s quantization step

– Enables effective JPEG recompression


