

Inverse Problems in Image Processing

Ramesh Neelamani (Neelsh)

Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox

June 2003

- Data estimation from inadequate/noisy observations
 - Oft-encountered in practice
- Non-unique solution due to noise and lack of information
- Reduce ambiguity by exploiting structure of desired solution
 - Piece-wise smooth structure of real-world signals/images
 - Lattice structures due to quantization

- **Deconvolution**: restore blurred and noisy image
 - Exploit piece-wise smooth structure of real-world signals
 - Applications: most imaging applications
- Inverse halftoning: obtain gray shades from black & white image
 - Exploit piece-wise smooth structure of real-world signals
 - Applications: binary image recompression, processing faxes
- JPEG Compression History Estimation (CHEst) for color images
 - Exploit inherent lattice structures due to quantization
 - Applications: JPEG recompression, artifact removal

Deconvolution

- Problem: $y = x \star h + n$; given y, h, find x
- Applications: most imaging applications (seismic, medical, satellite)

Deconvolution is III-Posed

- $|H(f)| \approx 0 \Rightarrow$ noise $\frac{N(f)}{H(f)}$ explodes!
- Solution: regularization (approximate inversion)

Fourier-Wavelet Regularized Deconvolution (ForWaRD)

• Fourier denoising: exploits colored noise structure

Wavelet denoising: exploits input signal structure

- Choice of α : balance Fourier and wavelet denoising
 - Optimal $\alpha \rightarrow$ economics of signal's wavelet representation
- Applicable to all convolution operators
- Simple and fast algorithm: $O(M \log^2 M)$ for M pixels

Theorem: Let signal x ∈ Besov space B^s_{p,q} (i.e., piece-wise smooth signals), Tikhonov reg. parameter α > 0 (fixed), and "smooth" |H(f)|. Then as the number of samples M increases,

Wavelet shrinkage error $\downarrow M^{\frac{-2s}{2s+1}}$ (fast decay) Fourier shrinkage error \rightarrow constant determined by α (bias)

• ForWaRD improves on WVD at small samples

• Theorem: Let signal $x \in \text{Besov}$ space $B_{p,q}^s$ and \mathcal{H} be a "scale-invariant" operator; that is, $|H(f)| \propto |f|^{-\nu}, \nu > 0$. If

Tikhonov parameter $\alpha \leq M^{-\beta}$,

where
$$\beta > \frac{s}{2s + 2\nu + 1} \cdot \max\left(1, \frac{4\nu}{\min\left(2s, 2s + 1 - \frac{2}{p}\right)}\right)$$
,

then, as the number of samples M increases,

ForWaRD MSE
$$\downarrow M^{\frac{-2s}{2s+2\nu+1}}$$

Further, no estimator can achieve a faster error decay rate than ForWaRD for every $x(t) \in B_{p,q}^s$.

• ForWaRD enjoys the same asymptotic optimality as the WVD

Image Deconvolution Results

Observed (9x9, 40dB BSNR)

Wiener (SNR = 20.7 dB)

ForWaRD (SNR = 22.5 dB)

- ForWaRD: balances Fourier-domain and wavelet-domain denoising
- Simple $O(M \log^2 M)$ algorithm with good performance.
- Ph.D. Contributions:
 - Asymptotic ($M \rightarrow \infty$) error analysis for most operators
 - Asymptotic optimality results for scale-invariant operators
- Status: IEEE Trans. on Signal Processing (to appear)
- Collaborators: H. Choi and R. Baraniuk

Halftoning and Inverse Halftoning

contone

halftone

- Halftoning (HT): continuous-tone (contone) \rightarrow binary (halftone)
 - Halftone visually resembles contone
 - Employed by printers, low-resolution displays, etc.
- Inverse halftoning (IHT): halftone \rightarrow contone
 - Applications: lossy halftone compression, facsimile processing
 - Many contones \rightarrow one halftone \Rightarrow ill-posed problem

Inverse Halftoning \approx Deconvolution

- From Kite et al. '97, Y(z) = P(z)X(z) + Q(z)N(z), where $P(z) := \frac{K}{1 + (K-1)H(z)}$ and $Q(z) := \frac{1 - H(z)}{1 + (K-1)H(z)}$
- Deconvolution: given Y, estimate X a well-studied problem \Rightarrow For error diffusion (ED) halftones, IHT \approx deconvolution

Wavelet-based Inverse Halftoning Via Deconvolution (WInHD)

- WInHD algorithm:
 - 1. Invert P(z): $P^{-1}(z)Y(z) = X(z) + P^{-1}(z)Q(z)\Gamma(z)$
 - 2. Attenuate noise $P^{-1}Q \Gamma$ with wavelet-domain scalar estimation
- Wavelet denoising exploits input image structure
- Computationally efficient: O(M) for M pixels
- Structured solution: adapts by changing P, Q and K for different ED
 - Most existing IHT algorithms are tuned empirically

- Main assumption: accuracy of linear model for ED
- Guaranteed fast error decay with increasing spatial resolution

For signals in Besov space $B_{p,q}^s$, as the number of pixels $M \to \infty$, WInHD MSE $\downarrow M^{\frac{-s}{s+1}}$.

• Decay rate is optimal, if original contone is noisy

Simulation Results

• WInHD is competitive with state-of-the-art IHT algorithms

- Ph.D. Contributions:
 - Inverse halftoning \approx deconvolution
 - WInHD: Wavelet-based Inverse halftoning via Deconvolution
 - * O(M) model-based algorithm with good performance
 - Asymptotic ($M \to \infty$) error analysis
- Status: IEEE Trans. on Signal Processing (submitted)
- Collaborators: R. Nowak and R. Baraniuk

JPEG Compression History Estimation (CHEst)

- Observed: color image that was previously JPEG-compressed
- JPEG \rightarrow TIFF or BMP: settings lost during conversion
- Desired: settings used to perform previous JPEG compression
- Applications:
 - JPEG recompression
 - Blocking artifact removal
 - Uncover internal compression settings from printers, cameras

- Color perceived by human visual system requires three components
- Pixel in digital color image \rightarrow 3-D vector
- Color space \rightarrow Reference frame for the 3-D vector
 - *RGB*: Red *R*, Green *G*, Blue *B*
 - YCbCr: Luminance Y, Chrominance Cb, Chrominance Cr
- Color spaces are inter-related by linear or non-linear transforms

$$\begin{bmatrix} \mathbf{R} \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.0 & 0.0 & 1.40 \\ 1.0 & -0.344 & -0.714 \\ 1.0 & 1.77 & 0.0 \end{bmatrix} \left(\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} - \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix} \right).$$

JPEG Overview

- JPEG: common standard to compress digital color images
- JPEG compression history components \rightarrow chosen by imaging device
 - 1. Color space used to perform compression
 - 2. Subsampling and complementary interpolation
 - 3. Quantization tables

- 3-D vector of G space's DCT coefficients \in rectangular lattice
 - $X_{G1}, X_{G2}, X_{G3} \rightarrow i^{th}$ frequency DCT coefficients $q_{i,1}, q_{i,2}, q_{i,3} \rightarrow$ corresponding Q-step sizes

$$\begin{bmatrix} X_{G1} \\ X_{G2} \\ X_{G3} \end{bmatrix} \rightarrow \text{quantization} \rightarrow \begin{bmatrix} \text{round}\left(\frac{X_{G1}}{q_{i,1}}\right) q_{i,1} \\ \text{round}\left(\frac{X_{G2}}{q_{i,2}}\right) q_{i,2} \\ \text{round}\left(\frac{X_{G3}}{q_{i,3}}\right) q_{i,3} \end{bmatrix}$$

- 3-D vector of F space's DCT coefficients \in parallelepiped lattice
 - Assuming no subsampling, affine G to F: $F = [\mathcal{T}]_{3 \times 3} G + \text{Shift}$

compression space G

observation space F

- Given vectors b_i , lattice $\mathcal{L} := \sum_i \lambda_i b_i$ with $\lambda_i \in \mathbb{Z}$
- Lattice basis reduction by Lenstra, Lenstra, Jr. and Lovasz (LLL):
 - Given vectors $\in \mathcal{L}$, LLL finds an ordered set of basis vectors
 - * basis vectors are nearly orthogonal
 - * shorter basis vectors appear first in the order
- LLL operations are similar to Gram-Schmidt
 - 1. Change the order of the basis vectors
 - 2. Add to b_i an integral multiple of b_j
 - 3. Delete any resulting zero vectors

LLL Provides Parallelepiped's Basis Vectors

• Any basis for parallelepiped containing i^{th} frequency 3-D vectors

$$\mathcal{B}_{i} := \begin{bmatrix} \mathcal{T} \\ \mathcal{T} \end{bmatrix} \begin{bmatrix} q_{i,1} & 0 & 0 \\ 0 & q_{i,2} & 0 \\ 0 & 0 & q_{i,3} \end{bmatrix} \begin{bmatrix} \mathcal{U}_{i} \\ \mathcal{U}_{i} \end{bmatrix} =: \mathcal{T}\mathcal{Q}_{i}\mathcal{U}_{i}$$
$$\mathcal{U}_{i} \in \mathbb{Z}^{3 \times 3} \rightarrow \text{unit-determinant matrix}$$

- From LLL's properties, and since $\mathcal{T} \rightarrow$ nearly-orthogonal
 - LLL's \mathcal{B}_i 's 1st (shortest) column is aligned with one of \mathcal{T} 's columns
 - The \mathcal{U}_i 's in LLL's \mathcal{B}_i are "close" to identity. For example,

$$\mathcal{U}_i = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

- Need to undo effect of \mathcal{U}_i from \mathcal{B}_i to get \mathcal{TQ}_i
 - Choose \mathcal{U}_i 's such that $\mathcal{U}_i \mathcal{B}_i^{-1} \mathcal{B}_j \mathcal{U}_i^{-1}$ is diagonal

- Obtain
$$\mathcal{TQ}_i = \mathcal{B}_i \mathcal{U}_i^{-1}$$

- Obtain the norms of each column of \mathcal{T} from the different \mathcal{TQ}_i
 - $\|(\mathcal{TQ}_i)(:,k)\|_2 = q_{i,k}\|\mathcal{T}(:,k)\|_2 \Rightarrow \|(\mathcal{TQ}_i)(:,k)\|_2 \in 1\text{-D lattice}$
- Extract ${\mathcal T}$ and the quantization tables
- From DC components, estimate shift

 \Rightarrow Lattice basis provide color transform, quantization table

LLL + Round-off Noise Attenuation

compression space G

observation space F

- Round-offs perturb ideal lattice structure
- Need to incorporate noise attenuation step into LLL
 - Perform LLL with oft-occuring 3-D vectors
 - Use MAP (Gaussian round-offs) to update LLL's basis estimate
- Modified LLL provides good \mathcal{B}_i estimates that help solve CHEst

• Actual color transform from *ITU.BT-601* YCbCr space to the *RGB*

$$\begin{bmatrix} \mathbf{R} \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.0 & 0.0 & 1.40 \\ 1.0 & -0.344 & -0.714 \\ 1.0 & 1.77 & 0.0 \end{bmatrix} \left(\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} - \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix} \right).$$

• Estimated color transform

$$\begin{bmatrix} \mathbf{R} \\ G \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} 1.00 & 0.00 & 1.41 \\ 1.00 & -0.35 & -0.71 \\ 1.00 & 1.78 & 0.00 \end{bmatrix} \left(\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} - \begin{bmatrix} 3 \\ 88 \\ 138 \end{bmatrix} \right)$$

- Error in shift's estimate does not affect recompression, enhancement
- *T*'s estimate is very accurate

Lattice-based CHEst Results (Quantization Table)

				10	7	6	10	14	24	31	Х				
				7	7	8	11	16	35	36	33				
				8	8	10	14	24	34	×	\times				
				8	10	13	17	31	X	×	\times				
				11	13	22	34	41	X	X	\times				
				14	21	×	X	\times	×	×	Х				
				×	×	×	×	×	X	×	Х				
				×	\times	\times	×	×	×	×	×				
							Υp	lane							
10	11	14	28	×	X	X	×	10	11	14	28	×	×	×	X
11	13	16	×	×	×	×	×	11	13	16	X	×	×	×	Х
14	16	×	×	X	×	×	X	14	16	X	Х	×	×	X	×
X	×	×	X	×	\times	×	X	×	×	×	Х	×	×	×	×
X	×	×	X	×	\times	×	Х	×	×	×	Х	×	×	Х	×
X	×	×	X	×	\times	×	Х	×	×	×	Х	×	×	Х	×
\times	×	×	×	\times	\times	×	Х	\times	×	×	\times	X	X	X	×
Х	×	×	×	×	×	×	×	×	×	×	Х	×	×	×	Х
Cb plane									Cr plane						

• All estimated step sizes are exact! ($\times \rightarrow$ cannot estimate)

- Lattice-based CHEst \rightarrow affine color transform, no subsampling
- Dictionary-based CHEst \rightarrow all types of color transforms, subsampling
- Uses MAP to estimate compression history
 - Based on model for quantized coefficients + round-off noise
 - Model: given q, PDF = \sum_k truncated Gaussians(kq, σ^2)

• Also yields excellent CHEst results

JPEG Recompression Using CHEst Results

- Aim: recompress a previously JPEG-compressed BMP image
- Naive recompression \rightarrow large file-size or distortion
- CHEst results \rightarrow good file-size-distortion trade-off

- Ph.D. Contributions:
 - Formulation of JPEG CHEst for color images
 - Linear case: LLL algorithm to exploit 3-D lattice structures
 - General case: MAP approach to exploit 1-D lattice structure
 - Demonstrated JPEG CHEst's utility in recompression
- Status: IEEE Trans. on Image Processing (to be submitted)
- Collaborators: R. de Queiroz, Z. Fan, and R. Baraniuk

- Deconvolution using ForWaRD:
 - Exploits piece-wise smoothness of real-world signals
 - Demonstrates desirable asymptotic performance
- Inverse halftoning using WInHD:
 - Exploits piece-wise smoothness of real-world signal
 - Demonstrates desirable asymptotic performance
- Lattice-based and Dictionary-based JPEG CHEst for color images:
 - Exploit lattice structures created due to JPEG's quantization step
 - Enables effective JPEG recompression