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Inverse Problems

e Data estimation from inadequate/noisy observations

— Oft-encountered in practice

e Non-unique solution due to noise and lack of information

e Reduce ambiguity by exploiting structure of desired solution
— Piece-wise smooth structure of real-world signals/images

— Lattice structures due to quantization




Image Processing Inverse Problems

e Deconvolution: restore blurred and noisy image
— Exploit piece-wise smooth structure of real-world signals

— Applications: most imaging applications

e Inverse halftoning: obtain gray shades from black & white image
— Exploit piece-wise smooth structure of real-world signals

— Applications: binary image recompression, processing faxes

e JPEG Compression History Estimation (CHESst) for color images
— Exploit inherent lattice structures due to quantization

— Applications: JPEG recompression, artifact removal




Deconvolution
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e Applications: most imaging applications (seismic, medical, satellite)




Deconvolution is lll-Posed
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e Solution: regularization (approximate inversion)




Fourier-Wavelet Regularized Deconvolution (ForwaRD)
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e Fourier denoising: exploits colored noise structure

Wavelet denoising: exploits input signal structure

e Choice of a: balance Fourier and wavelet denoising

— Optimal a« — economics of signal’s wavelet representation
e Applicable to all convolution operators

e Simple and fast algorithm: O(M log? M) for M pixels




Asymptotic ForwaRD Properties

e Theorem: Let signal = € Besov space B , (i.e., piece-wise smooth
signals), Tikhonov reg. parameter o > O (fixed), and “smooth”
|H(f)|. Then as the number of samples M increases,
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e ForWaRD improves on WVD at small samples
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Asymptotic ForwaRD Optimality

e Theorem: Let signal = € Besov space B, , and H be a
“scale-invariant” operator; thatis, |H(f)| o< |f|7Y,v > O. If

Tikhonov parameter o < M —0 :
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then, as the number of samples M increases,
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Further, no estimator can achieve a faster error decay rate than
ForWaRD for every z(t) € B, .

e ForWaRD enjoys the same asymptotic optimality as the WVD




Image Deconvolution Results

Original Observed (9x9, 40dB BSNR)




ForWaRD: Conclusions

ForwWaRD: balances Fourier-domain and wavelet-domain denoising
Simple O(M log? M) algorithm with good performance.

Ph.D. Contributions:
— Asymptotic (M — oo) error analysis for most operators

— Asymptotic optimality results for scale-invariant operators
Status: IEEE Trans. on Signal Processing (to appear)

Collaborators: H. Choi and R. Baraniuk




Halftoning and Inverse Halftoning

contone halftone

e Halftoning (HT): continuous-tone (contone) — binary (halftone)

— Halftone visually resembles contone

— Employed by printers, low-resolution displays, etc.

e Inverse halftoning (IHT): halftone — contone
— Applications: lossy halftone compression, facsimile processing

— Many contones — one halftone =- ill-posed problem




Inverse Halftoning = Deconvolution
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e FromKiteetal. 97, Y(z) = P(2)X(z) + Q(2)N(z), where

P(2) = iy and Q(2) i= s

“1)H(2)
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e Deconvolution: given Y, estimate X — a well-studied problem

= For error diffusion (ED) halftones, IHT ~ deconvolution




Wavelet-based Inverse Halftoning Via Deconvolution (WIinH D)
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1. Invert P(2): P~1(2)Y(2) = X(2) + P 1(2)Q()I(2)

2. Attenuate noise P—1Q I with wavelet-domain scalar estimation

Wavelet denoising exploits input image structure

Computationally efficient: O(M) for M pixels

Structured solution: adapts by changing P, Q and K for different ED

— Most existing IHT algorithms are tuned empirically




Asymptotic Optimality of WInHD

e Main assumption: accuracy of linear model for ED

e Guaranteed fast error decay with increasing spatial resolution

M T

For signals in Besov space B, , as the number of pixels M — oo,

WINHD MSE | Ms+1.

e Decay rate is optimal, if original contone is noisy




Simulation Results
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e WINHD is competitive with state-of-the-art IHT algorithms




WInHD: Conclusions

e Ph.D. Contributions:
— Inverse halftoning ~ deconvolution

— WInHD: Wavelet-based Inverse halftoning via Deconvolution

+x O(M ) model-based algorithm with good performance

— Asymptotic (M — oo) error analysis

e Status: IEEE Trans. on Signal Processing (submitted)

e Collaborators: R. Nowak and R. Baraniuk




JPEG Compression History Estimation (CHESt)

color color
—

image

e Observed: color image that was previously JPEG-compressed

e JPEG — TIFF or BMP: settings lost during conversion

e Desired: settings used to perform previous JPEG compression

e Applications:

transform
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inverse
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— JPEG recompression

— Blocking artifact removal

observed
image

— Uncover internal compression settings from printers, cameras




Digital Color

Color perceived by human visual system requires three components

Pixel in digital color image — 3-D vector

Color space — Reference frame for the 3-D vector
— RGB: Red R, Green G, Blue B

— YCbCr: Luminance Y, Chrominance Cb, Chrominance Cr

Color spaces are inter-related by linear or non-linear transforms

R (1.0 0.0 1.40 Y 0
G| =11.0 —-0.344 —0.714 Cb| — |128
B 1.0 1.77 0.0 Cr| |128




JPEG Overview
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e JPEG: common standard to compress digital color images

e JPEG compression history components — chosen by imaging device

1. Color space used to perform compression

2. Subsampling and complementary interpolation

3. Quantization tables




Lattice Structure of Quantized DCT Coefficients

e 3-D vector of GG space’s DCT coefficients € rectangular lattice

- X1, Xao, X3 — ith frequency DCT coefficnents
i1, 4; 2, g;,3 — corresponding Q-step sizes

X
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e 3-D vector of F' space’s DCT coefficients € parallelepiped lattice

— Assuming no subsampling, affine G to F': F' = [T]3,3 G + Shift

compression space G observation space F




Lattice Basis Reduction

e Given vectors b;, lattice £ :=>"; \; b, with \; € Z

e Lattice basis reduction by Lenstra, Lenstra, Jr. and Lovasz (LLL):

— Given vectors € £, LLL finds an ordered set of basis vectors

x basis vectors are nearly orthogonal

x shorter basis vectors appear first in the order

e LLL operations are similar to Gram-Schmidt
1. Change the order of the basis vectors
2. Add to b; an integral multiple of b,

3. Delete any resulting zero vectors




LLL Provides Parallelepiped’s Basis Vectors

e Any basis for parallelepiped containing it frequency 3-D vectors

g1 0 O
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U; € 7Z3*3 — unit-determinant matrix

e From LLLs properties, and since 7 — nearly-orthogonal
— LLLs B;’s 15t (shortest) column is aligned with one of 7's columns

— The U;’s in LLLs B; are “close” to identity. For example,

1 0 1]
U; = 0],
1_

0 1
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Color Transform and Q-step Sizes from Different  B;’s

Need to undo effect of U/; from B, to get 7 Q;

— Choose U;’s such that Z/{Z-leBjuj_l Is diagonal

— Obtain 7Q; = B, *

Obtain the norms of each column of 7 from the different 7 9O,

- (T2 R)ll2 = @il TG k)2 = I(T2:) (5, k) l2 € 1-D lattice
Extract 7 and the quantization tables
From DC components, estimate shift

= Lattice basis provide color transform, quantization table




LLL + Round-off Noise Attenuation

b e ae o
compression space GG observation space F

e Round-offs perturb ideal lattice structure

e Need to incorporate noise attenuation step into LLL
— Perform LLL with oft-occuring 3-D vectors

— Use MAP (Gaussian round-offs) to update LLLs basis estimate

e Modified LLL provides good B; estimates that help solve CHEst




Lattice-based CHEst Results (Color Transform)

Actual color transform from ITU.BT-601 YCbCr space to the RGB
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Estimated color transform
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Error in shift’'s estimate does not affect recompression, enhancement

7’s estimate is very accurate
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Lattice-based CHEst Results (Quantization Table)
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Dictionary-based CHEst

e Lattice-based CHEst — affine color transform, no subsampling
e Dictionary-based CHEst — all types of color transforms, subsampling
e Uses MAP to estimate compression history

— Based on model for quantized coefficients + round-off noise

— Model: given g, PDF = Y. truncated Gaussians(kgq, o)
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e Also yields excellent CHESst results




JPEG Recompression Using CHEst Results
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e Aim: recompress a previously JPEG-compressed BMP image

e Naive recompression — large file-size or distortion

e CHEst results — good file-size—distortion trade-off




JPEG CHEst: Conclusions

e Ph.D. Contributions:
— Formulation of JPEG CHEst for color images
— Linear case: LLL algorithm to exploit 3-D lattice structures
— General case: MAP approach to exploit 1-D lattice structure

— Demonstrated JPEG CHEst’s utility in recompression

e Status: IEEE Trans. on Image Processing (to be submitted)

e Collaborators: R. de Queiroz, Z. Fan, and R. Baraniuk




Inverse Problems in Image Processing: Conclusions

e Deconvolution using ForwaRD:

— Exploits piece-wise smoothness of real-world signals

— Demonstrates desirable asymptotic performance

e Inverse halftoning using WInHD:

— EXxploits piece-wise smoothness of real-world signal

— Demonstrates desirable asymptotic performance

e Lattice-based and Dictionary-based JPEG CHEst for color images:

— Exploit lattice structures created due to JPEG’s quantization step

— Enables effective JPEG recompression




